SOME SUGGESTED HW SOLUTIONS

1. HW 8

- Problem 42.4

$$
\begin{aligned}
\int_{0}^{\pi} e^{(1+i) x} d x & =\frac{1}{1+i}\left(\left.e^{(1+i) x}\right|_{0} ^{\pi}\right) \\
& =\frac{1}{1+i}\left(e^{\pi} e^{\pi i}-e^{0}\right) \\
& =\frac{1}{1+i}\left(-e^{\pi}-1\right) \\
& =\frac{(1-i)\left(-e^{\pi}-1\right)}{2}
\end{aligned}
$$

Then note that the real part of this solution is $\frac{\left(-e^{\pi}-1\right)}{2}$ and that the imaginary part of this solution is $\frac{\left(e^{\pi}+1\right)}{2}$

- Problem 47.2

We want an upper bound on $\left|\int_{\mathcal{C}} \frac{d z}{z^{4}}\right|$, where \mathcal{C} is the given oriented contour, the line segment connecting i to 1 .

We will use the upper bound that is the product of the maximum value of $\left|\frac{1}{z^{4}}\right|$ on \mathcal{C} and the length of \mathcal{C}. The maximum value of the modulus of a complex number z on the contour is 1 , and the minimum value is $\frac{1}{\sqrt{2}}$. The least value for $|z|$ will give us the greatest value for $\left|\frac{1}{z^{4}}\right|$. So we have that $\left|\frac{1}{z^{4}}\right| \leq \frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{4}}=4$.

These give us $\left|\int_{\mathcal{C}} \frac{d z}{z^{4}}\right| \leq 4 \cdot \sqrt{2}$.

- Problem 47.4

We want a bound on

$$
\left|\int_{\mathcal{C}_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right|
$$

where \mathcal{C}_{R} is the top half of a positively oriented semicircle of radius R, centered at the origin.

We have $\left|z^{4}+5 z^{2}+4\right|=\left|z^{2}+4\right|\left|z^{2}+1\right|$.
From the triangle inequality, $\left|z^{2}+4\right| \geq\left|\left|z^{2}\right|-|4|\right|=\left|R^{2}-4\right|$.
And similarly, $\left|z^{2}+1\right| \geq\left|R^{2}-1\right|$.
Also from the triangle inequality, we have $\left|2 z^{2}-1\right| \leq 2\left|z^{2}\right|+|1|=2 R^{2}+1$.
Combining these inequalities, and noting that the length of \mathcal{C}_{R} is πR, gives us the desired

$$
\left|\int_{\mathcal{C}_{R}} \frac{2 z^{2}-1}{z^{4}+5 z^{2}+4} d z\right| \leq \frac{\pi R\left(2 R^{2}+1\right)}{\left(R^{2}-1\right)\left(R^{2}-4\right)}
$$

Then take the limit of this quotient as $R \rightarrow \infty$.

2. HW9

- Problem 49.4

We are looking at the function $f_{2}(z)=z^{1 / 2}=e^{\frac{1}{2} \log z}$, and we are using the branch of the \log function with $\frac{\pi}{2}<\theta<\frac{5 \pi}{2}$. Note that this branch is indeed analytic in a connected open set that contains any contour from -3 to 3 running below the real axis, since it only fails to be analytic along the branch cut, which is the non-negative imaginary axis. So $f_{2}(z)$ has an antiderivative throughout this domain, and we can use the antiderivative to evaluate the definite integral.

We have:

$$
\int_{\mathcal{C}_{2}} z^{\frac{1}{2}} d z=\int_{-3}^{3} f_{2}(z) d z=\left.\frac{2}{3} r \sqrt{r} e^{\frac{3 \theta i}{2}}\right|_{z=-3} ^{z=3}
$$

In the final step we are using our choice of branch, with $\frac{\pi}{2}<\theta<\frac{5 \pi}{2}$, to determine the correct choice of argument for the points $z=-3$ and $z=3$. For $z=-3$ we have $\theta=\pi$ and for $z=3$ we have $\theta=2 \pi$. [Compare this to the example in section 48.] Continuing we have:

$$
\int_{\mathcal{C}_{2}} z^{\frac{1}{2}} d z=\frac{2}{3} 3 \sqrt{3}\left(e^{\frac{6 \pi i}{2}}-e^{\frac{3 \pi i}{2}}\right)=2 \sqrt{3}(-1+i) .
$$

- Problem 57.4

We are determining the value of $g(z)=\int_{\mathcal{C}} \frac{s^{3}+2 s}{(s-z)^{3}} d s$ in the case where z lies inside of \mathcal{C} and in the case where z lies outside of \mathcal{C}, where \mathcal{C} denotes an simple closed contour in the plane with positive orientation.
(1) Suppose first that the point z is inside of \mathcal{C}. Then, since the polynomial $s^{3}+2 s$ is entire, we can use the generalization of the Cauchy Integral Formula. We have $f^{\prime \prime}(s)=6 s$. I evaluate this at any fixed point z inside of the contour, obtaining $f^{\prime \prime}(z)=6 z$. Then

$$
\int_{\mathcal{C}} \frac{s^{3}+2 s}{(s-z)^{3}} d s=\frac{(6 z)(2 \pi i)}{2!}=6 \pi i z
$$

(2) Suppose next that the point z lies outside of \mathcal{C}. In this lovely case, the function $\frac{s^{3}+2 s}{(s-z)^{3}}$ is analytic on and inside of \mathcal{C}. (Its only singularity is at the point $s=z$, which is assumed outside of this region.) So the Cauchy-Goursat Theorem tells us that

$$
\int_{\mathcal{C}} \frac{s^{3}+2 s}{(s-z)^{3}} d s=0
$$

- Problem 59.8

For part a, just do the algebra for the verification. If you find the notation cumbersome, try first fixing some small k, try $k=3$, and first do the algebra in this case.

For part b :

$$
\begin{aligned}
P(z) & =a_{0}+a_{1} z+a_{2} z+\cdots+a_{n} z^{n} \\
P\left(z_{0}\right) & =a_{0}+a_{1} z_{0}+a_{2} z_{0}^{2}+\cdots+a_{n} z_{o}^{n}
\end{aligned}
$$

Subtracting we have $P(z)-P\left(z_{0}\right)=a_{1}\left(z-z_{0}\right)+a_{2}\left(z^{2}-z_{0}^{2}\right)+\cdots+a_{n}\left(z^{n}-z_{0}^{n}\right)$
Next use the result you verified in part a. So you will have:

$$
P(z)=P(z)-0=P(z)-P\left(z_{0}\right)=\left(z-z_{0}\right)\left(a_{1}+a_{2}\left(z+z_{0}\right)+\cdots+a_{n}\left(z^{n-1}+\cdots z_{0}^{n-1}\right) .\right.
$$

Explain why this is the desired result. (Identify $Q(z)$ in the equalities above.)

