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Chapter 1

Introduction

What are Lie groups and why do we want to study them? To illustrate this, let us start by considering
this baby example.

Example 1.1. Suppose you have n numbers a1, . . . , an arranged on a circle. You have a transfor-
mation A which replaces a1 with an+a2

2 , a2 with a1+a3
2 , and so on. If you do this sufficiently many

times, will the numbers be roughly equal?

To answer this we need to look at the eigenvalues of A. However, explicitly computing the
characteristic polynomial and finding the roots is a rather difficult problem. But we can note that
the problem has rotational symmetry: if we denote by B the operator of rotating the circle by 2π/n,
i.e. sending (a1, . . . , an) to (a2, a3, . . . , an, a1), then BAB−1 = A. Since the operator B generates
the group of cyclic permutation Zn, we will refer to this as the Zn symmetry. So we might try to
make use of this symmetry to find eigenvectors and eigenvalues of A.

Naive idea would be to just consider B-invariant eigenvectors. It is easy to see that there is
only one such vector, and while it is indeed an eigenvector for A, this is not enough to diagonalize
A. Instead, we can use the following well-known result from linear algebra: if linear operators A,B
in a vector space V commute, and Vλ is an eigenspace for B, then AVλ ⊂ Vλ. Thus, if the operator
B is diagonalizable so that V =

⊕
Vλ, then A preserves this decomposition and thus the problem

reduces to diagonalizing A on each of Vλ separately, which is a much easier problem.

In this case, since Bn = id, its eigenvalues must be n-th roots of unity. Denoting by ε = e2πi/n

the primitive n-th root of unity, it is easy to check that indeed, each n-th root of unity λ = εk, k =
0 . . . , n − 1, is an eigenvalue of B, with eigenvector vk = (1, εk, ε2k, . . . , ε(n−1)k). Thus, in this case
each eigenspace for B is one-dimensional, so each vk must also be an eigenvector for A. Indeed, one
immediately sees that Avk = εk+ε−k

2 vk.

This is the baby version of a real life problem. Consider S2 ⊂ R3. Define the Laplace operator
∆sph : C∞(S2) → C∞(S2) by ∆sphf = (∆f̃)|S2 , where f̃ is the result of extending f to R3 − {0}
(constant along each ray), and ∆ is the usual Laplace operator in R3. It is easy to see that ∆sph

is a second order differential operator on the sphere; one can write explicit formulas for it in the
spherical coordinates, but they are not particularly nice.

For many applications, it is important to know the eigenvalues and eigenfunctions of ∆sph. In
particular, this problem arises in qunatum mechanics: the eigenvalues are related to the energy
levels of a hydrogen atom in quantum mechanical description. Unfortunately, trying to find the
eigenfunctions by brute force gives a second-order differential equation which is very difficult to
solve.
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8 1. Introduction

But much as in the baby example, it is easy to notice that this problem also has some symmetry
— namely, the group SO(3,R) acting on the sphere by rotations. However, trying to repeat the
approach used in the baby example (which had Zn-symmetry) immediately runs into the following
two problems:

• SO(3,R) is not a finitely generated group, so we can not use just one (or finitely many)
operators Bi and consider their common eigenspaces.

• SO(3,R) is not commutative, so different operators from SO(3,R) can not be diagonalized
simultaneously.

The goal of the theory of Lie groups is to give tools to deal with these (and similar) problems.
In short, the answer to the first problem is that SO(3,R) is in a certain sense finitely generated —
namely, it is generated by three generators, “infinitesimal rotations” around x, y, z axes (see details
in Example 3.10).

The answer to the second problem is that instead of decomposing the C∞(S2) into a direct
sum of common eigenspaces for operators B ∈ SO(3,R), we need to decompose it into “irreducible
representations” of SO(3,R). In order to do this, we need to develop the theory of representations
of SO(3,R). We will do this and complete the analysis of this example in Chapter 5.



Chapter 2

Lie Groups: Basic
Definitions

2.1. Lie groups, subgroups, and cosets

Definition 2.1. A Lie group is a set G with two structures: G is a group and G is a (smooth, real)
manifold. These structures agree in the following sense: multiplication and inversion are smooth
maps.

A morphism of Lie groups is a smooth map which also preserves the group operation: f(gh) =
f(g)f(h), f(1) = 1.

In a similar way, one defines complex Lie groups. However, unless specified otherwise, “Lie
group” means a real Lie group.

Remark 2.2. The word “smooth” in the definition above can be understood in different ways:
C1, C∞, analytic. It turns out that all of them are equivalent: every C0 Lie group has a unique
analytic structure. This is a highly non-trivial result (it was one of Hilbert’s 20 problems), and we
are not going to prove it (proof of a weaker result, that C2 implies analyticity, is much easier and
can be found in [10, Section 1.6]). In this book, “smooth” will be always understood as C∞.

Example 2.3. The following are examples of Lie groups

(1) Rn, with the group operation given by addition

(2) R∗,×
R+,×

(3) S1 = {z ∈ C : |z| = 1},×
(4) GL(n,R) ⊂ Rn2

. Many of the groups we will consider will be subgroups of GL(n,R) or
GL(n,C).

(5) SU(2) = {A ∈ GL(2,C) | AĀt = 1, detA = 1}. Indeed, one can easily see that

SU(2) =
{(

α β

−β̄ ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
.

Writing α = x1 + ix2, β = x3 + ix4, xi ∈ R, we see that SU(2) is diffeomorphic to S3 =
{x2

1 + · · ·+ x2
4 = 1} ⊂ R4.

(6) In fact, all usual groups of linear algebra, such as GL(n,R), SL(n,R), O(n,R), U(n),
SO(n,R), SU(n), Sp(2n,R) are Lie groups. This will be proved later (see Section 2.5).

9



10 2. Lie Groups: Basic Definitions

Note that the definition of a Lie group does not require that G be connected. Thus, any finite
group is a 0-dimensional Lie group. Since the theory of finite groups is complicated enough, it makes
sense to separate the finite (or, more generally, discrete) part. It can be done as follows.

Theorem 2.4. Let G be a Lie group. Denote by G0 the connected component of unity. Then G0 is
a normal subgroup of G and is a Lie group itself. The quotient group G/G0 is discrete.

Proof. We need to show that G0 is closed under the operations of multiplication and inversion.
Since the image of a connected topological space under a continuous map is connected, the inversion
map i must take G0 to one component of G, that which contains i(1) = 1, namely G0. In a similar
way one shows that G0 is closed under multiplication.

To check that this is a normal subgroup, we must show that if g ∈ G and h ∈ G0, then
ghg−1 ∈ G0. Conjugation by g is continuous and thus will take G0 to some connected component of
G; since it fixes 1, this component is G0.

The fact that the quotient is discrete is obvious. ¤

This theorem mostly reduces the study of arbitrary Lie groups to the study of finite groups and
connected Lie groups. In fact, one can go further and reduce the study of connected Lie groups to
connected simply-connected Lie groups.

Theorem 2.5. If G is a connected Lie group then its universal cover G̃ has a canonical structure of
a Lie group such that the covering map p : G̃→ G is a morphism of Lie groups, and Ker p = π1(G)
as a group. Morever, in this case Ker p is a discrete central subgroup in G̃.

Proof. The proof follows from the following general result of topology: if M,N are connected
manifolds (or, more generally, nice enough topological spaces), then any continuous map f : M → N

can be lifted to a map f̃ : M̃ → Ñ . Moreover, if we choose m ∈ M,n ∈ N such that f(m) = n and
choose liftings m̃ ∈ M̃, ñ ∈ Ñ such that p(m̃) = m, p(ñ) = n, then there is a unique lifting f̃ of f
such that f̃(m̃) = ñ.

Now let us choose some element 1̃ ∈ G̃ such that p(1̃) = 1 ∈ G. Then, by the above theorem,
there is a unique map ı̃ : G̃→ G̃ which lifts the inversion map i : G→ G and satisfies ı̃(1̃) = 1̃. In a
similar way one constructs the multiplication map G̃× G̃→ G̃. Details are left to the reader.

Finally, the fact that Ker p is central follows from results of Exercise 2.2. ¤

Definition 2.6. A Lie subgroup H of a Lie group G is a subgroup which is also a submanifold.

Remark 2.7. In this definition, the word “submanifold” should be understood as “imbedded sub-
manifold”. In particular, this means that H is locally closed but not necessarily closed; as we will
show below, it will automatically be closed. It should also be noted that the terminology varies from
book to book: some books use the word “Lie subgroup” for a more general notion which we will
discuss later (see Definition 3.39).

Theorem 2.8.

(1) Any Lie subgroup is closed in G.

(2) Any closed subgroup of a Lie group is a Lie subgroup.

Proof. The proof of the first part is given in Exercise 2.1. The second part is much harder and will
not be proved here. The proof uses the technique of Lie algebras and can be found, for example, in
[10, Corollary 1.10.7]. We will give a proof of a weaker but sufficient for our purposes result later
(see Section 3.6). ¤
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Corollary 2.9.

(1) If G is a connected Lie group and U is a neighborhood of 1, then U generates G.

(2) Let f : G1 → G2 be a morphism of Lie groups, with G2 connected, and f∗ : T1G1 → T1G2

is surjective. Then f is surjective.

Proof. (1) Let H be the subgroup generated by U. Then H is open in G: for any element
h ∈ H, the set h · U is a neighborhood of h in G. Since it is an open subset of a manifold,
it is a submanifold, so H is a Lie subgroup. Therefore, by Theorem 2.8 it is closed, and is
nonempty, so H = G.

(2) Given the assumption, the inverse function theorem says that f is surjective onto some
neighborhood U of 1 ∈ G2. Since an image of a group morphism is a subgroup, and U

generates G2, f is surjective.

¤

As in the theory of discrete groups, given a subgroup H ⊂ G, we can define the notion of cosets
and define the coset space G/H as the set of equivalence classes. The following theorem shows that
the coset space is actually a manifold.

Theorem 2.10.

(1) Let G be a Lie group of dimension n and H ⊂ G a Lie subgroup of dimension k. Then the
coset space G/H has a natural structure of a manifold of dimension n − k such that the
canonical map p : G→ G/H is a fiber bundle, with fiber diffeomorphic to H. The tangent
space at 1̄ = p(1) is given by T1̄(G/H) = T1G/T1H.

(2) If H is a normal Lie subgroup then G/H has a canonical structure of a Lie group.

Proof. Denote by p : G→ G/H the canonical map. Let g ∈ G and ḡ = p(g) ∈ G/H. Then the set
g·H is a submanifold inG as it is an image ofH under diffeomorphism x 7→ gx. Choose a submanifold
M ⊂ G such that g ∈ M and M is transversal to the manifold gH, i.e. TgG = (Tg(gH)) ⊕ TgM

(this implies that dimM = dimG−dimH). Let U ⊂M be a sufficiently small neighborhood of g in
M . Then the set UH = {uh | u ∈ U, h ∈ H} is open in G (which easily follows from inverse function
theorem applied to the map U ×H → G). Consider Ū = p(U); since p−1(Ū) = UH is open, Ū is an
open neighborhood of ḡ in GH and the map U → Ū is a homeomorphism. This gives a local chart
for G/H and at the same time shows that G→ G/H is a fiber bundle with fiber H. We leave it to
the reader to show that transition functions between such charts are smooth and that the smooth
structure does not depend on the choice of g, M .

This argument also shows that the kernel of the projection p∗ : TgG → Tḡ(G/H) is equal to
Tg(gH). In particular, for g = 1 this gives an isomorphism T1̄(G/H) = T1G/T1H. ¤
Corollary 2.11.

(1) If H is connected, then the set of connected components π0(G) = π0(G/H). In particular,
if H,G/H are connected, then so is G.

(2) If G,H are connected, then there is an exact sequence of groups

π2(G/H) → π1(H) → π1(G) → π1(G/H) → {1}
This corollary follows from more general long exact sequence of homotopy groups associated

with any fiber bundle. We will later use it to compute fundamental groups of classical groups such
as GL(n).

Finally, there is an analog of the standard homomorphism theorem for Lie groups.
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Theorem 2.12. Let f : G1 → G2 be a morphism of Lie groups. Then H = Ker f is a normal Lie
subgroup in G1, and f gives rise to an injective morphism G1/H → G2, which is an immersion of
manifolds. If Im f is closed, then it is a Lie subgroup in G2 and f gives an isomorphism of Lie
groups G1/H ' Im f .

The proof of this theorem will be given later (see Corollary 3.27). Note that it shows in particular
that an image of f is a subgroup in G2 which is an immersed submanifold; however, it may not
be a Lie subgroup as the example below shows. Such more general kinds of subgroups are called
immersed subgroups and will be discussed later (see Definition 3.39).

Example 2.13. Let G1 = R, G = T 2 = R2/Z2. Define the map f : G1 → G2 by f(t) = (t
mod Z, αt mod Z), where α is some fixed irrational number. Then it is well-known that the image
of this map is everywhere dense in T 2 (it is sometimes called irrational winding on the torus).

2.2. Action of Lie groups on manifolds and
representations

The primary reason why Lie groups are so frequently used is that they usually appear as groups of
symmetry of various geometric objects. In this section, we will show several examples.

Definition 2.14. An action of a Lie group G an a manifold M is an assignment to each g ∈ G a
diffeomorhism ρ(g) ∈ DiffM such that ρ(1) = id, ρ(gh) = ρ(g)ρ(h) and such that the map

G×M →M : (g,m) 7→ ρ(g).m

is a smooth map.

Example 2.15.

(1) The group GL(n,R) (and thus, any its Lie subgroup) acts on Rn.

(2) The group O(n,R) acts on the sphere Sn−1 ⊂ Rn. The group U(n) acts on the sphere
S2n−1 ⊂ Cn.

Closely related with the notion of a group acting on a manifold is the notion of a representation.

Definition 2.16. A representation of a Lie group G is a vector space V together with a group
morphism ρ : G → End(V ). If V is finite-dimensional, we also require that the map G × V →
V : (g, v) 7→ ρ(g).v be a smooth map, so that ρ is a morphism of Lie groups.

A morphism between two representations V,W is a linear map f : V → W which commutes
with the action of G: fρV (g) = ρW (g)f .

In other words, we assign to every g ∈ G a linear map ρ(g) : V → V so that ρ(g)ρ(h) = ρ(gh).

We will frequently use the shorter notation g.m, g.v instead of ρ(g).m in the cases when there
is no ambiguity about the representation being used.

Remark 2.17. Note that we frequently consider representations on a complex vector space V , even
for a real Lie group G.

Any action of the group G on a manifold M gives rise to several representations of G on various
vector spaces associated with M :

(1) Representation of G on the (infinite-dimensional) space of functions C∞(M) defined by

(2.1) (ρ(g)f)(m) = f(g−1.m)

(note that we need g−1 rather than g to satisfy ρ(g)ρ(h) = ρ(gh)).
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(2) Representation of G on the (infinite-dimensional) space of vector fields Vect(M) defined
by

(2.2) (ρ(g).v)(m) = g∗(v(g−1.m)).

In a similar way, we define the action of G on the spaces of differential forms and other
types of tensor fields on M .

(3) Assume that m ∈ M is a stationary point: g.m = m for any g ∈ G. Then we have a
canonical action of G on the tangent space TmM given by ρ(g) = g∗ : TmM → TmM , and
similarly for the spaces T ∗mM,

∧k
T ∗mM .

2.3. Orbits and homogeneous spaces

Let G act on a manifold M . Then for every point m ∈ M we define its orbit by Om = Gm =
{g.m | g ∈ G}.
Lemma 2.18. Let M be a manifold with an action of G. Choose a point m ∈ M and let H =
StabG(m) = {g ∈ G | g.m = m}. Then H is a Lie subgroup in G, and g 7→ g.m is an injective
immersion G/H ↪→M whose image coincides with the orbit Om.

Proof. The fact that the orbit is in bijection with G/H is obvious. For the proof of the fact that H
is a closed subgroup, we could just refer to Theorem 2.8. However, this would not help proving that
G/Stab(m) →M is an immersion. Both of these statements are easiest proved using the technique
of Lie algebras; thus, we pospone the proof until later time (see Theorem 3.26). ¤

Corollary 2.19. The orbit Om is an immersed submanifold in M , with tangent space TmOm =
T1G/T1H. If Om is closed, then g 7→ g.m is a diffeomorphism G/Stab(m) ∼−→ Om.

An important special case is when the action of G is transitive, i.e. when there is only one orbit.

Definition 2.20. A G-homogeneous space is a manifold with a transitive action of G.

As an immediate corollary of Corollary 2.19, we see that each homogeneous space is diffeomorphic
to a coset space G/H. Combining it with Theorem 2.10, we get the following result.

Corollary 2.21. Let M be a G-homogeneous space and choose m ∈M . Then the map G→M : g 7→
gm is a fiber bundle over M with fiber H = StabGm.

Example 2.22.

(1) Consider the action of SO(n,R) on the sphere Sn−1 ⊂ Rn. Then it is a homogeneous space,
so we have a fiber bundle

SO(n− 1,R) // SO(n,R)

²²
Sn−1

(2) Consider the action of SU(n) on the sphere S2n−1 ⊂ Cn. Then it is a homogeneous space,
so we have a fiber bundle

SU(n− 1) // SU(n)

²²
S2n−1
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In fact, action of G can be used to define smooth structure on a set. Indeed, if M is a set (no
smooth structure yet) with a transitive action of a Lie group G, then M is in bijection with G/H,
H = StabG(m) and thus, by Theorem 2.10, M has a canonical structure of a manifold of dimension
equal to dimG− dimH.

Example 2.23. Define a flag in Rn to be a sequence of subspaces

{0} ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = Rn, dimVi = i

Let Bn(R) be the set of all flags in Rn. It turns out that Bn(R) has a canonical structure of a smooth
manifold which is called the flag manifold (or sometimes flag variety). The easiest way to define it
is to note that we have an obvious action of the group GL(n,R) on Bn(R). This action is transitive:
by a change of basis, any flag can be identified with the standard flag

V st =
({0} ⊂ 〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, . . . , en−1〉 ⊂ Rn

)

where 〈e1, . . . , ek〉 stands for the subspace spanned by e1, . . . , ek. Thus, Bn(R) can be identified with
the coset GL(n,R)/B(n,R), where B(n,R) = StabV st is the group of all invertible upper-triangular
matrices. Therefore, Bn is a manifold of dimension equal to n2 − n(n+1)

2 = n(n−1)
2 .

Finally, we should say a few words about taking the quotient by the action of a group. In many
cases when we have an action of a group G on a manifold M one would like to consider the quotient
space, i.e. the set of all G-orbits. This set is commonly denoted by M/G. It has a canonical quotient
topology. However, this space can be very singular, even if G is a Lie group; for example, it can be
non-Hausdorff. For example, if G = GL(n,C) acting on the set of all n×n matrices by conjugation,
then the set of orbits is described by Jordan canonical form. However, it is well-known that by a
small perturbation, any matrix can be made diagonalizable. Thus, if X,Y are matrices with the
same eigenvalues but different Jordan form, then any neighborhood of the orbit of X contains points
from orbit of Y .

There are several ways of dealing with this problem. One of them is to impose additional
requirements on the action, for example assuming that the action is proper. In this case it can be
shown that M/G is indeed a Hausdorff topological space, and under some additional conditions, it
is actually a manifold (see [10, Section 2]). Another approach, usually called Geometric Invariant
Theory, is based on using the methods of algebraic geometry (see [17]). Both of these methods go
beyond the scope of this book.

2.4. Left, right, and adjoint action

Important examples of group action are the following actions of G on itself:

Left action: Lg : G→ G is defined by Lg(h) = gh

Right action: Rg : G→ G is defined by Rg(h) = hg−1

Adjoint action: Adg : G→ G is defined by Adg(h) = ghg−1

One easily sees that left and right actions are transitive; in fact, each of them is simply transitive.
It is also easy to see that the left and right actions commute and that Adg = LgRg.

As mentioned above, each of these actions also defines the action of G on the spaces of functions,
vector fields, forms, etc. on G. For simplicity, for a tangent vector v ∈ TmG , we will frequently write
just gv ∈ TgmG instead of technically more accurate but cumbersome notation (Lg)∗v. Similarly,
we will write vg for (Rg−1)∗v. This is justified by Exercise 2.6, where it is shown that for matrix
groups this notation agrees with usual multiplication of matrices.
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Since the adjoint action preserves the identity element 1 ∈ G, it also defines an action of G on
the (finite-dimensional) space T1G. Slightly abusing the notation, we will denote this action also by

(2.3) Ad g : T1G→ T1G.

Definition 2.24. A vector field v ∈ Vect(G) is left-invariant if g.v = v for every g ∈ G, and
right-invariant if v.g = v for every g ∈ G. A vector field is called bi-invariant if it is both left- and
right-invariant.

In a similar way one defines left- , right-, and bi-invariant differential forms and other tensors.

Theorem 2.25. The map v 7→ v(1) (where 1 is the identity element of the group) defines an
isomorphism of the vector space of left-invariant vector fields on G with the vector space T1G, and
similarly for right-invariant vector spaces.

Proof. It suffices to prove that every x ∈ T1G can be uniquely extended to a left-invariant vector
field on G. Let us define the extension by v(g) = gx ∈ TgG. Then one easily sees that so defined
vector field is left-invariant, and v(1) = x. This proves existence of extension; uniqueness is obvious.

¤

Describing bi-invariant vector fields on G is more complicated: any x ∈ T1G can be uniquely
extended to a left-invariant vector field and to a right-invariant vector field, but these extensions
may differ.

Theorem 2.26. The map v 7→ v(1) defines an isomorphism of the vector space of bi-invariant
vector fields on G with the vector space of invariants of adjoint action:

(T1G)Ad G = {x ∈ T1G | Ad g(x) = x for all g ∈ G}

The proof of this result is left to the reader. Note also that a similar result holds for other types
of tensor fields: covector fields, differential forms, etc.

2.5. Classical groups

In this section, we discuss the so-called classical groups, or various subgroups of the general linear
group which are frequently used in linear algebra. Traditionally, the name “classical groups” is
applied to the following groups:

• GL(n,K) (here and below, K is either R, which gives a real Lie group, or C, which gives a
complex Lie group)

• SL(n,K)

• O(n,K)

• SO(n,K) and more general groups SO(p, q;R).

• U(n)

• SU(n)

• Sp(2n,K) = {A : K2n → K2n | ω(Ax,Ay) = ω(x, y)}. Here ω(x, y) is the skew-symmetric
bilinear form

∑n
i=1 xiyi+n − yixi+n (which, up to a change of basis, is the unique non-

degenerate skew-symmetric bilinear form on K2n). Equivalently, one can write ω(x, y) =
(Jx, y), where ( , ) is the standard symmetric bilinear form on Kn and

J =
(

0 −In
In 0

)
.
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Remark 2.27. There is some ambiguity with the notation for symplectic group: the group we
denoted Sp(2n,K) in some books would be written as Sp(n,K). Also, it should be noted that there
is a closely related compact group of quaternionic unitary transformations (see Exercise 2.7). This
group, which is usually denoted simply Sp(n), is a “compact form” of the group Sp(2n,C) in the
sense we will describe later (see Exercise 3.16). To avoid confusion, we have not included this group
in the list of classical groups.

We have already shown that GL(n) and SU(2) are Lie groups. In this section, we will show that
each of these groups is a Lie group and will find their dimensions.

Straightforward approach, based on implicit function theorem, is hopeless: for example, SO(n,K)
is defined by n2 equations in Kn2

, and finding the rank of this system is not an easy task. We could
just refer to the theorem about closed subgroups; this would prove that each of them is a Lie group,
but would give us no other information — not even the dimension of G. Thus, we will need another
approach.

Our approach is based on the use of exponential map. Recall that for matrices, the exponential
map is defined by

(2.4) exp(x) =
∞∑
0

xk

k!
.

It is well-known that this power series converges and defines an analytic map gl(n,K) → gl(n,K),
where gl(n) is the set of all n× n matrices. In a similar way, we define the logarithmic map by

(2.5) log(1 + x) =
∞∑
1

(−1)k+1xk

k
.

So defined log is an analytic map defined in a neighborhood of 1 ∈ gl(n,K).

The following theorem summarizes properties of exponential and logarithmic maps. Most of the
properties are the same as for numbers; however, there are also some differences due to the fact that
multiplication of matrices is not commutative. All of the statements of this theorem apply equally
well in real and complex cases.

Theorem 2.28.

(1) log(exp(x)) = x; exp(log(X)) = X whenever they are defined.

(2) exp(x) = 1 + x+ . . . This means exp(0) = 1 and d exp(0) = id .

(3) If xy = yx then exp(x+y) = exp(x) exp(y). If XY = Y X then log(XY ) = log(X)+log(Y )
in some neighborhood of the identity. In particular, for any x ∈ gl(n,K), exp(x) exp(−x) =
1, so expx ∈ GL(n,K).

(4) For fixed x ∈ gl(n,K), consider the map K→ GL(n,K) : t 7→ exp(tx). Then exp((t+s)x) =
exp(tx) exp(sx). In other words, this map is a morphism of Lie groups.

(5) The exponential map agrees with change of basis and transposition:
exp(AxA−1) = A exp(x)A−1, exp(xt) = (exp(x))t.

Full proof of this theorem will not be given here; instead, we just give a sketch. First two
statements are just equalities of formal power series in one variable; thus, it suffices to check that
they hold for x ∈ R. Similarly, the third one is an identity of formal power series in two commuting
variables, so it again follows from well-known equality for x, y ∈ R. The fourth follows from the
third, and the fifth follows from (AxA−1)n = AxnA−1 and (At)n = (An)t.
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Note that group morphisms R→ G are frequently called one-parameter subgroups in G. This is
not a quite accurate name, as the image may not be a Lie subgroup (see Theorem 2.12); however,
the name is so widely used that it is too late to change it. Thus, we can reformulate part (4) of the
theorem by saying that exp(tx) is a one-parameter subgroup in GL(n,K).

How does it help us to study various matrix groups? The key idea is that the logarithmic map
identifies some neighborhood of the identity in GL(n,K) with some neighborhood of 0 in a vector
space. It turns out that it also does the same for all of the classical groups.

Theorem 2.29. For each classical group G ⊂ GL(n,K), there exists a vector space g ⊂ gl(n,K)
such that for some some neighborhood U of 1 in GL(n,K) and some neighborhood u of 0 in gl(n,K)
the following maps are mutually inverse

(U ∩G)
log

--
mm
exp

(u ∩ g)

Before proving this theorem, note that it immediately implies the following important corollary.

Corollary 2.30. Each classical group is a Lie group, with tangent space at identity T1G = g and
dimG = dim g.

Let us prove this corollary first because it is very easy. Indeed, Theorem 2.29 shows that near
1, G is identified with an open set in a vector space. So it is immediate that near 1, G is smooth. If
g ∈ G then g ·U is a neighborhood of g in GL(n,K), and (g ·U)∩G = g · (U ∩G) is a neighborhood
of g in G; thus, G is smooth near g.

For the second part, consider the differential of the exponential map exp∗ : T0g → T1G. Since
g is a vector space, T0g = g, and since exp(x) = 1 + x + . . . , the derivative is the identity; thus,
T0g = g = T1G.

Proof of Theorem 2.29. The proof is case by case; it can not be any other way, as “classical
groups” are defined by a list rather than by some general definition.

GL(n,K): Immediate from Theorem 2.28; in this case, g = gl(n,K) is the space of all matrices.

SL(n,K): Suppose X ∈ SL(n,K) is close enough to identity. Then X = exp(x) for some x ∈
gl(n,K). The condition that X ∈ SL(n,K) is equivalent to detX = 1, or det exp(x) = 1.
But it is well-known that det exp(x) = exp(tr(x)) (which is easy to see by finding a basis
in which x is upper-triangular), so exp(x) ∈ SL(n,K) if and only if tr(x) = 0. Thus, in
this case the statement also holds, with g = {x ∈ gl(n,K) | trx = 0}.

O(n,K), SO(n,K): The group On is defined by XXt = I. Then X,Xt commute. Writing
X = exp(x), Xt = exp(xt) (since exponential map agrees with transposition), we see that
x, xt also commute, and thus exp(x) ∈ O(n) implies exp(x) exp(xt) = exp(x + xt) = 1, so
x+xt = 0; conversely, if x+xt = 0, then x, xt commute, so we can reverse the argument to
get exp(x) ∈ O(n,K). Thus, in this case the theorem also holds, with g = {x | x+xt = 0}—
the space of skew-symmetric matrices.

What about SO(n,K)? In this case, we should add to the condition XXt = 1 (which
gives x + xt = 0) also the condition detX = 1, which gives tr(x) = 0. However, this last
condition is unnecessary, because x+ xt = 0 implies that all diagonal entries of x are zero.
So both O(n,K) and SO(n,K) correspond to the same space of matrices g = {x | x+ xt =
0}. This might seem confusing until one realizes that SO(n,K) is exactly the connected
component of identity in O(n,K); thus, neighborhood of 1 in O(n,K) coincides with the
neighborhood of 1 in SO(n,K).
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U(n), SU(n): Similar argument shows that expx ∈ U(n) ⇐⇒ x + x∗ = 0 (where x∗ = x̄t)
and expx ∈ SU(n) ⇐⇒ x + x∗ = 0, tr(x) = 0. Note that in this case, x + x∗ does not
imply that x has zeroes on the diagonal: it only implies that the diagonal entries are purely
imaginary. Thus, trx = 0 does not follow automatically from x + x∗ = 0, so in this case
the tangent spaces for U(n),SU(n) are different.

Sp(2n,K): Similar argument shows that exp(x) ∈ Sp(2n,K) ⇐⇒ x + JxtJ−1 = 0; thus, in
this case the theorem also holds.

¤

The vector space g = T1G is called the Lie algebra of the corresponding group G (this will be
justified later, when we actually define an algebra operation on it). Traditionally, the Lie algebra
is denoted by lowercase gothic letters: for example, the Lie algebra of group SU(n) is denoted by
su(n).

The following table summarizes results of Theorem 2.29. In addition, it also contains information
about topological structure of classical Lie groups. Proofs of them can be found in exercsies.

G GL(n,R) SL(n,R) O(n,R) SO(n,R) U(n) SU(n) Sp(2n,R)
g gl(n,R) trx = 0 x+ xt = 0 x+ xt = 0 x+ x∗ = 0 x+ x∗ = 0, trx = 0 x+ JxtJ−1 = 0

dimG n2 n2 − 1 n(n−1)
2

n(n−1)
2 n2 n2 − 1 n(2n+ 1)

π0(G) Z2 {1} Z2 {1} {1} {1} {1}
π1(G) Z2 (n ≥ 3) Z2 (n ≥ 3) Z2 (n ≥ 3) Z2 (n ≥ 3) Z {1} Z

For complex classical groups, the Lie algebra and dimension are given by the same formula as
for real groups. However, the topology of complex Lie groups is different and is given in the table
below.

G GL(n,C) SL(n,C) O(n,C) SO(n,C)
π0(G) {1} {1} Z2 {1}
π1(G) Z {1} Z2 Z2

Note that some of the classical groups are not simply-connected. As was shown in Theorem 2.5,
in this case the universal cover has a canonical structure of a Lie group. Of special importance
is the universal cover of SO(n,R) which is called the spin group and is denoted Spin(n); since
π1(SO(n,R)) = Z2, this is a twofold cover.

Exercises

2.1. Let G be a Lie group and H — a Lie subgroup.
(1) Let H be the closure of H in G. Show that H is a subgroup in G.
(2) Show that each coset Hx, x ∈ H, is open and dense in H.
(3) Show that H = H, that is, every Lie subgroup is closed.

2.2. (1) Show that every discrete normal subgroup of a connected Lie group is central (hint:
consider the map G→ N : g 7→ ghg−1 where h is a fixed element in N).

(2) By applying part (a) to kernel of the map G̃→ G, show that for any connected Lie group G,
the fundamental group π1(G) is commutative.

2.3. Let f : G1 → G2 be a morphism of connected Lie groups such that f∗ : T1G1 → T1G2 is an
isomorphism (such a morphism is sometimes called local isomorphism). Show that f is a covering
map, and Ker f is a discrete central subgroup.
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2.4. Let Bn(C) be the set of all flags in Cn (see Example 2.23. Show that Bn(C) = GL(n,C)/B(n,C) =
U(n)/T (n) where B(n,C) is the group of invertible complex upper triangular matrices, and T (n)
is the group of diagonal unitary matrices (which is easily shown to be the n-dimensional torus
(R/Z)n ). Deduce from this that Bn(C) is a compact complex manifold and find its dimension
over C.

2.5. Let Gn,k be the set of all dimension k subspaces in Rn (usually called the Grassmanian). Show
that Gn,k is a homogeneous space for the group O(n) and thus can be identified with coset space
O(n)/H for appropriate H. Use it to prove that Gn,k is a manifold and find its dimension.

2.6. Show that if G = GL(n,R) ⊂ End(Rn) so that each tangent space is canonically identified
with End(Rn), then (Lg)∗v = gv where the product in the right-hand side is the usual product of
matrices, and similarly for the right action. Also, the adjoint action is given by Adg(v) = gvg−1.

2.7. Let Sp(n) = Sp(2n,C) ∩ SU(2n). Show that Sp(n) is a compact real Lie group, and compute
its tangent space at 1. (This group is sometimes called the quaternionic unitary group. Its relation
with the groups Sp(2n,R) and Sp(2n,C) will be clarified later — see Exercise 3.16.)

2.8. Using Example 2.22, show that for n ≥ 1, we have π0(SU(n+1)) = π0(SU(n)), π0(U(n+1)) =
π0(U(n)) and deduce from it that groups U(n), SU(n) are connected for all n. Similarly, show
that for n ≥ 2, we have π1(SU(n+ 1)) = π1(SU(n)), π1(U(n+ 1)) = π1(U(n)) and deduce from it
that for n ≥ 2, SU(n) is simply-connected and π1(U(n)) = Z.

2.9. Using Gram-Schmidt orthogonalization process, show that GL(n,R)/O(n,R) is diffeomorphic
to the space of upper-triangular matrices with positive entries on the diagonal. Deduce from this
that GL(n,R) is homotopic (as a topological space) to O(n,R).

2.10. Let Ln be the set of all Lagrangian subspaces in R2n with the standard symplectic form
ω defined in Section 2.5. (A subspace V is Lagrangian if dimV = n and ω(x, y) = 0 for any
x, y ∈ V .)

Show that the group Sp(2n,R) acts transitively on Ln and use it to define on Ln a structure
of a smooth manifold and find its dimension.

The next series of problems is about the group SU(2) and its adjoint representation

2.11. Define a bilinear form on su(2) by (a, b) = 1
2 tr(ab

t
). Show that this form is symmetric,

positive definite, and invariant under the adjoint action of SU(2).

2.12. Define a basis in su(2) by

iσ1 =
(

0 1
−1 0

)
iσ2 =

(
0 i

i 0

)
iσ3 =

(
i 0
0 −i

)

Show that the map

(2.6)
ϕ : SU(2) → GL(3,R)

g 7→ matrix of Ad g in the basis iσ1, iσ2, iσ3

gives a morphism of Lie groups SU(2) → SO(3,R).

2.13. Let ϕ : SU(2) → SO(3,R) be the morphism defined in the previous problem. Compute
explicitly the map of tangent spaces ϕ∗ : su(2) → so(3,R) and show that ϕ∗ is an isomorphism.
Deduce from this that Kerϕ is a discrete normal subgroup in SU(2), and that Imϕ is an open
subgroup in SO(3,R).

2.14. Prove that ϕ establishes an isomorphism SU(2)/Z2 → SO(3,R) and thus, since SU(2) ' S3,
SO(3,R) ' RP3.





Chapter 3

Lie Groups and Lie
algebras

3.1. Exponential map

We are now turning to the study of arbitrary Lie groups. Our first goal will be generalizing the
exponential map exp: g → G, which proved so useful in the study of matrix groups (see Theo-
rem 2.28), to general Lie algebras. We can not use power series to define it because we don’t have
multiplication in g. However, it turns out that there is still a way to define such a map so that
most of the results about the exponential map for matrix groups can be generalized to arbitrary
groups, and this gives us a key to studying the Lie groups. This definition is based on the notion of
one-parameter subgroup (compare with Theorem 2.28).

Proposition 3.1. Let G be a Lie group, g = T1G, and let x ∈ g. Then there exists a unique
morphism of Lie groups γx : R→ G such that

γ̇x(0) = x

where dot stands for derivative with respect to t. The map γx will be called the one-parameter
subgroup corresponding to x.

Proof. We begin with uniqueness. The usual argument, used to compute derivative of ex in calculus,
shows that if γ(t) is a one-parameter subgroup, then γ̇(t) = γ(t)·γ̇(0) = γ̇(0)·γ(t). This is immediate
for matrix groups; for general groups, the same proof works if, as in Section 2.4, we interpret γ(t)·γ̇(0)
as (Lγ(t))∗γ̇(0) and similarly for the right action. This gives us a differential equation for γ: if vx is
a left-invariant vector field on G such that vx(1) = x, then γ is an integral curve for v. This proves
uniqueness of γx(t).

For existence, let Φt : G→ G be the time t flow of the vector field vx (a priori, it is only defined
for small enough t). Since the vector field is left-invariant, the flow operator is also left-invariant:
Φt(g1g2) = g1Φt(g2). Now let γ(t) = Φt(1). Then γ(t+ s) = Φt+s(1) = Φs(Φt(1)) = Φs(γ(t) · 1) =
γ(t)Φs(1) = γ(t)γ(s) as desired. This proves existence of γ for small enough t. The fact that it can
be extended to any t ∈ R is obvious from γ(t+ s) = γ(t)γ(s). ¤

The uniqueness immediately implies that γx(λt) = γλx(t) for any λ ∈ R. Indeed, γx(λt) is a
one-parameter subgroup with dγx(λt)

dt |t=0 = λx. Thus, γx(t) only depends on the product tx ∈ g.
This justifies the following definition.

21



22 3. Lie Groups and Lie algebras

Definition 3.2. Let G be a Lie group, g = T1G. Then the exponential map exp: g → G is defined
by

exp(x) = γx(1)

where γx(t) is the one-parameter subgroup with tangent vector at 1 equal to x.

Example 3.3. For G ⊂ GL(n,R), it follows from Theorem 2.28 that this definition agrees with the
exponential map defined by (2.4).

Example 3.4. Let G = R, so that g = R. Then for any a ∈ g, the corresponding one-parameter
subgroup is γa(t) = ta, so the exponential map is given by exp(a) = a.

Example 3.5. Let G = S1 = R/Z = {z ∈ C | |z| = 1} (these two descriptions are related by
z = e2πiθ, θ ∈ R/Z). Then g = R, and the exponential map is given by exp(a) = a mod Z (if we
use G = R/Z description) or exp(a) = e2πia (if we use G = {z ∈ C | |z| = 1}).

Note that the construction of the one-parameter subgroup given in the proof of Proposition 3.1
immediately gives the following result, formal proof of which is left as an exercise to the reader.

Proposition 3.6.

(1) Let v be a left-invariant vector field on G. Then the time t flow of this vector field is given
by g 7→ g exp(tx), where x = v(1).

(2) Let v be a right-invariant vector field on G. Then the time t flow of this vector field is
given by g 7→ exp(tx)g, where x = v(1).

The following theorem summarizes properties of the exponential map.

Theorem 3.7.

(1) exp(x) = 1 + x+ . . . (that is, exp(0) = 1 and exp∗(0) : g → T1G = g is the identity map).

(2) The exponential map is a diffeomorphism of some neighborhood of 0 in g with a neighbor-
hood of 1 in G. The local inverse map will be denoted by log.

(3) exp((t+ s)x) = exp(tx) exp(sx).

(4) For any morphism of Lie groups ϕ : G1 → G2 and any x ∈ g1, we have exp(ϕ∗(x)) =
ϕ(exp(x)).

(5) For any X ∈ G, y ∈ g, we have X exp(y)X−1 = exp(AdX.y), where Ad is the adjoint
action of G on g defined by (2.3).

Proof. The first statement is immediate from the definition; the second follows from the first one
and inverse function theorem. The third statement is again immediate corollary of the definition
(exp(tx) is a one-parameter subgroup in G).

Statement 4 follows from the uniqueness of one-parameter subgroup. Indeed, ϕ(exp(tx)) is a one-
parameter subgroup in G2 with tangent vector at identity ϕ∗(exp∗(x)) = ϕ∗(x). Thus, ϕ(exp(tx)) =
exp(ϕ∗(x)).

The last statement is a special case of the previous one: the map Y 7→ XYX−1 is a morphism
of Lie groups G→ G. ¤

Comparing this with Theorem 2.28, we see that we have many of the same results. Notable excep-
tion is that we have no analog of the statement that if xy = yx, then exp(x) exp(y) = exp(y) exp(x).
In fact the statement does not make sense for general groups, as product xy is not defined. A proper
analog of this statement will be proved later (Theorem 3.33).
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Remark 3.8. In general, the exponential map is not surjective — see Exercise 3.1. However, it can
be shown that for compact Lie groups, the exponential map is surjective.

Proposition 3.9. Let G1, G2 be connected Lie groups. Then any Lie group morphism ϕ : G1 → G2

is uniquely determined by the linear map ϕ∗ : g1 → g2.

Proof. By Theorem 3.7, ϕ∗ determines ϕ in a neighborhood of identity in G1. But by Corollary 2.9,
any neighborhood of the identity generates G1. ¤

Example 3.10. Let G = SO(3,R). Then the corresponding Lie algebra is so(3,R) consists of
skew-symmetric 3× 3 matrices. One possible choice of a basis in so(3,R) is

(3.1) Jx =




0 0 0
0 0 −1
0 1 0


 , Jy =




0 0 1
0 0 0
−1 0


 , Jz =




0 −1 0
1 0 0
0 0 0




We can explicitly describe the corresponding subgroups in G. Namely,

exp(tJx) =




0 0 0
0 cos t − sin t
0 sin t cos t




is rotation around x-axis by angle t; similarly, Jy, Jz generate rotations around y, z axes. The easiest
way to show this is to note that such rotations do form a one-parameter subgroup; thus, they must
be of the form exp(tJ) for some J ∈ so(3,R), and then compute the derivative to find J .

Since SO(3,R) is connected, by Theorem 3.7, elements of the form exp(tJx), exp(tJy), exp(tJz)
generate a neighborhood of identity in SO(3,R) and thus, by Corollary 2.9, they generate the whole
group SO(3,R). For this reason, it is not uncommon to refer to Jx, Jy, Jz as “infinitesimal generators”
of SO(3,R). Thus, in a certain sense SO(3,R) is generated by three elements.

3.2. The commutator

So far, we have considered g = T1G as a vector space with no additional structure. However, since
the exponential map locally identifies G with g, the multiplication in G defines a certain operation
in g. Namely, for sufficiently small x, y ∈ g, the product exp(x) exp(y) will be close to 1 ∈ G and
thus can be written in the form

exp(x) exp(y) = exp(µ(x, y))

for some smooth map µ : g × g → g defined in a neighborhood of (0, 0). The map µ is sometimes
called the group law in logarithmic coordinates.

Lemma 3.11. The Taylor series for µ is given by

µ(x, y) = x+ y + λ(x, y) + . . .

where λ : g× g is a bilinear skew-symmetric map, and dots stand for the terms of order ≥ 3.

Proof. Any smooth map can be written in the form α1(x) +α2(y) +Q1(x) +Q2(y) + λ(x, y) + . . . ,
where α1, α2 are linear maps g → g, Q1, Q2 are quadratic, and λ is bilinear. Letting y = 0, we see that
µ(x, 0) = x, which gives α1(x) = x,Q1(x) = 0; similar argument shows that α2(y) = y,Q2(y) = 0.
Thus, µ(x, y) = x+ y + λ(x, y) + . . . .

To show that λ is skew-symmetric, it suffices to check that λ(x, x) = 0. But exp(x) exp(x) =
exp(2x), so µ(x, x) = x+ x. ¤
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For reasons that will be clear in the future, it is traditional to denote [x, y] = 2λ(x, y), so we
have

(3.2) exp(x) exp(y) = exp(x+ y +
1
2
[x, y] + . . . )

for some bilinear skew-symmetric map [ , ] : g× g → g. This map is called the commutator.

Thus, we see that for any Lie group, its tangent space at identity g = T1G has a canonical
skew-symmetric bilinear operation, which appears as the lowest non-trivial term of the Taylor series
for multiplication in G. This operation has the following properties.

Proposition 3.12.

(1) For any morphism of Lie groups ϕ : G1 → G2, the corresponding map of Lie algebras
preserves the commutator:

ϕ∗[x, y] = [ϕ∗x, ϕ∗y] for any x, y ∈ g1

(2) The adjoint action preserves the commutator: Ad g([x, y]) = [Ad g.x,Ad g.y]

(3)

(3.3) exp(x) exp(y) exp(−x) exp(−y) = exp([x, y] + . . . )

where dots stand for terms of degree three and higher.

Proof. The first statement is immediate from definition of commutator (3.2) and the fact that every
morphism of Lie groups commutes with the exponential map (Theorem 3.7). The second follows
from the first and the fact that for any g ∈ G, the map Adg : G→ G is a morphism of Lie groups.

The last formula is proved by explicit computation using (3.2). ¤

This theorem shows that the commutator in g is closely related with the group commutator in
G, which explains the name. It also shows that if G is commutative, then [x, y] = 0 for all x, y ∈ g.
In this case we say that g is a commutative, or abelian, Lie algebra.

Example 3.13. LetG ⊂ GL(n), so that g ⊂ gl(n). Then the commutator is given by [x, y] = xy−yx.
Indeed, using (3.3) and keeping only linear and bilinear terms, we can write (1 + x + . . . )(1 + y +
. . . )(1− x+ . . . )(1− y + . . . ) = 1 + [x, y] + . . . which gives [x, y] = xy − yx.

3.3. Adjoint action and Jacobi identity

So far, for a Lie group G, we have defined a bilinear operation on g = T1G, which is obtained from
the multiplication on G. An obvious question is whether the associativity of multiplication gives rise
to some identities for the commutator. In this section we will answer this question; as one might
expect, the answer is “yes”.

By results of Proposition 3.12, any map ϕ of Lie groups gives rise to a map ϕ∗ of Lie algebras
which preserves the commutator. Let us apply it to the adjoint action defined in Section 2.4, which
can be considered as a morphism of Lie groups

(3.4) Ad: G→ GL(g).

Lemma 3.14. Denote by ad = Ad∗ : g → gl(g) the map of Lie algebras corresponding to the map
(3.4). Then

(1) adx.y = [x, y]

(2) Ad(expx) = exp(adx) as operators g → g.
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Proof. By definition of Ad, we have Ad g.y = d
dtg exp(ty)g−1. Thus, we see that ad is defined by

adx.y =
d

ds

d

dt
exp(sx) exp(ty) exp(−sx)|t=s=0

On the other hand, by (3.3), exp(sx) exp(ty) exp(−sx) = exp(ty + ts[x, y] + . . . ). Combining
these two results, we see that adx.y = [x, y].

The second part is immediate from Theorem 3.7. ¤

Theorem 3.15. Let the commutator [ , ] : g × g → g be defined by (3.2). Then it satisfies the
following identity, called Jacobi identity:

(3.5) [x, [y, z]] = [[x, y], z] + [y, [x, z]].

This identity can also be written in any of the following equivalent forms:

(3.6)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

adx.[y, z] = [adx.y, z] + [y, adx.z]

ad[x, y] = adx ad y − ad y adx.

Proof. Since Ad is a morphism of Lie groups G→ GL(g), by Proposition 3.12, ad: g → gl(g) must
preserve commutator. But the commutator in gl(g) is given by [A,B] = AB−BA (see Example 3.13),
so ad[x, y] = adx ad y − ad y adx, which proves the last formula of (3.6).

Equivalence of all forms of Jacobi identity is left as an exercise to the reader (see Exercise 3.3).
¤

Definition 3.16. A Lie algebra is a vector space with a bilinear map [ , ] : g × g → g which is
skew-symmetric and satisfies Jacobi identity.

A morphism of Lie algebras is a linear map f : g1 → g2 which preserves the commutator.

Using this definition, we can summarize much of the results of the previous section in the
following theorem.

Theorem 3.17. Let G be a Lie group. Then g = T1G has a canonical structure of a Lie al-
gebra with commutator defined by (3.2); we will denote this Lie algebra by Lie(G). Every mor-
phism of Lie groups ϕ : G1 → G2 defines a morphism of Lie algebras ϕ∗ : g1 → g2, so we have a
map Hom(G1, G2) → Hom(g1, g2); if G1 is connected, then this map is injective: Hom(G1, G2) ⊂
Hom(g1, g2).

3.4. Subalgebras, ideals, and center

In the last section, we have shown that for every Lie group G the vector space g = T1G has a
canonical structure of a Lie algebra, and every morphism of Lie groups gives rise to a morphism of
Lie algebras.

Continuing the study of this correspondence between groups and algebras, we define analogs of
Lie subgroups and normal subgroups

Definition 3.18. Let g be a Lie algebra. A subspace h ⊂ g is called a Lie subalgebra if it is closed
under commutator, i.e. for any x, y ∈ h, we have [x, y] ∈ h. A subspace h ⊂ g is called an ideal if for
any x ∈ g, y ∈ h, we have [x, y] ∈ h.

It is easy to see that if h is an ideal, then g/h has a canonical structure of a Lie algebra.

Theorem 3.19. Let G be a Lie group with Lie algebra g.
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(1) Let H be a Lie subgroup in G. Then h = T1H is a Lie subalgebra in g.

(2) Let H be a normal Lie subgroup in G. Then h = T1H is an ideal in g, and Lie(G/H) = g/h.
Conversely, if H is a connected Lie subroup in G and h = T1H is an ideal in g, then

H is normal.

Proof. ???????????????????????????? ¤

3.5. Lie algebra of vector fields

In this section, we illustrate the theory developed above in the example of the group Diff(M)
of diffeomorphisms of a manifold M . This is not, strictly speaking, a Lie group (it is infinite-
dimensional), but in many ways it is similar to Lie groups. For example, it is easy to define what
a smooth map from some group G to Diff(M) is: it is the same as an action of G on M by
diffeomorphisms.

Ignoring the technical problem with infinite-dimensionality for now, let us try to see what is
the natural analog of the Lie algebra for the group Diff(M). It should be the tangent space at the
identity; thus, its elements are derivatives of one-parameter families of diffeomorphisms.

Let ϕt : M →M be a one-parameter family of diffeomorphisms. Then, for every point m ∈M ,
ϕt(m) is a curve in M and thus d

dtϕ
t(m) ∈ TmM is a tangent vector to M at m. In other words,

d
dtϕ

t is a vector field on M . Thus, it is natural to define the Lie algebra of Diff(M) to be the space
Vect(M) of all smooth vector fields on M .

What is the exponential map? If ξ ∈ Vect(M) is a vector field, then exp(tξ) should be a one-
parameter family of diffeomorphisms whose derivative is vector field ξ. So this is the solution to a
differential equation

d

dt
ϕt(m)|t=0 = ξ(m).

In other words, ϕt is the flow of the vector field ξ for time t. We will denote it by

exp(tξ) = Φt
ξ.

This may not be defined globally, but for the moment, let us ignore this problem.

What is the commutator [ξ, η]? By (3.3), we need to consider Φt
ξΦ

s
ηΦt

−ξΦ
s−η. It is well-known

that this might not be the identity (if a plane flies 500 miles north, then 500 miles west, then 500
miles south, then 500 miles east, then it does not necessarily lands at the same spot it started—
because Earth is not flat). By analogy with (3.3), we expect that this expression can be written in
the form 1 + ts[ξ, η] + . . . for some vector field [ξ, η]. This is indeed so, as the following proposition
shows.

Proposition 3.20.

(1) Let ξ, η ∈ Vect(M) be vector fields on M . Then there exists a unique vector field which we
will denote by [ξ, η] such that

(3.7) Φt
ξΦ

s
ηΦt

−ξΦ
s
−η = Φts

[ξ,η] + . . . ,

where dots stand for the terms of order 3 and higher in s, t.

(2) The commutator (3.7) defines on the space of vector fields a structure of an (infinite-
dimensional) Lie algebra.
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(3) The commutator can also be defined by any of the following formulas:

[ξ, η] =
d

dt
(Φt(ξ))∗η(3.8)

∂[ξ,η]f = ∂η(∂ξf)− ∂ξ(∂ηf), f ∈ C∞(M)(3.9)
[∑

fi∂i,
∑

gj∂j

]
=

∑

i,j

(gi∂i(fj)− fi∂i(gj))∂j(3.10)

where ∂ξ(f) is the derivative of a function f in the direction of the vector field ξ, and
∂i = ∂

∂xi for some local coordinate system {xi}.

The first two parts are, of course, to be expected, by analogy with finite-dimensional situation.
However, since Diff(M) is not a finite-dimensional Lie group, we can not just refer to Theorem 3.17
but need to give a separate proof. Such a proof (and also the proof of the last part) can be found
in any good book on differential geometry, for example in [23].

Remark 3.21. In many books the definition of commutator of vector fields differs by sign from the
one given here. Both versions define on the space of vector fields a structure of Lie algebra, so it
is a matter of choice which of the definitions to use. However, in our opinion the definition here —
which naturally arises from the multiplication in the group of diffeomorphisms — is more natural,
so we use it. Thus, when using results from other books, be sure to double-check which definition
of commutator they use for vector fields.

The reason for the appearance of the minus sign is that the action of a diffeomorphism Φ: M →
M on functions on M is given by (Φf)(m) = f(Φ−1m) (note the inverse!); thus, the derivative
∂ξf = − d

dtΦ
t
ξf . For example, if ξ = ∂x is the constant vector field on R, then the flow on points is

given by Φt : x 7→ x+ t, and on functions it is given by (Φtf)(x) = f(x− t), so ∂xf = − d
dtΦ

tf .

Theorem 3.22. Let G be a finite dimensional Lie group acting on a manifold M , so we have a
map ρ : G→ Diff(M). Then

(1) This action defines a linear map ρ∗ : g → Vect(M).

(2) The map ρ∗ is a morphism of Lie algebras: ρ∗[x, y] = [ρ∗(x), ρ∗(y)], where the commutator
in the right-hand side is the commutator of vector fields.

If Diff(M) were a Lie group, this result would be a special case of Proposition 3.12. Since
Diff(M) is not a Lie group, we need to give a separate proof, suitably modifying the proof of
Proposition 3.12. We leave this as an exercise to the reader.

We will refer to the map ρ∗ : g → Vect(M) as action of g by vector fields on M .

Example 3.23. Consider the standard action of GL(n,R) on Rn. Considering Rn as a manifold
and forgetting the structure of a vector space, we see that each element a ∈ gl(n,R) defines a vector
field on Rn. An easy calculation shows that this vector field is given by va(x) =

∑
aijxj∂i, where

x1, . . . xn are the coordinates of a point x in the standard basis of Rn, and ∂i = ∂
∂xi

.

Another important example is the action of G on itself by left multiplication.

Proposition 3.24. Consider the action of a Lie group G on itself by left multiplication L(g) : G→ G

defined by L(g).h = gh. Then for every x ∈ g, the corresponding vector field ξ = L∗(x) ∈ Vect(G)
is the right-invariant vector field such that ξ(1) = x.

Proof. Consider the one-parameter subgroup exp(tx) ⊂ G. By Proposition 3.6, for any g ∈ G, we
have L∗(x)(g) = d

dt |t=0(exp(tx)g) = xg. ¤
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Corollary 3.25. The isomorphism g ' {right-invariant vector fields on G} defined in Theorem 2.25
is an isomorphism of Lie algebras.

An analog of this statement for left-invariant fileds is given in Exercise 3.4

3.6. Stabilizers and the center

Having developed the basic theory of Lie algebras, we can now go back to proving various results
about Lie groups which were announced in Chapter 2, such as proving that the stabilizer of a point
is a Lie subgroup.

Theorem 3.26. Let G be a Lie group acting on a manifold M , and let m ∈M .

(1) The stabilizer H = Stab(m) = {g ∈ G | gm = m} is a Lie subgroup in G, with Lie algebra
h = {x ∈ g | ρ∗(x)(m) = 0}, where ρ∗(x) is the vector field on M corresponding to x.

(2) The map G/Stab(m) →M given by g 7→ g.m is an immersion. Thus, the orbit Om = G·m
is an immersed submanifold in M , with tangent space TmM = g/h.

Proof. As in the proof of Theorem 2.29, it suffices to show that in some neighborhood U of 1 ∈ G
the intersection U ∩H is a smooth manifold with tangent space T1H = h.

It easily follows from (3.9) that h is closed under commutator, so it is a Lie subalgebra in g. Also,
since for h ∈ h, the corresponding vector field ξ = ρ∗(x) vanishes at m, we have ρ(exp(th))(m) =
Φt

ξ(m) = m, so exp(th) ∈ Stab(m).

Now let us choose some vector subspace (not a subalgebra!) u ⊂ g which is complementary to
h: g = h ⊕ u. Since the kernel of the map ρ∗ : g → TmM is h, the restriction of this map to u is
injective. By implicit function theorem, this implies that the map u → M : y 7→ ρ(exp(y))(m) is
injective for sufficiently small y ∈ u, so exp(y) ∈ Stab(m) ⇐⇒ y = 0.

Since in a sufficiently small neighborhood U of 1 in G, any element g ∈ U can be uniquley
written in the form exp(y) exp(x), y ∈ u, x ∈ h (which follows from inverse function theorem), and
exp(y) exp(x)m = exp(y)m we see that g ∈ Stab(m) ⇐⇒ g ∈ exp(h). Since exp h is a smooth
submanifold in a neighborhood of 1 ∈ G, we see that Stab(m) is smooth.

The same proof also shows that we have an isomorphism T1(G/Stab(m)) = g/h ' u, so injec-
tivity of the map ρ∗ : u→ TmM shows that the map G/ Stab(m) →M is an immersion. ¤

This theorem immediately implies a number of corollaries. In particular, we get the following
result which was announced in Theorem 2.12.

Corollary 3.27. Let f : G1 → G2 be a morphism of Lie groups, and f∗ : g1 → g2—the corresponding
morphism of Lie algebras. Then Ker f is a Lie subgroup with Lie algebra Ker f∗, and the map
G1/Ker f → G2 is an immersion. If =f is closed, then we have an isomorphism =f ' G1/Ker f .

Proof. Consider the action of G1 on G2 given by ρ(g).h = f(g)h, g ∈ G1, h ∈ G2. Then the
stabilizer of 1 ∈ G2 is exactly Ker f , so by the previous theorem, it is a Lie group with Lie algebra
Ker f∗. ¤

Corollary 3.28. Let V be a representation of a group G, and v ∈ V . Then the stabilizer Stab(v)
is a Lie subgroup in G with Lie algebra {x ∈ g | x.v = 0}.
Example 3.29. Let V be a vector space with a bilinear form B, and let

O(V,B) = {g ∈ GL(V ) | B(g.v, g.w) = B(v, w) for all v, w}
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be the group of symmetries of B. Then it is a Lie group with Lie algebra

o(V,B) = {x ∈ gl(V ) | B(x.v, w) +B(v, x.w) = 0 for all v, w}

Indeed, define the action of G on the space of bilinear forms by (gF )(v, w) = F (g−1.v, g−1.w).
Then O(V,B) is exactly the stabilizer of B, so by Corollary 3.28, it is a Lie group. Since the
corresponding action of g is given by (xF )(v, w) = −F (x.v, w) − F (v, x.w) (which follows from
Leibnitz rule), we get the formula for o(V,B).

As special cases, we recover the usual groups O(n,R) and Sp(2n,R).

Example 3.30. Let A be a finite dimensional associative algebra. Then the group of all automor-
phisms of A

Aut(A) = {g ∈ GL(A) | (ga) · (gb) = g(a · b) for all a, b ∈ A}
is a Lie group with Lie algebra

(3.11) Der(A) = {x ∈ gl(A) | (x.a)b+ a(x.b) = x.(ab) for all a, b ∈ A}
(this Lie algebra is called the algebra of derivations of A).

Indeed, if we consider the space W of all linear maps A⊗A→ A and define the action of G by
(g.f)(a ⊗ b) = gf(g−1a ⊗ g−1b) then AutA = Stab(µ), where µ : A ⊗ A → A is the multiplication.
So by Corollary 3.28, Aut(A) is a Lie group with Lie algebra Der(A).

The same argument also shows that for a finite-dimensional Lie algebra g, the group

(3.12) Aut(g) = {g ∈ GL(g) | [ga, gb] = g[a, b] for all a, b ∈ g}
is a Lie group with Lie algebra

(3.13) Der(g) = {x ∈ gl(g) | [x.a, b] + [a, x.b] = x.[a, b] for all a, b ∈ g}
called the Lie algebra of derivations of g. This algebra will play an important role in the future.

Finally, we can show that the center of G is a Lie subgroup.

Definition 3.31. Let g be a Lie algebra. The center of g is defined by

z(g) = {x ∈ g | [x, y] = 0 ∀y ∈ g}.

Obviously, z(g) is an ideal in g.

Theorem 3.32. Let G be a connected Lie group. Then its center Z(G) is a Lie subgroup with Lie
algebra z(g).

Proof. It follows from the identity exp(Ad g.tx) = g exp(tx)g−1 that g commutes with all elements
of one-parameter subgroup exp(tx) iff Ad g.x = 0. Since for a connected Lie group, elements of the
form exp(tx) generate G, we see that g ∈ Z(G) ⇐⇒ Ad g.x = 0 for all x ∈ g. In other words,
Z(G) = Ker Ad, where Ad: → GL(g) is given by the adjoint action. Now the result follows from
Corollary 3.27. ¤

3.7. Campbell–Hausdorff formula

So far, we have shown that the multiplication in G defines the commutator in g = T1G. However,
definition of commutator (3.2) only used the lowest non-trivial term of the group law in logarithmic
coordinates. Thus, it might be expected that higher terms give more operations on g. However, it
turns out that it is not so: the whole group law is completely determined by the lowest term, i.e.
by the commutator. The following theorem gives the first indication of this.
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Theorem 3.33. Let x, y ∈ g be such that [x, y] = 0. Then exp(x) exp(y) = exp(x + y) =
exp(y) exp(x).

Proof. The most instructive (but not the easiest; see Exercise 3.12) way of deducing this theo-
rem is as follows. Let ξ, η be right-invariant vector fields corresponding to x, y respectively. By
Corollary 3.25, [ξ, η] = 0. By (3.8), it implies that d

dt (Φ
t
ξ)∗η = 0, which implies that (Φt

ξ)∗η = η,
i.e. the flow of ξ preserves field η. This, in turn, implies that Φt

ξ commutes with the flow of
field η, so Φt

ξΦ
s
ηΦ−t

ξ = Φs
η. Applying this to point 1 ∈ G and using Proposition 3.6, we get

exp(tx) exp(sy) exp(−tx) = exp(sy), so exp(tx), exp(sy) commute for all values of s, t.

In particular, this implies that exp(tx) exp(ty) is a one-parameter subgroup; computing the
tangent vector at t = 0, we see that exp(tx) exp(ty) = exp(t(x+ y)). ¤

In fact, similar ideas allow one to prove the following general statement, known as Campbell–
Hausdorff formula.

Theorem 3.34. For small enough x, y ∈ g one has

exp(x) exp(y) = exp(µ(x, y))

for some g-valued function µ(x, y) which is given by the following series which converges in some
neighborhood of (0, 0):

(3.14) µ(x, y) = x+ y +
∑

n≥2

µn(x, y)

where µn(x, y) is a Lie polynomial in x, y of degree n, i.e. an expression consisting of commutators
of x, y, their commutators, etc., of total degree n in x, y. This expression is universal: it does not
depend on the Lie algebra g or on the choice of x, y.

It is possible to write the expression for µ explicitly (see, e.g., [10]). However, this is rarely
useful, so we will only write the first several terms:

(3.15) µ(x, y) = x+ y +
1
2
[x, y] +

1
12

(
[x, [x, y]] + [y, [y, x]]

)
+ . . .

The proof of this theorem is rather long. The key idea is writing the differential equation for
the function Z(t) = µ(tx, y); the right-hand side of this equation will be a power series of the form∑
ant

n(adx)ny. Solving this differential equation by power series gives the Campbell–Hausdorff
formula. Details of the proof can be found, for example, in [10, Section 1.6].

Corollary 3.35. The group operation in a connected Lie group G can be recovered from the com-
mutator in g = T1G.

Indeed, locally the group law is determined by Campbell–Hausdorff formula, and G is generated
by a neighborhood of 1.

Note, however, that by itself this corollary does not allow us to recover the group G from its Lie
algebra g: it only allows us to determine the group law provided that we already know the structure
of G as a manifold.

3.8. Fundamental theorems of Lie theory

Let us summarize the results we have so far about the relation between Lie groups and Lie algebras:
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(1) Every Lie group G defines a Lie algebra g = T1G, with commutator defined by (3.2); we
will write g = Lie(G). Every morphism of Lie groups ϕ : G1 → G2 defines a morphism of
Lie algebras ϕ∗ : g1 → g2. For connected G1, the map

Hom(G1, G2) → Hom(g1, g2)

ϕ 7→ ϕ∗

is injective. (Here Hom(g1, g2) is the set of Lie algebra morphisms.)

(2) As a special case of the previous, every Lie subgroup H ⊂ G defines a Lie subalgebra h ⊂ g.

(3) The group law in connected Lie group G can be recovered from the commutator in g;
however, we do not yet know whether we can also recover the geometry of G from g.

However, this still leaves a number of questions:

(1) Given a morphism of Lie algebras g1 → g2, where g1 = Lie(G1), g2 = Lie(G2), can this
morphism be always lifted to a morphism of the Lie groups?

(2) Given a Lie subalgebra h ⊂ g = Lie(G), does there exist a corresponding Lie subgroup
H ⊂ G?

(3) Can every Lie algebra be obtained as a Lie algebra of a Lie group?

It is clear that in order to have any chance of success, we must limit ourselves to the consideration
of connected Lie groups. However, it turns out that even with this restriction the answer to the first
two questions is negative, as is shown by the following counterexamples.

Example 3.36. Let G1 = S1 = R/Z, G2 = R. Then the Lie algebras are g1 = g2 = R with zero
bracket. Consider the identity map g1 → g2 : a 7→ a. Then the corresponding morphism of Lie
groups, if exists, should be given by θ 7→ θ; on the other hand, it must also satisfy f(Z) = {0}.
Thus, this morphism of Lie algebras can not be lifted to a morphism of Lie groups.

Example 3.37. Let G = T 2 = R2/Z2; then g = R2 with zero bracket. Choose an irrational number
α and consider the following subspace h = {(t, αt) | t ∈ R} ⊂ g. Since g is commutative, h is
automatically a one-dimensional Lie subalgebra. However, there is no Lie subgroup corresponding
to h: the image of h under the exponential map R2 → R2/Z2 is everywhere dense on the torus (see
Example 2.13).

It turns out, however, that it is possible to fix these problems and reformulate questions 1 and
2 above so that the answer is positive.

Theorem 3.38. If G1 is a connected, simply connected Lie group then Hom(G1, G2) = Hom(g1, g2).

In order to be able to positively answer question 2 (about correspondence between subgroups
and subalgebras), we need to extend our definition of Lie subgroup to allow for things like irrational
winding of the torus.

Definition 3.39. An immersed subgroup in a Lie group G is a subset H ⊂ G such that

(1) H is a subgroup of G

(2) H is an immersed submanifold: H = Im(i) for some injective immersion i : H̃ ↪→ G.

Remark 3.40. The terminology is not quite standard: the same object we called an immersed
subgroup in other books can be called “analytic subgroup” or sometimes even a “Lie subgroup”.

Informally, this means that we can change topology of H so that H with this new topology is a
manifold (we denote it by H̃) and the inclusion H̃ ↪→ G is an immersion. Recall that an immersion
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is a smooth map of manifolds f : X → Y such that each point x ∈ X has a neighborhood U 3 x

such that f : U → f(U) is a diffeomorphism.

Example 3.41. Let ϕ : G1 → G2 be a morphism of Lie groups such that ϕ∗ : g1 → g2 is injective.
Then ϕ is an immersion, and ϕ(G1) is an immersed subgroup in G2. In particular, every one-
parameter subgroup in G is an immersed subgroup.

One easily sees that immersed subgroups have the following properties.

Proposition 3.42. Let i : H̃ ↪→ G be an immersed subgroup. Then

(1) H̃ is a Lie group, and i is a morphism of Lie groups

(2) h = i∗(T1H̃) is a Lie subalgebra in g (it will be denoted by Lie(H)).

(3) If H = i(H̃) is closed in G, then H is a Lie subgroup.

It turns out that this generalization solves all our problems.

Theorem 3.43. There is a bijection between connected immersed subgroups H ⊂ G and subalgebras
h ⊂ g. The correspondence is given by H → h = Lie(H) = T1H.

Theorems 3.38 and 3.43 are the two fundamental theorems of Lie theory. There is also a third
fundamental theorem which will be discussed later (Theorem 3.48).

Our next goal is proving these two theorems. We start by noticing that it is easy to derive the
first theorem from the second one.

Proposition 3.44. Theorem 3.43 implies Theorem 3.38.

Proof. We already know that any morphism of Lie groups defines a morphism of Lie algebras and
that for connected G1, the map Hom(G1, G2) → Hom(g1, g2) is injective (see Theorem 3.17). Thus,
it remains to show that it is surjective, i.e. that every morphism of Lie algebras f : g1 → g2 can be
lifted to a morphism of Lie groups ϕ : G1 → G2 with ϕ∗ = f .

Define G = G1 × G2. Then the Lie algebra of G is g1 × g2. Let h = {(x, f(x)) | x ∈ g1} ⊂ g.
This is a subalgebra: it is obviously a subspace, and [(x, f(x)), (y, f(y))] = ([x, y], [f(x), f(y)]) =
([x, y], f([x, y])) (the last identity uses that f is a morphism of Lie algebras). By Theorem 3.43, there
is a corresponding immersed subgroup H = i(H̃) ⊂ G1 ×G2. Composing this embedding with the
projection p : G1×G2 → G1, we get a morphism of Lie groups π : H̃ → G1, and π∗ : h = Lie(H̃) → g1

is an isomorphism. By results of Exercise 2.3, π is a covering map. On the other hand, G1 is simply-
connected, and H̃ is connected, so π must be an isomorphism. This implies that H̃ → G1 × G2

is actually a closed submanifold, so H = H̃ is a Lie subgroup, and projection H → G1 is an
isomorphism; thus, we have an inverse map G1 → H.

Now construct the map ϕ : G1 → G2 as a composition G1 → H ⊂ G1×G2 → G2. By definition,
it is a morphism of Lie groups, and ϕ∗ : g1 → g2 is the composition x 7→ (x, f(x)) 7→ f(x). Thus,
we have lifted f to a morphism of Lie groups. ¤

Remark 3.45. In fact, the arguments above can be reversed to deduce Theorem 3.43 from Theo-
rem 3.38. For example, this is the way these theorems are proved in [18].

We can now prove Theorem 3.43. The proof we give here is based on the notion of integrable
distribution. For reader’s convenience, we give the basic definitions here; details can be found in
[23] or [25].

A k-dimensional distribution on a manifold M is a k-dimensional subbundle D ⊂ TM . In other
words, at every p ∈ M we have a k-dimensional subspace Dp ⊂ TpM , which smoothly depends on
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p. This is a generalization of well-known notion of direction field, commonly used in the theory of
differential equations.

An integral manifold for a distribution D is a k-dimensional submanifold X ⊂ M such that
at every point p ∈ X, we have TpX = Dp. Again, this is a straightforward generalization of the
notion of an integral curve. However, for k > 1, existence of integral manifolds (even locally) is not
automatic. We say that a distribution D is completely integrable if for every p ∈ M , locally there
exists an integral manifold containing p (it is easy to show that such an integral manifold is unique).
In this case, D defines a foliation of M .

The following theorem gives a necesary and sufficient criterion of integrability of a distribution.

Theorem 3.46 (Frobenius integrability criterion). Let D be a distribution on M . We say that a
vector field ξ is tangent to D if, for every point p ∈M , ξ(p) ∈ Dp. Then D is completely integrable
if and only if the space of vector fields tangent to D is closed under commutator: for any fields ξ, η
tangent to D, the commutator [ξ, η] is also tangent to D.

Proof of this theorem can be found in many books on differential geometry, such as [23], and
will not be repeated here.

Using this theorem, we can now prove Theorem 3.43.

Proof of Theorem 3.43. Let G be a Lie group, and h ⊂ g be a Lie subalgebra. We want to show
that there exists an immersed subgroup H = i(H̃) ⊂ G with Lie(H) = h.

Notice that if such an H exists, then at every point p ∈ H, TpH = (T1H)p = h · p. Thus, H will
be an integral manifold of the distribution Dh defined by Dh

p = h · p. Let us use this to construct H.

Lemma 3.47. For every point g ∈ G, there is locally an integral manifold of the distrubution Dh

containing g, namely H0 · g, where H0 = expu for some neighborhood u of 0 in h.

This lemma can be easily proved using Frobenius theorem. Indeed, the distribution Dh is
generated by right-invariant vector fields corresponding to elements of h. Since h is closed under [ , ],
and commutator of right invariant vector fields coincides with the commutator in g (Corollary 3.25),
this shows that the space of fields tangent to Dh is closed under the commutator, and thus Dh is
completely integrable.

To get an explicit description of the integral manifold, note that by Proposition 3.6, the curve
etxg for x ∈ h is the integral curve for a right invariant vector field corresponding to x and thus this
curve must be in the integral manifold. Thus, for small enough x ∈ h, exp(x)g is in the integral
manifold passing through g. Comparing dimensions we get the statement of the lemma.

Alternatively, this lemma can also be proved without use of Frobenius theorem but using
Campbell–Hausdorff formula instead.

Now that we have proved the lemma, we can construct the immersed subgroup H as the maximal
connected integral manifold containing 1. This doesn’t have to be a submanifold in G; however, it
is not too difficult to show that H is an immersed submanifold (see [25]).

The only thing which remains to be shown is why H is a subgroup. To prove it, notice that by
the definition of H and the lemma, a point g ∈ H if and only if we can find a sequence of points
g0 = 1, g1, . . . , gn = g such that gi+1 ∈ H0gi. Thus, g ∈ H iff g = exp(x1) . . . exp(xn) for some
xi ∈ u ⊂ h. Thus, H is a subgroup.

¤

Thus, we have proved the first two fundamental theorems about relation between Lie groups
and Lie algebras. To complete the picture, here is the final theorem.
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Theorem 3.48 (Lie’s third theorem). Any finite-dimensional Lie algebra is isomorphic to a Lie
algebra of a Lie group.

Proof. Proof of this theorem is rather complicated. The basic idea is to show that any Lie algebra
is isomorphic to a subalgebra in gl(n) (this statement is known as Ado theorem), after which we can
use Theorem 3.43. However, the proof of Ado theorem is long and requires a lot of structure theory
of Lie algebras, some of which will be given in the subsequent chapters. The simplest case is when
Lie algebra has no center (that is, adx 6= 0 for all x), then x 7→ adx gives an embedding g ⊂ gl(g).
Proof of general case can be found, e.g., in [11]. ¤

Combining this theorem with the previous ones, we immediately get some useful corollaries.

Corollary 3.49. For any Lie algebra g, there is a unique (up to isomorphism) connected simply-
connected Lie group G with Lie(G) = g. Any other connected Lie group G′ with Lie algebra g must
be of the form G/Z for some discrete central subgroup Z ⊂ G.

Proof. By Theorem 3.48, there is a Lie group with Lie algebra g. Taking the universal cover of
the connected component of identity in this group (see Theorem 2.5), we see that there exists a
connected, simply-connected G with Lie(G) = g. By Theorem 3.43, if G′ is another connected
Lie group with Lie algebra g, then there is a group homomorphism G → G′ which is locally an
isomorphism; thus, by results of Exercise 2.3, G′ = G/Z for some discrete central subgroup Z.

Uniqueness of simply-connected group G now follows from π1(G/Z) = Z. ¤

This corollary can be reformulated as follows.

Corollary 3.50. The categories of finite-dimensional Lie algebras and connected, simply-connected
Lie groups are equivalent.

3.9. Complex and real forms

An interesting application of the correspondence between Lie groups and Lie algebras is the interplay
between real and complex Lie algebras and groups.

Definition 3.51. Let g be a real Lie algebra. Its complexification is the complex Lie algebra
gC = g ⊗R C = g ⊕ ig with the obvious commutator. In this situation, we will also say that g is a
real form of gC.

In some cases, complexification is obvious: for example, if g = sl(n,R), then gC = sl(n,C). The
following important example, however, is less obvious.

Example 3.52. Let g = u(n). Then gC = gl(n,C).

Indeed, this immediately follows from the fact that any complex matrix can be uniquely written
as a sum of skew-hermitian (i.e., from u(n)) and a hermitian (iu(n)).

These notions can be extended to Lie groups. For simplicity, we only consider the case of
connected groups.

Definition 3.53. Let G be a connected complex Lie group, g = Lie(G) and let K ⊂ G be a real
Lie subgroup in G such that k = Lie(K) is a real form of g. Then K is called a real form of G

It can be shown (see Exercise 3.15) that if g = Lie(G) is the Lie algebra of a connected complex
Lie group G, then every real form k ⊂ g can be obtained from a real form K ⊂ G of the Lie group.
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Going in the opposite direction, from a real Lie group to a complex one, is more subtle: there
are real Lie groups that can not be obtained as real forms of a complex Lie group. It is still possible,
however, to define a complexification GC for any real Lie group G; however, in general G is not a
subgroup of GC. Detailed discussion of this can be found in [8, Section I.7].

Example 3.54. The group G = SU(n) is a compact real form of the complex group SL(n,C).

This operation, which is trivial at the level of Lie algebras, is highly non-trivial at the level
of Lie groups. Lie groups G and GC may be topologically quite different: for example, SU(n) is
compact while SL(n,C) is not. On the other hand, it is natural to expect — and is indeed so, as we
will show later — that g and gC share many algebraic properties, such as semisimplicity. Thus, we
may use, for example, compact group SU(n) to prove some results for non-compact group SL(n,C).
Moreover, since sl(n,R)C = sl(n,C), this will also give us results about non-compact real group
SL(n,R). We will give an application of this to the study of representations of Lie groups in the
next chapter.

3.10. Example: so(3,R), su(2), and sl(2,C).

In this section, we bring together various explicit formulas related to Lie algebras so(3,R), su(2),
sl(2,C). Most of these results have appeared before in various examples and exercises; this section
brings them together for reader’s convenience. This section contains no proofs: they are left to the
reader as exercises.

Basis and commutation relations. A basis in so(3,R) is given by matrices

(3.16) Jx =




0 0 0
0 0 −1
0 1 0


 , Jy =




0 0 1
0 0 0
−1 0 0


 , Jz =




0 −1 0
1 0 0
0 0 0




The corresponding one-parameter subgroups in SO(3,R) are rotations: exp(tJx) is rotation by angle
t around x-axis, and similarly for y, z.

The commutation relations are given by

(3.17) [Jx, Jy] = Jz, [Jy, Jz] = Jx, [Jz, Jx] = Jy.

A basis in su(2) is given by so-called Pauli matrices multiplied by i:

(3.18) iσ1 =
(

0 1
−1 0

)
iσ2 =

(
0 i

i 0

)
iσ3 =

(
i 0
0 −i

)
.

The commutation relations are given by

(3.19) [iσ1, iσ2] = 2iσ3, [iσ2, iσ3] = 2iσ1, [iσ3, iσ1] = 2iσ2.

Since sl(2,C) = su(2)⊗ C, the same matrices can also be taken as a basis of sl(2,C). However,
it is customary to use the following basis in sl(2,C):

(3.20) e =
(

0 1
0 0

)
f =

(
0 0
1 0

)
h =

(
1 0
0 −1

)
.

In this basis, the commutation relations are given by

(3.21) [e, f ] = h, [h, e] = 2e, [h, f ] = −2f.
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Invariant bilinear form. Each of these Lie algebras has an AdG-invariant symmetric bilinear
form. In each case, it can be defined by (x, y) = − tr(xy) (of course, it could also be defined without
the minus sign). For so(3,R), this form can also be rewritten as (x, y) = tr(xyt); for su(n), as
(x, y) = tr(xȳt), which shows that in these two cases this form is positive definite. In terms of bases
defined above, it can be written as follows:

• so(3,R): elements Jx, Jy, Jz are orthogonal to each other, and (Jx, Jx) = (Jy, Jy) =
(Jz, Jz) = 2

• su(2): elements iσk are orthogonal, and (iσk, iσk) = 2.

• sl(2,C): (h, h) = −2, (e, f) = (f, e) = −1, all other inner products are zero.

Isomorphisms. We have an isomorphism of Lie algebras su(2) ∼−→ so(3,R) given by

(3.22)

iσ1 7→ 2Jx

iσ2 7→ 2Jy

iσ3 7→ 2Jz.

It can be lifted to a morphism of Lie groups SU(2) → SO(3,R), which is a twofold cover (see
Exercise 2.12).

The inclusion su(2) ⊂ sl(2,C) gives an isomorphism su(2)C ' sl(2,C). In terms of basis, it is
given by

(3.23)

iσ1 7→ e− f

iσ2 7→ i(e+ f)

iσ3 7→ ih.

Combining these two isomorphisms, we get an isomorphism so(3,R)C = so(3,C) ∼−→ sl(2,C)

(3.24)

Jx 7→ 1
2
(e− f)

Jy 7→ i

2
(e+ f)

Jz 7→ ih

2
.

Exercises

3.1. Consider the group SL(n,R). Show that the element X =
(−1 1

0 −1

)
is not in the image of

the exponential map. (Hint: if X = exp(x), what are the eigenvalues of x?).

3.2. Let f : g → G be any smooth map such that f(0) = 1, f∗(0) = id; we can view such a map
as a local coordinate system near 1 ∈ G. Show that the the group law writen in this coordinate
system has the form f(x)f(y) = f(x+ y+B(x, y) + . . . ) for some bilinear map B : g⊗ g → g and
that B(x, y)−B(y, x) = [x, y].

3.3. Show that all forms of Jacobi identity given in (3.5), (3.6) are equivalent.

3.4. Show that if we denote, for x ∈ g, by ξx the left-invariant vector field on G such that ξx(1) = x

(cf. Theorem 2.25), then [ξx, ξy] = −ξ[x,y].

3.5. (1) Prove that R3, considered as Lie algebra with the commutator given by the cross-product,
is isomorphic (as a Lie algebra) to so(3,R).
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(2) Let ϕ : so(3,R) → R3 be the isomorphism of part (1). Prove that under this isomorphism,
the standard action of so(3) on R3 is identified with the action of R3 on itself given by the
cross-product:

a · ~v = ϕ(a)× ~v, a ∈ so(3), ~v ∈ R3

where a · ~v is the usual multiplication of a matrix by a vector.
This problem explains common use of cross-products in mechanics (see, e.g. [1]): angular

velocities and angular momenta are actually elements of Lie algebra so(3,R) (to be precise, angular
momenta are elements of the dual vector space, (so(3,R))∗, but we can ignore this difference).
To avoid explaining this, most textbooks write angular velocities as vectors in R3 and use cross-
product instead of commutator. Of course, this would completely fail in dimensions other than 3,
where so(n,R) is not isomorphic to Rn even as a vector space.

3.6. Let Pn be the space of polynomials with real coefficients of degree ≤ n in variable x. The Lie
group G = R acts on Pn by translations of the argument: ρ(t)(x) = x + t, t ∈ G. Show that the
corresponding action of the Lie algebra g = R is given by ρ(a) = a∂x, a ∈ g and deduce from this
the Taylor formula for polynomials:

f(x+ t) =
∑

n≥0

(t∂x)n

n!
f.

3.7. Let G be the Lie group of all maps A : R→ R having the form A(x) = ax+ b, a 6= 0. Describe
explicitly the corresponding Lie algebra. [There are two ways to do this problem. The easy way
is to embed G ⊂ GL(2,R), which makes the problem trivial. More straightforward way is to
explicitly construct some basis in the tangent space, construct the corresponding one-parameter
subgroups, and compute the commutator using (3.3). The second way is recommended to those
who want to understand how the correspondence between Lie groups and Lie algebras works.]

3.8. Let SL(2,C) act on CP1 in the usual way:
[
a b

c d

]
(x : y) = (ax+ by : cx+ dy).

This defines an action of g = sl(2,C) by vector fields on CP1. Write explicitly vector fields
corresponding to h, e, f in terms of coordinate t = x/y on the open cell C ⊂ CP1.

3.9. Let G be a Lie group with Lie algebra g, and Aut(g), Der(g) be as defined in Example 3.30.
(1) Show that g 7→ Ad g gives a morphism of Lie groups G → Aut(G); similarly, x 7→ adx is a

morphism of Lie algebras g → Der g. (The automorphisms of the form Ad g are called inner
automorphisms; the derivations of the form adx, x ∈ g are called inner derivations.)

(2) Show that for f ∈ Der g, x ∈ g, one has [f, adx] = ad f(x) as operators in g, and deduce
from this that ad(g) is an ideal in Der g.

3.10. Let {Hα}α∈A be some family of Lie subgroups in G, with the Lie algebras hα = Lie(Hα).
Let H =

⋂
αHα. Without using the theorem about closed subgroup, show that H is a Lie group

with Lie algebra h =
⋂

α hα.

3.11. Let Jx, Jy, Jz be the basis in so(3,R) described in Section 3.10. The standard action of
SO(3,R) on R3 defines an action of so(3,R) by vector fields on R3. Abusing the language, we will
use the same notation Jx, Jy, Jz for the corresponding vector fields on R3. Let ∆sph = J2

x +J2
y +J2

z ;
this is a second order differential operator on R3, which is usually called the spherical Laplace
operator, or the Laplace operator on the sphere.
(1) Write ∆sph in terms of x, y, z, ∂x, ∂y, ∂z.
(2) Show that ∆sph is well defined as a differential operator on a sphere S2 = {(x, y, z) | x2 +

y2 + z2 = 1}, i.e., if f is a function on R3 then (∆sphf)|S2 only depends on f |S2 .
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(3) Show that the usual Laplace operator ∆ = ∂2
x + ∂2

y + ∂2
z can be written in the form

∆ = 1
r2 ∆sph + ∆radial, where ∆radial is a differential operator written in terms of r =√

x2 + y2 + z2 and r∂r = x∂x + y∂y + z∂z.
(4) Show that ∆sph is rotation invariant: for any function f and g ∈ SO(3,R), ∆sph(gf) =

g(∆sphf). (Later we will describe a better way of doing this.)

3.12. Give an alternative proof of Theorem 3.33, using Lemma 3.14.

3.13. (1) Let g be a three-dimensional real Lie algebra with basis x, y, z and commutation re-
lations [x, y] = z, [z, x] = [z, y] = 0 (this algebra is called Heisenberg algebra). With-
out using Campbell-Hausdorff formula, show that in the corresponding Lie group, one has
exp(tx) exp(sy) = exp(tsz) exp(sy) exp(tx) and construct explicitly the connected, simply
connected Lie group corresponding to g.

(2) Generalize the previous part to the Lie algebra g = V ⊕ Rz, where V is a real vector space
with non-degenerate skew-symmetric form ω and the commutation relations are given by
[v1, v2] = ω(v1, v2)z, [z, v] = 0.

3.14. This problem is for readers familiar with mathematical formalism of classical mechanics.
Let G be a real Lie group and A— a positive definite symmetric bilinear form on g; such a

form can also be considered as a linear map g → g∗.
(1) Let us extend A to a left invariant metric on G. Consider mechanical system describing free

motion of a particle on G, with kinetic energy given by A(ġ, ġ) and zero potential energy.
Show that equations of motion for this system are given by Euler’s equations:

Ω̇ = ad∗ v.Ω

where v = g−1ġ ∈ g, Ω = Av ∈ g∗, and ad∗ is the coadjoint action:

〈ad∗ x.f, y〉 = −〈f, adx.y〉 x, y ∈ g, f ∈ g∗.

(For G = SO(3,R), this system describes motion of a solid body rotating around its center
of gravity — so called Euler’s case of rotation of a solid body. In this case, A describes the
body’s moment of inertia, v is angular velocity, and Ω is angular momentum, both measured
in the moving frame. Details can be found in [1]).

(2) Using the results of the previous part, show that if A is a bi-invariant metric on G, then
one-parameter subgroups exp(tx), x ∈ g are geodesics for this metric.

3.15. Let G be a complex connected Lie group, with Lie algebra g = Lie(G), and let k ⊂ g be a
real form of g.
(1) Define R-linear map θ : g → g by θ(x+iy) = x−iy, x, y ∈ k. Show that θ is an automorphism

of g (considered as a real Lie algebra), and that it can be uniquely lifted to an automorphism
θ : G→ G of the group G (considered as a real Lie group). ????

(2) Let K = Gθ. Show that K is a real Lie group with Lie algebra k.

3.16. Let Sp(n) be the unitary quaternionic group defined in Exercise 2.7. Show that sp(n)C =
sp(2n,C). Thus Sp(n) is a compact real form of Sp(2n,C).

3.17. Let so(p, q) = Lie(SO(p, q)). Show that its complexification is so(p, q)C = so(p+ q,C).



Chapter 4

Representations of Lie
Groups and Lie
Algebras

In this section, we will discuss representation theory of Lie groups and Lie algebras — as far as
it can be discussed without using the structure theory of semisimple Lie algebras. Unless specified
otherwise, all Lie groups, algebras, and representations are finite-dimensional, and all representations
are complex. Lie groups and Lie algebras can be either real or complex; unless specified otherwise,
all results are valid both for real and complex case.

4.1. Basic definitions

Let us start by recalling basic definitions.

Definition 4.1. A representation of a Lie group G is a vector space V together with a morphism
ρ : G→ GL(V ).

A representation of a Lie algebra g is a vector space V together with a morphism ρ : g → gl(V ).

A morphism between two representations V,W of the same group G is a linear map f : V →W

which commutes with the action of G: fρ(g) = ρ(g)f . In a similar way one defines a morphism of
representations of a Lie algebra. The space of all G-morphisms (respectively, g-morphisms) between
V and W will be denoted by HomG(V,W ) (respectively, Homg(V,W )).

Remark 4.2. Morphisms between representations are also frequently called intertwining operators
because they “intertwine” action of G in V and W .

Notion of representation is completely parallel to the notion of module over an associative ring
or algebra; the difference of terminology is due to historical reasons. In fact, it is also usual to use
the word “module” rather than “representation” for Lie algebras: a module over Lie algebra g is the
same as a representation of g.

Note that in this definition we didn’t specify whether V and G, g are real or complex. Usually
if G (respectively, g) is complex, then V should also be taken a complex vector space. However, it
also makes sense to take complex V even if G is real: in this case we require that the morphism
G→ GL(V ) be smooth, considering GL(V ) as 2n2-dimensional real manifold. Similarly, for real Lie
algebras we can consider complex representations requiring that ρ : g → gl(V ) be R-linear.

39
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Of course, we could also restrict ourselves to consideration of real representations of real groups.
However, it turns out that introduction of complex representations significantly simplifies the theory
even for real groups and algebras. Thus, from now on, all representations will be complex unless
specified otherwise.

The first important result about representations of Lie groups and Lie algebras is the following
theorem.

Theorem 4.3. Let G be a Lie group with Lie algebra g.

(1) Every representation ρ : G → GL(V ) defines a representation ρ∗ : g → gl(V ), and every
morphism of representations of G is automatically a morphism of representations of g.

(2) If G is connected, simply-connected, then ρ 7→ ρ∗ gives an equivalence of categories of
representations of G and representations of g. In particular, every representation of g can
be uniquely lifted to a representation of G, and HomG(V,W ) = Homg(V,W ).

Indeed, part (1) is a special case of Theorem 3.17, and part (2) follows from Theorem 3.38.

This is an important result, as Lie algebras are, after all, finite dimensional vector spaces, so
they are easier to deal with. For example, this theorem shows that a representation of SU(2) is the
same as a representation of su(2), i.e. a vector space with three endomorphisms X,Y, Z, satisfying
commutation relations XY − Y X = Z, Y Z − ZY = X, ZX −XZ = Y .

This theorem can also be used to describe representations of a group which is connected but
not simply-connected: indeed, by Corollary 3.49 any such group can be written as G = G̃/Z for
some simply-connected group G̃ and a discrete central subgroup Z ⊂ G. Thus, representations of
G are the same as representations of G̃ satisfying ρ(Z) = id. An important example of this is when
G = SO(3,R), G̃ = SU(2) (see Exercise 4.1).

Lemma 4.4. Let g be a real Lie algebra, and gC its complexification as defined in Definition 3.51.
Then any complex representation of g has a unique structure of representation of gC, and Homg(V,W ) =
HomgC(V,W ). In other words, categories of complex representations of g, gC are equivalent.

Proof. Let ρ : g → gl(V ) be the representation of g. Extend it to gC by ρ(x+iy) = ρ(x)+iρ(y). We
leave it to the reader to check that so defined ρ is complex-linear and agrees with the commutator. ¤

Example 4.5. The categories of representations of SL(2,C), SU(2), sl(2,C) and su(2) are all equiv-
alent.

This, in particular, allows us to reduce the problem of study of representations of a non-compact
Lie group SL(2,C) to the study of representations of a compact Lie group SU(2). This is useful
because, as we will show below, representation theory of compact Lie groups is especially nice.

Remark 4.6. This only works for finite-dimensional representations; theory of infinite-dimensional
representations of SL(2,C) is very different from that of SU(2).

The following are some examples of representations which can be defined for any Lie group G

(and thus, for any Lie algebra g).

Example 4.7. Trivial representation: V = C, ρ(g) = id for any g ∈ G (respectively, ρ(x) = 0 for
any x ∈ g).

Example 4.8. Adjoint representation: V = g, ρ(g) = Ad g (respectively, ρ(x) = adx). See (2.3),
Lemma 3.14 for definition of Ad, ad.
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4.2. Operations on representations

In this section, we discuss basic notions of representation theory of Lie groups and Lie algebras,
giving examples of representations, operations on representations such as direct sum and tensor
product, and more.

Subrepresentations and quotients.

Definition 4.9. Let V be a representation of G (respectively g). A subrepresentation is a vector
subspace W ⊂ V stable under the action: ρ(g)W ⊂ W for all g ∈ G (respectively, ρ(x)W ⊂ W for
all x ∈ g).

It is easy to check that if G is a connected Lie group with Lie algebra g, then W ⊂ V is a
subrepresentaion for G if and only if it is a subrepresentation for g.

It is trivial to check that if W ⊂ V is a subrepresentation, then the quotient space V/W has
a canonical sructure of a representation. It will be called factor representation, or the quotient
representation.

Direct sum and tensor product.

Lemma 4.10. Let V,W be representations of G (respectively, g). Then there is a canonical structure
of a representation on V ∗, V ⊕W , V ⊗W .

Proof. Action of G on V ⊕W is given by ρ(g)(v + w) = ρ(g)v + ρ(g)w, and similarly for g.

For tensor product, we define ρ(g)(v ⊗ w) = ρ(g)v ⊗ ρ(g)w. However, action of g is trickier:
indeed, naive definition ρ(x)(v⊗w) = ρ(x)v⊗ ρ(x)w does not define a representation (it is not even
linear in x). Instead, if we write x = γ̇(0) for some one-parameter family γ(t) in a Lie group G with
γ(0) = 1, then

ρ(x)(v ⊗w) =
d

dt
|t=0(γ(t)v ⊗ γ(t)w) = (γ̇(0)v ⊗ γ(0)w) + (γ(0)v ⊗ γ̇(t)w) = ρ(x)v ⊗w + v ⊗ ρ(x)w

by using Leibnitz rule. Thus, we define ρ(x)(v ⊗ w) = ρ(x)v ⊗ w + v ⊗ ρ(x)w. It is easy to show,
even without using the Lie group G, that so defined action is indeed a representation of g on V ⊗W .

To define action of G, g on V ∗, we require that the natural pairing V ⊗ V ∗ → C be a morphism
of representations, considering C as the trivial representation. This gives, for v ∈ V, v∗ ∈ V ∗,
〈ρ(g)v, ρ(g)v∗〉 = 〈v, v∗〉, so action of G in V ∗ is given by ρV ∗(g) = ρ(g−1)t, where for A : V → V ,
we denote by At the adjoint operator V ∗ → V ∗.

Similarly, for the action of g we get 〈ρ(x)v, v∗〉+ 〈v, ρ(x)v∗〉 = 0, so ρV ∗(x) = −(ρV (x))t. ¤

As an immediate corollary, we see that for a representation V , any tensor space V ⊗k ⊗ (V ∗)⊗l

has a canonical structure of a representation.

Example 4.11. Let V be a representation of G (respectively, g). Then the space End(V ) ' V ⊗V ∗
of linear operators on V is also a representation, with the action given by g : A 7→ ρV (g)AρV (g−1)
for g ∈ G (respectively, x : A 7→ ρV (x)A − AρV (x) for x ∈ g). More generally, the space of linear
maps Hom(V,W ) between two representations is also a representation with the action defined by
g : A 7→ ρW (g)AρV (g−1) for g ∈ G (respectively, x : A 7→ ρW (x)A−AρV (x) for x ∈ g).

Similarly, the space of bilinear forms on V is also a representation, with action given by

gB(v, w) = B(g−1v, g−1w), g ∈ G
xB(v, w) = −(B(x.v, w) +B(v, x.w)), x ∈ g.

Proof of these formulas is left to the reader as an exercise.
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Invariants.

Definition 4.12. Let V be a representation of a Lie group G. A vector v ∈ V is called invariant if
ρ(g)v = v for all g ∈ G. The subspace of invariant vectors in V is denoted by V G.

Similarly, let V be a representation of a Lie algebra g. A vector v ∈ V is called invariant if
ρ(x)v = 0 for all x ∈ g. The subspace of invariant vectors in V is denoted by V g.

We leave it to the reader to prove that if G is a connected Lie group with the Lie algebra g,
then for any representation V of G, we have V G = V g.

Example 4.13. Let V,W be representations and Hom(V,W ) be the space of linear maps V →W ,
with the action of G defined as in Example 4.11. Then (Hom(V,W ))G = HomG(V,W ) is the space
of intertwining operators. In particular, this shows that V G = (Hom(C, V ))G = HomG(C, V ), with
C considered as a trivial representation.

Example 4.14. Let B be a bilinear form on a representation V . Then B is invariant under the
action of G defined in Example 4.11 iff

B(gv, gw) = B(v, w)

for any g ∈ G, v, w ∈ V . Similarly, B is invariant under the action of g iff

B(x.v, w) +B(v, x.w) = 0

for any x ∈ g, v, w ∈ V .

4.3. Irreducible representations

One of the main problems of the representation theory is the problem of classification of all repre-
sentations of a Lie group or a Lie algebra. In this generality, it is an extremely difficult problem and
for a general Lie group, no satisfactory answer is known. We will later show that for some special
classes of Lie groups (namely compact Lie groups and semisimple Lie groups, to be defined later)
this problem does have a good answer.

The most natural approach to this problem is to start by studying simplest possible represen-
tations, which would serve as building blocks for more complicated representations.

Definition 4.15. A non-zero representation V of G or g is called irreducible or simple if it has no
subrepresentations other than 0, V . Otherwise V is called reducible.

Example 4.16. Space Cn, considered as a representation of SL(n,C), is irreducible.

If a representation V is not irreducible (such representations are called reducible), then it has a
non-trivial subrepresentation W and thus, V can be included in a short exact sequence 0 → W →
V → V/W → 0; thus, in a certain sense it is built out of simpler pieces. The natural question is
whether this exact sequence splits, i.e. whether we can write V = W ⊕ (V/W ) as a representation.
If so then repeating this process, we can write V as a direct sum of irreducible representations.

Definition 4.17. A representation is called completely reducible (or semisimple) if it is isomorphic
to a direct sum of irreducible representations: V ' ⊕

Vi, Vi irreducible.

In such a case one usually groups together isomorphic summands writing V ' ⊕
niVi, ni ∈

Z+, where Vi are pairwise non-isomorphic irreducible representations. The numbers ni are called
multiplicities.

However, as the following example shows, not every representation is completely reducible.
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Example 4.18. Let G = R, so g = R. Then a representation of g is the same as a vector space
V with a linear map R → End(V ); obviously, every such map is of the form t 7→ tA for some
A ∈ End(V ) which can be arbitrary. The corresponding representation of the group R is given by
t 7→ exp(tA). Thus, classifying representations of R is equivalent to classifying linear maps V → V

up to a change of basis. Such a classification is known (Jordan normal form) but non-trivial.

If v is an eigenvector of A then the one-dimensional space Cv ⊂ V is invariant under A and
thus a subrepresentation in V . Since every operator in a complex vector space has an eigenvector,
this shows that every representation of R is reducible, unless it is one-dimensional. Thus, the only
irreducible representations of R are one-dimensional.

Now one easily sees that writing a representation given by t 7→ exp(tA) as a direct sum of
irreducible ones is equivalent to diagonalizing A. So a representation is completely reducible iff
A is diagonalizable. Since not every linear operator is diagonalizable, not every representation is
completely reducible.

Thus, more modest goals of the representation theory would be answering the following ques-
tions:

(1) For a given Lie group G, classify all irreducible representations of G.

(2) For a given representation V of a Lie group G, given that it is completely reducible, find
explicitly the decomposition of V into direct sum of irreducibles.

(3) For which Lie groups G all representations are completely reducible?

One tool which can be used in decomposing representations into direct sum is the use of central
elements.

Lemma 4.19. Let V be a representation of G (respectively, g) and A : V → V a diagonalizable
intertwining operator. Let Vλ ⊂ V be the eigenspace for A with eigenvalue λ. Then each Vλ is a
subrepresentation, so V =

⊕
Vλ as a representation of G (respectively g).

The proof of this lemma is trivial and is left to the reader. As an immediate corollary, we get
the following result.

Lemma 4.20. Let V be a representation of G and let Z ∈ Z(G) be a central element of G such
that ρ(Z) is diagonalizable. Then as a representation of G, V =

⊕
Vλ where Vλ is the eigenspace

for ρ(Z) with eigenvalue λ. Similar result also holds for central elements in g.

Of course, there is no guarantee that Vλ will be an irreducible representation; moreover, in many
cases the Lie groups we consider have no central elements at all.

Example 4.21. Consider action of GL(n,C) on Cn⊗Cn. Then the permutation operator P : v⊗w 7→
w⊗ v commutes with the action of GL(n,C), so the subspaces S2Cn,Λ2Cn of symmetric and skew-
symmetric tensors (which are exactly the eigenspaces of P ) are GL(n,C)-invariant Cn ⊗ Cn =
S2Cn ⊕ Λ2Cn as a representation. In fact, both S2Cn,Λ2Cn are irreducible (this is not obvious
but can be proved by a lengthy explicit calculation; later we will discuss better ways of doing this).
Thus, Cn ⊗ Cn is completely reducible.

4.4. Intertwining operators and Schur lemma

Recall that an intertwining operator is a linear map V →W which commutes with the action of G.
Such operators frequently appear in various applications. A typical example is a quantum mechanics,
where we have a vector space V (describing the space of states of some mechanical system) and the
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Hamiltonian operator H : V → V . Then saying that this whole system has symmetry described
by a group G is the same as saying that we have an action of G on V which leaves H invariant,
i.e. gHg−1 = H for any g ∈ G. This exactly means that H is an intertwining operator. A baby
example of such a system was described in the introduction; more realistic example (hydrogen atom
in quantum mechanics) will be described in Section 5.2.

These examples motivate the study of intertwining operators. For example, does G-invariance
of an operator helps computing eigenvalues and eigenspaces? It worked in the baby example of the
introduction; what about the general case?

The first result in this direction is the following famous lemma.

Lemma 4.22 (Schur Lemma).

(1) Let V be an irreducible complex representation of G. Then the space of intertwining op-
erators HomG(V, V ) = C id: any endomorphism of an irreducible representation of G is
constant.

(2) If V and W are irreducible complex representations which are not isomorphic then HomG(V,W ) =
0.

Similar result holds for representations of a Lie algebra g.

Proof. We note that if Φ: V →W is an intertwining operator, then KerΦ, Im Φ are subrepresenta-
tions in V , W respectively. If V is irreducible, either kerΦ = V (in which case Φ = 0) or kerΦ = 0,
so Φ is injective. Similarly, if W is irreducible, either Im Φ = 0 (so Φ = 0) or ImΦ = W , Φ is
surjective. Thus, either Φ = 0 or Φ is an isomorphism.

Now part (2) follows immediately: since V,W are not isomorphic, Φ must be zero. To prove
part (1), notice that the above argument shows that any non-zero intertwiner V → V is invertible.
Now let λ be an eigenvalue of Φ. Then Φ − λ id is not invertible. On the other hand, it is also an
intertwiner, so it must be zero. Thus, Φ = λ id. ¤

Example 4.23. Consider the group GL(n,C). Since Cn is irreducible as a representation of
GL(n,C), every operator commuting with GL(n,C) must be scalar. Thus, the center Z(GL(n,C)) =
{λ id, λ ∈ C×}; similarly, the center of the Lie algebra is z(gl(n,C)) = {λ id, λ ∈ C}.

Since Cn is also irreducible as a representation of SL(n,C), U(n), SU(n), SO(n,C), similar
argument can be used to compute the center of each of these groups. The answer is

Z(SL(n,C)) = Z(SU(n)) = {λ id, λn = 1} z(sl(n,C)) = z(su(n)) = 0

Z(U(n)) = {λ id, |λ| = 1} z(u(n)) = {λ id, λ ∈ iR}
Z(SO(n,C)) = Z(SO(n,R)) = {±1} z(so(n,C)) = z(so(n,R)) = 0.

As an immediate corollary of Schur’s lemma, we get the following result.

Corollary 4.24. Let V be a completely reducible representation of Lie group G (respectively, Lie
algebra g). Then

(1) If V =
⊕
Vi, Vi — irreducible, pairwise non-isomorphic, then any intertwining operator

Φ: V → V is of the form Φ =
⊕
λi idVi .

(2) If V =
⊕
NiVi =

⊕
Cni ⊗ Vi, Vi — irreducible, pairwise non-isomorphic, then any inter-

twining operator Φ: V → V is of the form Φ =
⊕

(Ai ⊗ idVi), Ai ∈ End(Cni).

Proof. For part (1), notice that any operator V → V can be written in a block form: Φ =
⊕

Φij ,
Φij : Vi → Vj . By Schur lemma, Φij = 0 for i 6= j and Φii = λi idVi . Part (b) is proved similarly. ¤
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This result shows that indeed, if we can decompose a representation V into irreducible ones, this
will give us a very effective tool for analysing intertwining operators. For example, if V =

⊕
Vi, Vi 6'

Vj , then Φ =
⊕
λi idVi

, so one can find λi by computing Φ(v) for just one vector in Vi. It also shows
that each eigenvalue λi will appear with multiplicity equal to dimVi. This is exactly what we did
in the baby example in the introduction, where we had G = Zn.

Another useful corollary of Schur’s lemma is the following result.

Proposition 4.25. If G is a commutative group, then any irreducible complex representation of G
is one-dimensional. Similarly, if g is a commutative Lie algebra, then any irreducible representation
of g is one-dimensional.

Indeed, since G is commutative, every ρ(g) commutes with the action of G, so ρ(g) = λ(g) id.

Example 4.26. Let G = R. Then its irreducible representations are one-dimensional (this had
already been dicussed before, see Example 4.18). In fact, it is easy to describe them: one-dimensional
representations of the corresponding Lie algebra g = R are a 7→ λa, λ ∈ C. Thus, irreducible
representations of R are Vλ, λ ∈ C, where each Vλ is a one-dimensional complex space with the
action of R given by ρ(a) = eλa.

In a similar way, one can describe irreducible representations of S1 = R/Z: they are exactly
those representations of R which satisfy ρ(a) = 1 for a ∈ Z. Thus, irreducible representations of S1

are Vk, k ∈ Z, where each Vk is a one-dimensional complex space with the action of S1 given by
ρ(a) = e2πika. In the realization of S1 = {z ∈ C | |z| = 1} the formula is even simpler: in Vk, z acts
by zk.

4.5. Complete reducibility of unitary
representations. Representations of finite
groups

In this section, we will show that a large class of representations is completely reducible.

Definition 4.27. A complex representation V of a group G is called unitary if there is a G-invariant
inner product: (ρ(g)v, ρ(g)w) = (v, w), or equivalently, ρ(g) ∈ U(V ) for any g ∈ G. (The word “inner
product” means a positive definite Hermitian form.)

Similarly, a representation V of a Lie algebra g is called unitary if there is an inner product
which is g-invariant: (ρ(x)v, w) + (v, ρ(x)w) = 0, or equivalently, ρ(x) ∈ u(V ) for any x ∈ g

Example 4.28. Let V = F (S) be the space of complex valued functions on a finite set S. Let G
be a finite group acting by permutations on S; then it also acts on V by (2.1). Then (f1, f2) =∑

s f1(s)f2(s) is an invariant inner product, so such a representation is unitary.

The following result explains why unitary representations are so important.

Theorem 4.29. Each unitary representation is completely reducible.

Proof. The proof goes by induction on dimension. Either V is irreducible, and we’re done, or V
has a subrepresentation W . Then V = W ⊕W⊥, and W⊥ is a subrepresentation as well. Indeed: if
w ∈W⊥, then (gw, v) = (w, g−1v) = 0 for any v ∈W (since g−1v ∈W ), so gw ∈W⊥. ¤

Theorem 4.30. Any representation of a finite group is unitary.
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Proof. Let B(v, w) be some positive definite inner product in V . Of course, it may not be G-
invariant, so B(gv, gw) may be different from B(v, w). Let us “average” B by using group action:

B̃(v, w) =
1
|G|

∑

g∈G

B(gv, gw).

Then B̃ is a positive definite inner product (it is a sum of positive definite inner products), and it
is G-invariant:

B̃(hv, hw) =
1
|G|

∑

g∈G

B(ghv, ghw) =
1
|G|

∑

g′∈G

B(g′v, g′w)

by making subsitution gh = g′ and noticing that as g runs over G, so does g′. ¤

Combining this with Theorem 4.29, we immediately get the main result of this section.

Theorem 4.31. Every representation of a finite group is completely reducible.

Note that this theorem does not give an explicit recipe for decomposing a representation into
direct sum of irreducibles. We will return to this problem later.

4.6. Haar measure on compact Lie groups

In the previous section we have proved complete reducibility of representations of a finite group G.
The natural question is whether this proof can be generalized to Lie groups.

Analyzing the proof, we see that the key step was averaging a function over the group: f̃ =
1
|G|

∑
f(g) for a complex-valued function on a group. It seems reasonable to expect that in the case

of Lie groups, we should replace the sum by suitably defined integral over G.

Definition 4.32. A right Haar measure on a real Lie group G is a measure dg such that
∫

G
dg = 1

and which is invariant under the right action of G on itself.

Right invariance implies (and, in fact, is equivalent to) the identity
∫
f(gh) dg =

∫
f(g) dg for

any h ∈ G and integrable function f . In a similar way one defines left Haar measure on G.

In this definition we did not specify what exactly we mean by measure. For readers familiar
with measure theory, we can make it more precise by saying that dg is supposed to be σ-additive
Borel measure. This guarantees that any continuous function is measurable and thus, since

∫
dg is

finite, every continuous function is integrable.

However, for Lie groups there is no need to go deeply in the measure theory: we can restrict
ourselves to measures which are given by some smooth density. Recall that a density (also called
volume element) on a manifold M is a map µ : ΛnTM → C∞(M) such that µ(fs) = |f |µ(s) for
any smooth function f and a section s of ΛnTM . We will always be considering positive densities:
d(s) > 0 for any non-zero s. A typical example of a positive density is d = |ω| where ω is a non-
vanishing top degree differential form. Moreover, locally every positive density can be written in
such a form.

Densities are non-oriented analogs of top degree differential forms: they form an R+-bundle over
M and under change of coordinates, a density is multiplied by the absolute value of the Jacobian
(compare with differential forms which are multiplied by Jacobian under change of coordinates).
The standard results about integration on manifolds apply to densities too. In particular, for any
smooth function f with a compact support and a density µ, the integral

∫
M
fµ is well-defined.

Thus, every density gives a measure on the manifold. Unlike differential forms, there is no need to
fix orientation of M or even require that M be orientable; however, if M is orientable, then every
denisty can be written in the form d = |ω| and

∫
M
|ω| =

∣∣∫
M
ω
∣∣.
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Theorem 4.33. Let G be a compact real Lie group. Then it has a unique right Haar measure which
is given by some smooth positive density. In addition, this Haar measure is also left-invariant and
invariant under g 7→ g−1.

The Haar measure on G is usually denoted by dg.

Proof. Let us choose some non-zero element in Λng∗, n = dimG. Then it can be uniquely extended
to a right-invariant differential form ω on G (see Theorem 2.25). Since G is compact, the integral
I =

∫
G
|ω| is finite. Define the density dg by dg = |ω|

I . Then dg is right-invariant and satisfies∫
G
dg = 1, so it is a Haar measure. Uniqueness is obvious: right-invariant density is unique up to a

constant (because Λng∗ is one-dimensional), and constant is fixed by
∫

G
dg = 1.

To prove that dg is also left-invariant, it suffices to check that it is invariant under adjoint
action (cf. Theorem 2.26). But Λng∗ is a one-dimensional representation of G. Thus, this result
immediately follows from the following lemma.

Lemma 4.34. Let V be a one-dimensional real representation of a compact Lie group G. Then for
any g ∈ G, |ρ(g)| = 1.

Indeed, if |ρ(g)| < 1, then ρ(gn) → 0. But ρ(G) is a compact subset in R×, so it can not contain
a sequence with limit 0. In a similar way, |ρ(g)| > 1 also leads to a contradiction.

To prove invariance under i : g 7→ g−1, notice that since dg is left-invariant, it is easy to see
that i∗(dg) is a right-invariant density on G; thus, it suffices to check that dg and i∗(dg) coincide
at 1 ∈ G. But i∗ : g → g is given by x 7→ −x (which follows from i(exp(tx)) = exp(−tx)). Thus, on
Λng, i∗ = (−1)n. ¤

Remark 4.35. In fact, every compact topological group (with some technical restrictions) has a
unique Haar measure — even if it is not a Lie group. However, in full generality this result is much
harder to prove. ???Reference??? ?!
Example 4.36. Let G = S1 = R/Z. Then the Haar measure is the usual measure dx on R/Z.

Note that in general, writing the Haar measure on a group is not easy—for example, because
in general there is no good choice of coordinates on G. Even in those cases when a coordinate
system on G can be described explicitly, the Haar measure is usually given by rather complicated
formulas. The only case where this measure can be written by a formula simple enough to be useful
for practical computations is when we integrate conjugation-invariant functions (also called class
functions).

Example 4.37. Let G = U(n) and let f be a smooth function on G such that f(ghg−1) = f(h).
Then

∫

U(n)

f(g)dg =
1
n!

∫

T

f




t1
t2
. . .

tn




∏

i<j

|ti − tj |2dt

where

T =








t1
t2
. . .

tn


 , tk = eiϕk





is the subgroup of diagonal matrices and dt = 1
(2π)n dϕ1 . . . dϕn is the Haar measure on T .
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This is a special case of Weyl Integration Formula. The statement of this theorem in full
generality and the proof can be found, for example, in [3]. The proof requires a fair amount of
structure theory of compact Lie groups and will not be given here.

The main result of this section is the following theorem.

Theorem 4.38. Any finite-dimensional representation of a compact Lie group is unitary and thus
completely reducible.

Proof. The proof is almost identical to the proof for the finite group: let B(v, w) be some positive
definite inner product in V and “average” it by using group action:

B̃(v, w) =
∫

G

B(gv, gw) dg

where dg is the Haar measure on G. Then B̃(v, v) > 0 (it is an integral of a positive function) and
right invariance of Haar measure shows that B(hv, hw) = B(v, w).

Complete reducibility now follows from Theorem 4.29. ¤

4.7. Orthogonality of characters and Peter-Weyl
theorem

In the previous section, we have established that any representation of a comapct Lie group is
completely reducible: V ' ⊕

NiVi, where Ni ∈ Z+, Vi are pairwise non-isomorphic irreducible
representations. However, we have not really discussed how one can explicitly decompose a given
representation in a direct sum of irreducibles, or at least find the multiplicities Ni. This will be
discussed in this section. Throughout this section, G is a compact real Lie group with Haar measure
dg.

Let vi be a basis in a representation V . Writing the operator ρ(g) : V → V in the basis vi, we get
a matrix-valued function on G. Equivalently, we can consider each entry ρij(g) as a scalar-valued
function on G. Such functions are called matrix coefficients (of the representation V ).

Theorem 4.39.

(1) Let V , W be non-isomorphic irreducible representations of G. Choose bases vi ∈ V , i =
1 . . . n and wa ∈ W , a = 1 . . .m. Then for any i, j, a, b, the matrix coefficients ρV

ij(g), ρ
W
ab

are orthogonal: (ρV
ij(g), ρ

W
ab ) = 0, where ( , ) is the inner product on C∞(G,C) given by

(4.1) (f1, f2) =
∫

G

f1(g)f2(g) dg.

(2) Let V be an irreducible representation of G and let vi ∈ V be an orthonormal basis with
respect to a G-invariant inner product (which exists by Theorem 4.38). Then the matrix
coefficients ρV

ij(g) are pairwise orthogonal, and each has norm squared 1
dim V :

(4.2) (ρV
ij(g), ρ

V
kl) =

δikδjl

dimV

Proof. The proof is based on the following easy lemma.

Lemma 4.40.

(1) Let V , W be non-isomorphic irreducible representations of G and f a linear map V →W .
Then

∫
G
gfg−1 dg = 0.

(2) If f is a linear map V → V , then
∫
gfg−1 dg = tr(f)

dim V id.
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Indeed, let f̃ =
∫

G
gfg−1 dg. Then f̃ commutes with action of g: hf̃h−1 =

∫
G

(hg)f(hg)−1 dg =
f̃ . By Schur lemma, f̃ = 0 for W 6= V and f̃ = λ id for W = V. Since tr(gfg−1) = tr f , we see that
tr f̃ = tr f , so λ = tr(f)

dim V id. This proves the lemma.

Now let vi, wa be orthonormal bases in V,W . Choose a pair of indices i, a and apply this lemma
to the map Eai : V →W given by Eai(vi) = wa, Eaivj = 0, j 6= i. Then we have

∫

G

ρW (g)Eaiρ
V (g−1) dg = 0.

Rewriting this in the matrix form and using ρ(g−1) = ρ(g)t (which follows from unitarity of ρ(g)),
we get that for any b, j, ∫

ρW
ba (g)ρV

ji(g) dg = 0

which proves the first part of the theorem in the case when the bases are orthonormal; general case
immediately follows.

To prove the second part, apply the lemma to a matrix unit Eki : V → V to get
∑

l,j

Elj

∫
ρV

lk(g)ρV
ji(g) dg =

trEki

dimV
id

which immediately yields the second part of the theorem. ¤

So irreducible representations give us a way of constructing an orthonormal set of functions on
the group. Unfortunately, they depend on the choice of basis. However, there is one particular
combination of matrix coefficients that does not depend on the choice of basis.

Definition 4.41. A character of a representation V is the function on the group defined by

χV (g) = trV ρ(g) =
∑

ρV
ii (g).

It is immediate from the definition that the character does not depend on the choice of basis in
V . It also has a number of other properties, listed below; proof of them is left to the reader as an
exercise.

Lemma 4.42.

(1) Let V = C be the trivial representation. Then χV = 1.

(2) χV⊕W = χV + χW .

(3) χV⊗W = χV χW

(4) χV (ghg−1) = χV (h).

(5) Let V ∗ be the dual of representation V . Then χV ∗ = χV .

The orthogonality relation for matrix coefficients immediately implies the following result for
the characters.

Theorem 4.43.

(1) Let V , W be non-isomorphic complex irreducible representations of a compact real Lie
group G. Then the characters χV , χW are orthogonal with respect to inner product (4.1):
(χV , χW ) = 0.

(2) For any irreducible representation V , (χV , χV ) = 1.
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In other words, if we denote by Ĝ the set of isomorphism classes of irreducible representations
of G, then the set {χV , V ∈ Ĝ} is an orthonormal family of functions on G.

This immediately implies a number of corollaries.

Corollary 4.44. Let V be a complex representation of a compact real Lie group G. Then

(1) V is irreducible iff (χV , χV ) = 1.

(2) V can be uniquely written in the form V ' ⊕
NiVi, Vi — pairwise non-isomorphic irre-

ducible representations, and the multiplicities Ni are given by Ni = (χV , χVi
).

In principle, this theorem gives a way of computing multiplicites Ni. In real life, it is only usable
for finite groups and some special cases. Much more practical ways of finding multiplicities will be
given later when we develop weight decomposition for representations of semisimple Lie algebras.

Finally, let us return to the matrix coefficients of representations. One might ask whether it is
possible to give a formulation of of Theorem 4.39 in a way that does not require a choice of basis.
The answer is “yes”. Indeed, let v ∈ V , v∗ ∈ V ∗. Then we can define a function on the group
ρv∗,v(g) by

ρv∗,v(g) = 〈v∗, ρ(g)v〉.
This is a generalization of a matrix coefficient: if v = vj , v∗ = v∗i , then we recover matrix coefficient
ρij(g).

This shows that for any representation V , we have a map

m : V ∗ ⊗ V → C∞(G,C)

v∗ ⊗ v 7→ 〈v∗, ρ(g)v〉.

The space V ∗ ⊗ V has additional structure. First, we have two commuting actions of G on it,
given by action on the first factor and on the second one; in other words, V ∗ ⊗ V is a G-bimodule.
In addition, if V is unitary, then the inner product defines an inner product on V ∗ (the simplest way
to define it is to say that if vi is an orthonormal basis in V , then the dual basis v∗i is an orthonormal
basis in V ∗). Define an inner product on V ∗ ⊗ V by

(4.3) (v∗1 ⊗ w1, v
∗
2 ⊗ w2) =

1
dimV

(v∗1 , v
∗
2)(w1, w2).

Theorem 4.45. Let Ĝ be the set of isomorphism classes of irreducible representations of G. Define
the map

(4.4) m :
⊕

Vi∈ bG
V ∗i ⊗ Vi → C∞(G,C)

by m(v∗ ⊗ v)(g) = 〈v∗, ρ(g)v〉. (Here
⊕

is the algebraic direct sum, i.e. the space of finite linear
combinations.) Then

(1) The map m is a morphism of G-bimodules:

m((gv∗)⊗ v) = Lg(m(v∗ ⊗ v))

m(v∗ ⊗ gv) = Rg(m(v∗ ⊗ v)),

where Lg, Rg are the left and right actions of G on C∞(G,C): (Lgf)(h) = f(g−1h),
(Rgf)(h) = f(hg).

(2) The map m preserves the inner product, if we define the inner product in
⊕
V ∗i ⊗ Vi by

(4.3) and inner product in C∞(G) by (4.1).
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Proof. The first part is obtained by explicit computation:

(Rgm(v∗ ⊗ v))(h) = m(v∗ ⊗ v)(hg) = 〈v∗, ρ(hg)v〉 = 〈v∗, ρ(h)ρ(g)v〉 = m(v∗ ⊗ gv)(h)

(Lgm(v∗ ⊗ v))(h) = m(v∗ ⊗ v)(g−1h) = 〈v∗, ρ(g−1)ρ(h)v〉 = 〈gv∗, ρ(h)v〉 = m(gv∗ ⊗ v)(h)

The second part immediately follows from Theorem 4.39.

¤

Corollary 4.46. The map m is injective.

It turns out that this map is also surjective if we replace the algebraic direct sum by an approprate
completion: every function on the group can be approximated by a linear combination of matrix
coefficients. Precise statement is known as Peter–Weyl theorem.

Theorem 4.47. The map (4.4) gives an isomorphism
⊕̂

Vi∈ bG
V ∗i ⊗ Vi → L2(G, dg)

where
⊕̂

is the Hilbert space direct sum, i.e. the completion of the algebraic direct sum with respect
to the metric given by inner product (4.3).

The proof of this theorem requires some non-trivial analytic considerations and goes beyond the
scope of this book. Interested reader can find it in [22] or [15].

Corollary 4.48. The set of characters {χV , V ∈ Ĝ} is an orthonormal basis (in the sense of Hilbert
spaces) of the space (L2(G, dg))G of conjugation-invariant functions on G.

Example 4.49. Let G = S1 = R/Z. As we have already discussed, the Haar measure on G is
given by dx and the irreducible representations are parametrized by Z: for any k ∈ Z, we have
one-dimensional representation Vk with the action of S1 given by ρ(a) = e2πika (see Example 4.26).
The corresponding matrix coefficient is the same as character and is given by χk(a) = e2πika.

Then the orthogonality relation of Theorem 4.39 gives
∫ 1

0

e2πikxe2πilx dx = δkl,

which is the usual orthogonality relation for exponents. Peter-Weyl theorem in this case just says
that the exponents e2πikx, k ∈ Z, form an orthonormal basis of L2(S1, dx) which is one of the
main statements of the theory of Fourier series: every L2 function on S1 can be written as a series
f(x) =

∑
k∈Z cke

2πikx which converges in L2 metric.

4.8. Universal enveloping algebra

In a Lie algebra g, in general there is no multiplication: the products of the form xy, x, y ∈ g are
not defined. However, if we consider a representation ρ : g → gl(V ) of g, then the product ρ(x)ρ(y)
is well-defined in such a representation — and in fact, as we will see later, operators of this kind
can be very useful in the study of representations. Moreover, commutation relation in g imply some
relations on the operators of this form. For example, commutation relation [e, f ] = h in sl(2,C)
implies that in any representation of sl(2,C) we have ρ(e)ρ(f) − ρ(f)ρ(e) = ρ(h), or equivalently,
ρ(e)ρ(f) = ρ(h) + ρ(f)ρ(e). These relations do not depend on the choice of representation ρ.

Motivated by this, we will define “universal” associative algebra generated by products of oper-
ators of the form ρ(x), x ∈ g.
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Definition 4.50. Let g be a Lie algebra over a field K. The universal enveloping algebra of g,
denoted by Ug, is the associative algebra with unit over K with generators i(x), x ∈ g, subject to
relations i(x+ y) = i(x) + i(y), i(cx) = ci(x), c ∈ K, and

(4.5) i(x)i(y)− i(y)i(x) = i([x, y]).

To simplify the notation, we (and everyone else) will usually write simply x ∈ Ug instead of
i(x). This will be partly justified later (see Corollary 4.62) when we show that the map i : g → Ug

is injective and thus g can be considered as a subspace in Ug.

If we dropped relation (4.5), we would get the associative algebra generated by elements x ∈ g

with no relations other than linearity and associativity. By definition, this is exactly the tensor
algebra of g:

(4.6) Tg =
⊕

n≥0

g⊗n.

Thus, one can alternatively describe the universal enveloping algebra as the quotient of the tensor
algebra:

(4.7) Ug = Tg/(xy − yx− [x, y]), x, y ∈ g.

Example 4.51. Let g be a commutative Lie algebra. Then Ug is generated by elements x ∈ g with
relations xy = yx. In other words, Ug is the symmetric alebra of g. Choosing a basis xi in g we see
that Ug = K[x1, . . . , xn].

Note that in this example, the universal enveloping alegbra is infinite-dimensional. In fact, Ug

is always infinite-dimensional (unless g = 0). We will return to the question of “how large Ug is” in
the next section.

Example 4.52. The universal enveloping algebra of sl(2,C) is the associative algebra over C gen-
erated by elements e, f, h with the relations ef − ef = h, he− eh = 2e, hf = −2f .

It should be noted that even when g ⊂ gl(n,K) is a matrix algebra, multiplication in Ug is
different from multiplication of matrices. For example, let e be the standard generator of sl(2,C).
Then e2 = 0 as a 2 × 2 matrix, but e2 6= 0 in Ug — and for a good reason: there are many
representations of sl(2,C) in which ρ(e)2 6= 0.

The following theorem shows that Ug is indeed universal in a certain sense, which justifies the
name.

Theorem 4.53. Let A be an associative algebra with unit over K and let ρ : g → A be a linear
map such that ρ(x)ρ(y) − ρ(y)ρ(x) = ρ([x, y]). Then ρ can be uniquely extended to a morphism of
associative algebras Ug → A.

Corollary 4.54. Any representation of g (not necessailry finite-dimensional) has a canonical struc-
ture of a Ug-module. Conversely, every Ug-module has a canonical structure of a representation of
g.

In other words, categories of representations of g and of Ug-modules are equivalent.

As a useful application of this result, we can use Ug to construct various operators acting in
representations of g — in particular to construct intertwining operators.
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Example 4.55. Let C = ef + fe+ 1
2h

2 ∈ Usl(2,C). Then

eC = e2f + efe+
1
2
eh2 = e(fe+ h) + (fe+ h)e+

1
2
(he− 2e)h

= efe+ fe2 +
1
2
heh+ eh+ he− eh = efe+ fe2

1
2
h(he− 2e) + he = efe+ fe2

1
2
h2e

= Ce.

The idea of this calculation is to move e to the right, using the relations ef = fe+ h, eh = he− 2e
to interchange it with f, h. Similar calculations also show that fC = Cf , hC = Ch. Thus, C is
central in Ug.

In particular, this implies that in every representation V of sl(2,C), the element ρ(C) : V → V

commutes with the action of sl(2,C) and thus is an intertwining operator. By Schur lemma, this
shows that C acts by a constant in every irreducible representation. And if V is not irreducible,
eigenspaces of V are subrepresentations, which could be used to decompose V into irreducible
representations (see Lemma 4.20).

Element C is called the Casimir operator for sl(2,C). We will discuss its generalization for other
Lie algebras in Proposition 6.54.

Proposition 4.56. (1) The adjoint action of g on g can be uniquely extended to an action of
g on Ug which satisfies Leibnitz rule: adx.(ab) = (adx.a)b + a(adx.b), x ∈ g, a, b ∈ Ug.
Moreover, adx.a = xa− ax.

(2) Let Zg = Z(Ug) be the center of universal enveloping algebra. Then Zg coincides with the
space of invariants on Ug with respect to the adjoint action of g:

Zg = (Ug)ad g

Proof. Define adjoint action of x ∈ g on Ug by adx.a = xa− ax. Clearly, for a ∈ g this coincides
with the usual definition of adjoint action. To see that it is indeed an action, we need to verify that
ad[x, y].a = adx(ad y.a)− ad y(adx.a), or

[x, y]a− a[x, y] =
(
x(ya− ay)− (ya− ay)x

)− (
y(xa− ax)− (xa− ax)y

)

which is given by explicit calculation.

Leibnitz rule follows from

xab− abx = (xa− ax)b+ a(xb− bx).

This proves the first part. The second part follows immediately: C ∈ Ug is central iff it
commutes with all generators, i.e. if Cx = xC for any x ∈ g. The last condition is equivalent to
adx.C = 0. ¤

4.9. Poincare-Birkhoff-Witt theorem

In this section, g is a finite-dimensional Lie algebra over the field K and Ug is the universal enveloping
algebra of g.

We had already mentioned that Ug is infinite-dimensional. In this section, we will give more
precise statement.

Unlike polynomial algebra, Ug is not graded: if we try to define degree by deg x1 . . . xk = k, xi ∈
g, then we run into problem with defining relation (4.5): we would have deg(xy) = deg(yx) = 2, but
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deg(xy − yx) = deg([x, y]) = 1. Instead, we have a weaker structure: we can define filtration on Ug

by letting, for any k ≥ 0,

(4.8) F kUg = Subspace in Ug generated by products x1 . . . xp, p ≤ k.

This defines a filtration on Ug: we have

F 0Ug ⊂ F 1Ug ⊂ . . . , Ug =
⋃
F pUg

The following proposition gives some properties of this filtration.

Proposition 4.57.

(1) Ug is a filtered algebra: if x ∈ F pUg, y ∈ F qUg, then xy ∈ F p+qUg.

(2) If x ∈ F pUg, y ∈ F qUg, then xy − yx ∈ F p+q−1Ug.

(3) Let x1, . . . , xn be an ordered basis in g. Then monomials

(4.9) xk1
1 . . . xkn

n ,
∑

ki ≤ p

span F pUg. Note that we fix the order of basis elements.

Proof. Part (1) is obvious. To prove the second part, note that for p = 1, we have

x(y1 . . . yq)− (y1 . . . yq)x =
∑

i

y1 . . . [x, yi] . . . yq ∈ F qUg

Now we can argue by induction in p: if the statement is true for some p, then

x1 . . . xp+1y ≡ x1 . . . xpyxp+1 ≡ yx1 . . . xpxp+1 mod F p+qUg.

Part (3) is again proved by induction in p. Indeed, for p = 1 it is obvious. To establish the
induction step, notice that F p+1Ug is generated by elements of the form xy, x ∈ g, y ∈ F pUg. By
induction assumption, y can be written as linear combination of monomials of the form (4.9). But
by part (2),

xi(xk1
1 . . . xkn

n )− xk1
1 . . . xki+1

i . . . xkn
n ∈ F pUg.

Using the induction assumption again, we see that xi(xk1
1 . . . xkn

n ) can again be written as linear
combination of monomilas of the form (4.9), with

∑
ki ≤ p+ 1. ¤

Corollary 4.58. Each F pUg is finite-dimensional.

Corollary 4.59. The associated graded algebra

(4.10) GrUg =
⊕

p

(F pUg)/F p−1Ug

is commutative.

We can now formualte the main result of this section.

Theorem 4.60 (Poincaré–Birhoff–Witt). Let x1, . . . , xn be an ordered basis is g. Then monomials
of the form (4.9) form a basis in F pUg.

The proof of this theorem is not given here; it can be found, for example, in [20],[6], [12]. Here
is the main idea of the proof. Since we already know that monomials of the form (4.9) generate
F pUg (see Proposition 4.57), it suffices to show that they are linearly independent. To show this,
we construct a representation in which the operators corresponding to these monomials are linearly
independent.
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Namely, we consider (infinite-dimensional) vector space V with basis given by (4.9) (no restric-
tion on

∑
ki). The action is uniquely defined by the requirement that ρ(xi).xj1 . . . xjn

= xixj1 . . . xjn

if i ≤ j1 ≤ j2 . . . . For example, this forces ρ(x1).x2 = x1x2.

This requirement also determines ρ(xi).xj1 . . . xjn
if i > j1. For example, to define ρ(x2).x1, we

note that it must be equal to ρ(x2)ρ(x1).1 = ρ(x1)ρ(x2).1 + ρ([x2, x1]).1 = x1x2 +
∑
aixi, where ai

are defined by [x1, x2] =
∑
aixi.

The difficult part is to check that it is indeed an action, i.e., satisfies ρ(x)ρ(y)−ρ(y)ρ(x) = ρ[x, y],
which is done by explicit calculation using Jacobi identity.

Note that this theorem would fail without Jacobi identity: if [, ] : g⊗ g → g is an antisymmetric
map not satisfying Jacobi identity, then the algebra defined by (4.5) can be trivial (i.e., all i(x) = 0).

This theorem can also be reformualted in a coordinate-independent way.

Theorem 4.61 (Poincaré–Birhoff–Witt). The graded algebra GrUg is naturally isomorphic to the
symmetric algebra Sg. The isomorphism is given by

(4.11)
Spg → Grp Ug

a1 . . . ap 7→ a1 . . . ap mod F p−1Ug

and the inverse isomorphism is given by

(4.12)

Grp Ug → Spg

a1 . . . ap 7→ a1 . . . ap,

a1 . . . al 7→ 0, l < p

When written in this form, this theorem may seem trivial. The non-triviality is hidden in the
statement that the maps (4.11), (4.12) are well-defined.

Poincaré–Birkhoff–Witt (or PBW for short) theorem has a number of useful corollaries. Here
are some of them.

Corollary 4.62. The natural map g → Ug is injective.

Corollary 4.63. Let g1, g2 ⊂ g be subalgebras such that g = g1 ⊕ g2 as a vector space (we do not
require that g1, g2 commute). Then the multiplication map

Ug1 ⊗ Ug2 → Ug

is an isomorphism.

Corollary 4.64. Algebra Ug has no zero divisors.

Exercises

4.1. Let ϕ : SU(2) → SO(3,R) be the cover map constructed in Exercise 2.12.
(1) Show that Kerϕ = {1,−1} = {1, eπih}, where h is defined by (3.20).
(2) Using this, show that representations of SO(3,R) are the same as representations of sl(2,C)

satisfying eπiρ(h) = id.

4.2. Let V = C2 be the standard 2-dimensional representation of the Lie algebra sl(2,C), and let
SkV be the symmetric power of V .
(1) Write explicitly the action of e, f, h ∈ sl(2,C) (see Section 3.10) in the basis ei

1e
k−i
2 .

(2) Show that S2V is isomorphic to the adjoint representation of sl(2,C).
(3) By results of Section 4.1, each representation of sl(2,C) can be considered as a representation

of so(3,R). Which of representations SkV can be lifted to a representation of SO(3,R)?
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4.3. Let C = ef + fe+ 1
2h

2 ∈ U sl(2,C).
(1) Show that C is central.
(2) Find the eigenvalues of C in each of the representations SkV defined in Exercise 4.2.
(3) Recall that we have an isomorphism so(3,C) ' sl(2,C) (see Section 3.10) which gives iso-

morphism of the corresponding enveloping algebras. Show that this isomorphism identifies
element C above with a multiple of J2

x + J2
y + J2

z .

4.4. (1) Let V,W be irreducible representations of a Lie group G. Show that (V ⊗W ∗)G = 0 if
V is non-isomorphic to W , and that (V ⊗ V ∗)G is canonically isomorphic to C.

(2) Let V be an irreducible representation of a Lie algebra g. Show that V ∗ is also irreducible, and
deduce from that the space of g-invariant bilinear forms on V is either zero or 1-dimensional.

4.5. For a representation V of a Lie algebra g, define the space of coinvaraints by Vg = V/gV ,
where gV is the subspace spanned by xv, x ∈ g, v ∈ V .
(1) Show that if V is completely reducible, then the composition V g ↪→ V → Vg is an isomor-

phism.
(2) Show that in general, it is not so. (Hint: take g = R and an appropriate representation V .)

4.6. Let g be a Lie algebra, and ( , ) — a symmetric ad-invariant bilinear form on g. Show that
the element ω ∈ (g∗)⊗3 given by

ω(x, y, z) = ([x, y], z)

is skew-symmetric and ad-invariant.

4.7. Prove that if A : Cn → Cn is an operator of finite order: Ak = I for some k, then A is
diagonalizable. [Hint: use theorem about complete reducibility of representations of a finite
group]

4.8. Let C be the standard cube in R3: C = {|xi| ≤ 1}, and let S be the set of faces of C (thus, S
consists of 6 coefficients). Consider the 6-dimensional complex vector V space of functions on S,
and define A : V → V by

(Af)(σ) =
1
4

∑

σ′
f(σ′)

where the sum is taken over all faces σ′ which are neighbors of σ (i.e., have a common edge with
σ). The goal of this problem is to diagonalize A.
(1) Let G = {g ∈ O(3,R) | g(C) = C} be the group of symmetries of C. Show that A commutes

with the natural action of G on V .
(2) Let z = −I ∈ G. Show that as a representation of G, V can be decomposed in the direct

sum
V = V+ ⊕ V−, V± = {f ∈ V | zf = ±f}.

(3) Show that as a representation of G, V+ can be decomposed in the direct sum

V+ = V 0
+ ⊕ V 1

+, V 0
+ = {f ∈ V+ |

∑
σ

f(σ) = 0}, V 1
+ = C · 1

where 1 denotes the constant function on S whose value at every σ ∈ S is 1.
(4) Find the eigenvalues of A on V−, V 0

+, V
1
+.

[Note: in fact, each of V−, V 0
+, V

1
+ is an irreducible representation of G, but you do not need this

fact.]

4.9. Let G = SU(2). Recall that we have a diffeomorphism G ' S3 ⊂ R4 (see Example 2.3).
(1) Show that the left action of G on G ' S3 can be extended to an action of G by linear

orthogonal transformations on R4.
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(2) Let ω ∈ Ω3(G) be a left-invariant 3-form whose value at 1 ∈ G is defined by

ω(x1, x2, x3) = tr([x1, x2]x3), xi ∈ g

(see Exercise 4.6). Show that |ω| = 4|dV | where |dV | is the volume form on S3 induced
by the standard metric in R4 (hint: let x1, x2, x3 be some orthonormal basis in su(2) with
respect to 1

2 tr(ab̄t)).
(3) Show that 1

8π2ω is a bi-invariant form on G such that 1
8π2

∫
G
|ω| = 1





Chapter 5

Representations of
sl(2,C) and Spherical
Laplace Operator

5.1. Representations of sl(2,C)

We start by studying representations of the simplest possible Lie algebra, sl(2,C). Recall that this
Lie algebra has a basis e, f, h with the commutation relations

(5.1) [e, f ] = h, [h, e] = 2e, [h, f ] = −2f

(see Section 3.10). As was proved earlier, this Lie algebra is simple (Example 6.22).

The main idea of the study of representations of sl(2,C) is to start by diagonalizing the operator
h.

Definition 5.1. Let V be a representation of sl(2,C). A vector v ∈ V is called vector of weight λ,
λ ∈ C, if it is an eigenvector for h with eigenvalue λ:

hv = λv.

We denote by V [λ] ⊂ V the subspace of vectors of weight λ.

The following lemma plays the key role in the study of representations of sl(2,C).

Lemma 5.2.

eV [λ] ⊂ V [λ+ 2]

fV [λ] ⊂ V [λ− 2].

Proof. Let v ∈ V [λ]. Then

hev = [h, e]v + ehv = 2ev + λev = (λ+ 2)ev

so ev ∈ V [λ+ 2]. The proof for f is similar. ¤

Theorem 5.3. Every finite-dimensional representation V of sl(2,C) can be written in the form

V =
⊕

λ

V [λ]

where V [λ] is defined in Definition 5.1. This decomposition is called weight decomposition of V .

59
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Proof. Since every representation of sl(2,C) is completely reducible, it suffices to prove this for
irreducible V . So assume that V is irreducible. Let V ′ =

∑
λ V [λ] be the subspace spanned by

eigenvectors of h. By well-known result of linear algebra, eigenvectors with different eigenvalues are
linearly independent, so V ′ =

⊕
V [λ]. By Lemma 5.2, V ′ is stable under action of e, f and h. Thus,

V ′ is a subrepresentation. Since we assumed that V is irreducible, and V ′ 6= 0 (h has at least one
eigenvector), we see that V ′ = V . ¤

Our main goal will be classification of ireducible finite-dimensional representations. So from
now on, let V be an irreducible representation of sl(2,C).

Let λ be a weight of V (i.e., V [λ] 6= 0) which is maximal in the following sense:

(5.2) Reλ ≥ Reλ′ for every weight λ′ of V .

Such a weight will be called “highest weight of V ”, and vectors v ∈ V [λ] — highest weight vectors.
It is obvious that every finite-dimensional representation has at least one non-zero highest weight
vector.

Lemma 5.4. Let v ∈ V [λ] be a highest weight vector in V .

(1) ev = 0.

(2) Let

vk =
fk

k!
v, k ≥ 0

Then we have

(5.3)

hvk = (λ− 2k)vk,

fvk = (k + 1)vk+1,

evk = (λ− k + 1)vk−1, k > 0

Proof. By Lemma 5.2, ev ∈ V [λ + 2]. But by definition of highest weight vector, V [λ + 2] = 0.
This proves the first part.

To prove the second part, note that the formula for action of f is immediate from definition,
and formula for action of h follows from Lemma 5.2. Thus, we need to prove the formula for the
action of e.

The proof goes by induction. For k = 1 we have

ev1 = efv = [e, f ]v + fev = hv = λv

(using ev = 0).

The induction step is proved by

evk+1 =
1

k + 1
efvk =

1
k + 1

(hvk + fevk) =
1

k + 1
(
(λ− 2k)vk + (λ− k + 1)fvk−1

)

=
1

k + 1
(λ− 2k + (λ− k + 1)k)vk = (λ− k)vk.

¤

Of course, since V is finite-dimensional, only finitely many of vk are non-zero. However, it is
convenient to consider V as a quotient of infinite-dimensional vector space with basis vk. This is
done as follows.

Lemma 5.5. Let λ ∈ C. Define Mλ to be the infinite-dimensional vector space with basis v0, v1, . . . .
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(1) Formulas (5.3) and ev0 = 0 define on Mλ a structure of (infinite-dimensional) represen-
tation of sl(2,C).

(2) If V is an irreducible finite-dimensional representation of sl(2,C) which contains a non-
zero highest weight vector of highest weight λ, then V = Mλ/W for some subrepresentation
W .

Proof. The first part is done by explicit calculation which is essentially equivalent to the calculation
used in the proof of Lemma 5.4. The second part immediately follows from Lemma 5.4. ¤

Now we can prove the main theorem.

Theorem 5.6.

(1) For any n ≥ 0, let Vn be the finite-dimensional vector space with basis v0, v1, . . . , vn. Define
the action of sl(2,C) by

(5.4)

hvk = (n− 2k)vk,

fvk = (k + 1)vk+1, k < n; fvn = 0

evk = (n+ 1− k)vk−1, k > 0; ev0 = 0.

Then Vn is an irreducible representation of sl(2,C); we will call it the irreducible represen-
tation with highest weight n.

(2) For n 6= m, representation Vn, Vm are non-isomorphic.

(3) Every finite-dimensional irreducible representation of sl(2,C) is isomorphic to one of rep-
resentations Vn.

Proof. Consider the infinite-dimensional representation Mλ defined in Lemma 5.5. If λ = n is a
non-negative integer, consider the subspace M ′ ⊂Mn spanned by vectors vn+1, vn+2, . . . . Then this
subspace is actually a subrepresentation. Indeed, it is obviously stable under action of h and f ; the
only non-trivial relation to check is that evn+1 ⊂M ′. But evn+1 = (n+ 1− (n+ 1))vn = 0.

Thus, the quotient space Mn/M
′ is a finite-dimensional representation of sl(2,C). It is obvious

that it has basis v0, . . . , vn and that the action of sl(2,C) is given by (5.4). Irreducibility of this
representation is also easy to prove: any subrepresentation must be spanned by some subset of
v, v1, . . . , vn, but it is easy to see that each of them generates (under the action of sl(2,C)) the
whole representation Vn. Therefore, VN is an irreduible finite-dimensional representation of sl(2,C).
Sonce dimVn = n+ 1, it is obvious that VN are pairwise non-iosmorphic.

To prove that every irreducible representation is of this form, let V be an irreducible represen-
tation of sl(2,C) and let v ∈ V [λ] be a highest weight vector. By Lemma 5.5, V is a quotient of Mλ;
in other words, it is spanned by vectors vk = fk

k! v.

Since vk have different weights, if they are non-zero, then they must be linearly independent.
On the other hand, V is finite-dimensional; thus, only finitely many of vi are non-zero. Let n be
maximal such that vn 6= 0, so that vn+1 = 0. Obviously, in this case v0, . . . , vn are all non-zero and
since they have different weight, they are linearly independent, so they form a basis in V .

Since vn+1 = 0, we must have evn+1 = 0. On the other hand, by(5.3), we have evn+1 = (λ−n)vn.
Since vn 6= 0, this implies that λ = n is a non-negative integer. Thus, V is a representation of the
form discussed in part (1).

¤
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Irreducible representations Vn can also be described more explicitly, as symmetric powers of the
usual two-dimensional representation (see Exercise 5.2).

As a corollary, we immediately get some useful information about any finite-dimensional repre-
sentation of sl(2,C).

Theorem 5.7. Let V be a finite-dimensional representation of sl(2,C).

(1) V admits a weight decomposition with integer weights:

V =
⊕

n∈Z
V [n]

(2) dimV [n] = dimV [−n]. Moreover, for n ≥ 0 the maps

en : V [n] → V [−n]

fn : V [−n] → V [n]

are isomorphisms.

By results of Section 4.1, this also implies similar statements for representations of Lie algebra
so(3,R) and the group SO(3,R). These results are given in Exercise 5.3.

5.2. Spherical Laplace operator and hydrogen
atom

In this section, we apply our knowledge of representation theory of Lie groups and Lie algebras to
the study of Laplace operator on the sphere, thus answering the question raised in the introduction.
The material of this section will not be used in the rest of the book, so it can be safely skipped.
However, it is a very illustrative example of how one uses representation theory to the study of
systems with a symmetry.

Let ∆ = ∂2
x +∂2

y +∂2
z be the usual Laplace operator in R3. We would like to split it into “radial”

and “spherical” part, which can be done as follows.

Notice that R3 − {0} can be identified with the direct product

(5.5)

R3 − {0} ' S2 × R+

~x 7→ (u, r)

u =
~x

|~x| ∈ S
2, r = |~x| ∈ R+.

The following well-known lemma shows how ∆ can be rewritten in coordinates u, r.

Lemma 5.8.

(1) When rewritten in coordinates u, r, we have

∆ =
1
r2

∆sph + ∆radial

where ∆sph is a differential operator on S2 and ∆radial is a differential operator on R+.

(2) We have

(5.6)
∆radial = ∂2

r +
2
r
∂r

∆sph = J2
x + J2

y + J2
z
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where

Jx = y∂z − z∂y

Jy = z∂x − x∂z

Jz = x∂y − y∂x

are vector fields corresponding to generators of Lie algebra so(3,R) (see Exercise 3.11).

Sketch of proof. Since for any r > 0, the vector fields Jx, Jy, Jz are tangent to the sphere of radius
r, the operator ∆sph defined by (5.6) is well defined as a differential operator on the sphere. Identity
∆ = 1

r2 ∆sph + ∆radial can be shown by explicit calculation (see Exercise 3.11). ¤

One can introduce usual coordinates on the sphere and write ∆sph in these coordinates. Such an
expression can be found in any book on multivariable calculus, but it is very messy; more importantly,
it will be useless for our purposes. For this reason it is not given here.

The main question we want to answer is as follows:

(5.7) Find eigenvalues of ∆sph acting on functions on S2

The motivation for this problem comes from physics. Namely, quantum mechanical description
of a particle moving in a central force field (for example, an electron in the hydrogen atom) is given
by Schrödinger equation

ψ̇ = iHψ

where ψ = ψ(t, ~x), ~x ∈ R3, is the wave-function which describes the state of the system and

H = −∆ + V (r)

is the Hamiltonian, or the energy operator. Solving the Schrödinger equation is essentially equivalent
to diagonalizing the Hamiltonian. The usual approach to this problem is to use separation of
variables, writing

(5.8) ψ(~x) =
∑

fi(r)gi(u)

where r ∈ R+, u ∈ S2 are given by (5.5), and gi are eigenfunctions for ∆sph. Substituting this in the
equation Hψ = λψ gives a second-order differential equation on fi(r). For many potentials V (r),
one can explicitly solve this equation, thus giving eigenfunctions of the Hamiltonian — in particular,
the energy levels for the hydrogen atom. Details can be found, for example, in [16].

Returning to question (5.7), we notice that the straightforward approach, based on introducing
coordinates on the sphere and writing the corresponding partial differential equation, is rather
complicated. Instead, we will use the symmetries of the sphere, much as we used the Zn symmetry
in the baby example in the Introduction. We have an obvious action of the group G = SO(3,R) on
the sphere S2 which therefore defines an action of G on the space of functions on S2, by g.f(x) =
f(g−1(x)).

Lemma 5.9. ∆sph : C∞(S2) → C∞(S2) commutes with the action of SO(3,R).

Proof. This can be shown in several ways. The easiest way is to note that the action of SO(3,R) on
C∞(S2) also defines an action of the corresponding Lie algebra g = so(3,R) by first order differential
operators on C∞(S2) and thus the action of the universal enveloping algebra Ug by differential
operators. By definition, ∆sph is exactly the differential operator corresponding to element C =
J2

x + J2
y + J2

z ∈ Ug. Thus, it suffices to show that C is invariant under adjoint action of G on Ug.
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By results of Section 4.2, it is equivalent to checking that for any a ∈ g, we have [a,C] = 0, i.e.
that C is central element in Ug. This can be easily shown by explicit calculation using commutation
relations (3.17): for example, for a = Jx, we get

[Jx, C] = [Jx, J
2
y ] + [Jx, J

2
z ] = [Jx, Jy]Jy + Jy[Jx, Jy] + [Jx, Jz]Jz + Jz[Jx, Jz]

= JzJy + JyJz − JyJz − JzJy = 0.

An even easier way of checking that C is central is to notice that up to a factor, it is the Casimir
element of so(3,R) corresponding to the invariant bilinear form tr(ab) and thus, is central (see
Proposition 6.54). ¤

Therefore, by general results of Section 4.4, the best way to study ∆sph would be to decompose
the space of functions on S2 into irreducible representations of SO(3,R). As usual, it is more conve-
nient to work with complex representations, so we consider the space of complex-valued functions.

There are some obvious technical problems: the space of functions is infinite dimensional. To
avoid dealing with convergence questions and other analytical difficulties, let us consider the space
of polynomials

(5.9) Pn =
{

Complex-valued functions on S2 which can be written as
polynomials in x, y, z of total degree ≤ n

}
.

One easily sees that each Pn is a finite-dimensional representation of SO(3,R) which is also ∆sph-
invariant. Thus, we can use the theory of finite-dimensional representations to decompose Pn into
irreducible representations and then use this to find the eigenvalues of ∆sph in Pn. Since

⋃
Pn = P

is the space of all polynomial functions on S2, which is everywhere dense in C∞(S2), diagonalizing
∆sph in P is essentially equivalent to diagonalizing ∆sph in C∞ (precise statement will be given
below).

Thus, our immediate goal is to decompose Pn into direct sum of irreducible representations of
SO(3,R). To do this, note that by results of Exercise 5.3, irreducible representations of SO(3,R) are
of the form V2k, k ∈ Z+. Thus, we can write

Pn =
⊕

ckV2k.

To find coefficients ck, we need to find the character of Pn, i.e., the dimensions of eigenspaces for
Jz. We can do it by explicitly constructing an eigenbasis in Pn.

Lemma 5.10. The following set of functions form a basis of Pn:

fp,k = zp
(√

1− z2
)|k|

eikϕ, p ∈ Z+, k ∈ Z, p+ |k| ≤ n

where ϕ is defined by x = ρ cosϕ, y = ρ sinϕ, ρ =
√
x2 + y2.

Proof. Let u = x+ iy = ρeiϕ, v = x− iy = ρe−iϕ. Then any polynomial in x, y, z can be written as
a polynomial in z, u, v. Since on the sphere we have 1− z2 = x2 + y2 = uv, every monomial zkulvm

can be written as a monomial which involves only u or v but not both. Thus, every element of Pn

can be written as a linear combination of monomials

zp,

zpuk = zpρkeikϕ = fp,k,

zpvk = zpρke−ikϕ = fp,−k

with p, k ∈ Z+, p+ k ≤ n. Thus, elements fp,k span Pn.
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To show that they are linearly independent, assume that
∑

ap,kfp,k =
∑

k

ak(z)eikϕ = 0, ak(z) =
∑

p

ap,kz
p(

√
1− z2

)|k|
.

By uniqueness of Fourier series, we see that for every k ∈ Z, z ∈ (−1, 1), we have ak(z) = 0 which
easily implies that for every p, k, ap,k = 0. ¤

We can now find the dimensions of the eigenspaces for Jz. Since Jz is generator of rotations
around z axis, it is easy to see that in the cylindrical coordinates z, ρ, ϕ, Jz = ∂

∂ϕ . Thus,

Jzfp,k = ikfp,k

so Pn[2k] = Span(fp,k)0≤p≤n−|k| and thus dimPn[2k] = n+1−k. Using the formula for multiplicities
from Exercise 5.1, we see that

(5.10) Pn ' V0 ⊕ V2 ⊕ · · · ⊕ V2n.

Now the computation of the eigenvalues of spherical Laplace operator is easy. Namely, by Exercise 4.3
J2

x + J2
y + J2

z acts in Vl by −l(l + 2)/4. Thus, we get the following result.

Theorem 5.11. The eigenvalues of spherical Laplace operator ∆sph in the space Pn are

(5.11) λk = −k(k + 1), k = 0, . . . , n

and multiplicity of λk is equal to dimV2k = 2k + 1.

Finally, we can formulate the final result about eigenfunctions in C∞(S2).

Theorem 5.12. Each eigenfunction of ∆sph is polynomial. The eigenvalues are given by (5.11),
and multiplicity of λk is equal to 2k + 1.

Proof. Consider the space L2(S2,C) of complex-valued L2 functions on S2. Since action of SO(3)
preserves the volume form, it also preserves the inner product in L2(S2,C). It shows that operators
Jx, Jy, Jz are skew-Hermitian, and thus, ∆sph is Hermitian, or self-adjoint.

Let En ⊂ Pn be the orthogonal complement to Pn−1. Then En is SO(3)-invariant, and it follows
from (5.10) that as an SO(3)-module En ' V2n, so ∆sph acts on En by λn. On the other hand, since
the space of polynomials is dense in L2, we have

L2(S2,C) =
⊕

n≥0

En

(direct sum of Hilbert spaces). Thus, if ∆sphf = λf for some function f ∈ C∞(S2) ⊂ L2(S2), then
either λ 6= λn for all n, which forces (f,En) = 0 for all n, so f = 0, or λ = λn, so (f,Ek) = 0 for all
k 6= n, so f ∈ En. ¤

Exercises

5.1. Show that if V is a finite-dimensional representation of sl(2,C), then V ' ⊕
nkVk, and

nk = dimV [k]− dimV [k + 2]. Show also that
∑
n2k = dimV [0],

∑
n2k+1 = dimV [1].

5.2. Show that the symmetric power representation SkC2, considered in Exercise 4.2, is isomorphic
to the irreducible representation Vk with highest weight k.

5.3. Prove an analog of Theorem 5.7 for complex representations of so(3,R), namely
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(1) Every finite-dimensional representation of so(3,R) admits a weight decomposition:

V =
⊕

n∈Z
V [n]

where V [n] = {v ∈ V | Jzv = in
2 v}.

(2) A representation V of so(3,R) can be lifted to a representation of SO(3,R) iff all weights are
even: V [k] = 0 for all odd k (cf. with Exercise 4.1).

In physical literature, the number j = weight/2 is called the spin; thus, instead of talking say, of
representation with highest weight 3, physicicts would talk about spin 3/2 representation. In this
language, we see that a representation V of so(3,R) can be lifted to a representation of SO(3,R)
iff the spin is integer.

5.4. Complete the program sketched in Section 5.2 to find the eigenvalues and multiplicities of the
operator

H = −∆− c

r
, c > 0

in L2(R3,C) (this operator describes the hydrogen atom).



Chapter 6

Structure Theory of Lie
Algebras

In this section, we will start developing the structure theory of Lie algebras, with the goal of getting
eventually the full classification for semisimple Lie algebras and their representations.

In this chapter, g will always stand for a finite-dimensional Lie algebra over the ground field K
which can be either R or C (most results will apply equally in both cases and in fact for any field of
characteristic zero). We will not be using the theory of Lie groups.

6.1. Ideals and commutant

Recall that a subalgebra of g is a vector subspace closed under the commutator, and an ideal is a
vector subspace h such that [x, y] ∈ h for any x ∈ g, y ∈ h. This definition is the natural analog of an
ideal in an associative algebra. Note, however, that because of skew-symmetry of the commutator
there is no difference between left and right ideals: every right ideal is also automatically a left ideal.

As in the theory of associative algebras, if h is an ideal of g then the quotient space g/h has a
canonical structure of a Lie algebra, and we have the following trivial result, proof of which is left
to the reader as an exercise.

Lemma 6.1. If f : g1 → g2 is a morphism of Lie algebras, then Ker f is an ideal in g1, Im f is a
subalgebra in g2, and f gives rise to an isomorphism of Lie algebras g/Ker f ' Im f .

In addition, here is another important result about ideals.

Lemma 6.2. Let I1, I2 be ideals in g. Define

I1 + I2 = {x+ y | x ∈ I1, y ∈ I2}
[I1, I2] = Subspace spanned by [x, y], x ∈ I1, y ∈ I2.

Then I1 ∩ I2, I1 + I2, [I1, I2] are ideals in g.

One of the first ways to study Lie algebras is by analyzing how close the Lie algebra is to a
commutative Lie algebra. There are several ways of making it precise.

First, we might look at how large the center z(g) = {x ∈ g | [x, y] = 0 for all y ∈ g} is. However,
it turns out that it is more effective to study commutative quotients of g.

Definition 6.3. The commutant of a Lie algebra g is the ideal [g, g].

67
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The following lemma explains the importance of the commutant.

Lemma 6.4. The quotient g/[g, g] is an abelian Lie algebra. Moreover, [g, g] is the smallest ideal
with this property: if g/I is abelian for some ideal I ⊂ g, then I ⊃ [g, g].

Commutant gives us another way of measuring how far a Lie algebra is from being commutative:
the smaller [g, g] (and the larger g/[g, g]), the closer g is to being commutative. For example, for
commutative g, we have [g, g] = 0.

Example 6.5. The commutant [gl(n,K), gl(n,K)] = [sl(n,K), sl(n,K)] = sl(n,K). Indeed, it is
obvious that for any z = [x, y] we have tr z = 0. On the other hand, for i 6= j we have Eii − Ejj =
[Eij , Eji] and 2Eij = [Eii − Ejj , Eij ], which shows that Eii − Ejj , Eij ∈ [sl(n,K), sl(n,K)].

6.2. Solvable and nilpotent Lie algebras

We now can define an important class of Lie algebras.

Definition 6.6. For a Lie algebra g, define the series of ideals Dig (called derived series) by D0g = g

and
Di+1g = [Dig, Dig].

It immediately follows from Lemma 6.2, Lemma 6.4 that each Di is an ideal in g and Dig/Di+1g

is abelian.

Proposition 6.7. The following conditions are equivalent:

(1) Dng = 0 for large enough n.

(2) There exists a sequence of subalgebras a0 = g ⊃ a1 ⊃ · · · ⊃ ak = {0} such that ai+1 is an
ideal in ai and the quotient ai/ai+1 is abelian.

(3) For large enough n, every commutator of the form

[. . . [[x1, x2], [x3, x4]] . . . ]

(2n terms, arranged in a binary tree of length n) is zero.

Proof. Equivalence of (1) and (3) is obvious. Implication (1) =⇒ (2) is also clear: we can take
ai = Dig. To prove (2) =⇒ (1), note that if ai satisfies the conditions of the proposition, then by
Lemma 6.4, we have ai+1 ⊃ [ai, ai]. Thus, reasoning by induction, we see that ai ⊃ Dig. ¤

Definition 6.8. Lie algebra g is called solvable if it satisfies any of the equivalent conditions of
Proposition 6.7.

Informally, a solvable Lie algebra is an “almost commutative” Lie algebra: it is an algebra that
can be obtained by successive extensions of commutative algebras.

This is not the only way of making the notion of “almost commutative” Lie algebra precise.
Another class of Lie algebras can be defined as follows.

Definition 6.9. For a Lie algebra g, define a series of ideals Dig ⊂ g (called lower central series)
by D0g = g and

Di+1g = [g, Dig].

Proposition 6.10. The following conditions are equivalent:

(1) Dng = 0 for large enough n.

(2) There exists a sequence of ideals a0 = g ⊃ a1 ⊃ · · · ⊃ ak = {0} such that [g, ai] ⊂ ai+1.
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(3) For large enough n, every commutator of the form

[. . . [[x1, x2], x3], x4] . . . xn]

(n terms) is zero.

Proof. Equivalence of (1) and (3) is obvious. Implication (1) =⇒ (2) is also clear: we can take
ai = Dig. To prove (2) =⇒ (1), note that if ai satisfies the conditions of the proposition, then by
induction, we see that ai ⊃ Dig. ¤

Definition 6.11. Lie algebra g is called nilpotent if it satisfies any of the equivalent conditions of
Proposition 6.10.

Example 6.12. Let b ⊂ gl(n,K) be the subalgebra of upper triangular matrices, and n be the
subalgebra of all strictly upper triangular matrices. Then b is solvable, and n is nilpotent.

To prove it, let us first generalize it. Namely, if F is a flag in a finite-dimensional vector space
V :

F = ({0} ⊂ V1 ⊂ V2 ⊂ . . . Vn = V )

with dimVi < dimVi+1 (we do not require that dimVi = i), then define

b(F) = {x ∈ gl(V ) | xVi ⊂ Vi for all i},
n(F) = {x ∈ gl(V ) | xVi ⊂ Vi−1 for all i}.

By taking F to be the standard flag in Kn (see Example 2.23) we recover the Lie algebras b, n defined
above.

We claim that b(F) is solvable and n(F) is nilpotent. Indeed, define more general algebras

ak(F) = {x ∈ gl(V ) | xVi ⊂ Vi−k for all i}
so that b(F) = a0, n(F) = a1. Then it is obvious that for x ∈ ak, y ∈ al, we have xy ∈ ak+l (here
xy is the usual product in End(V )); thus, [ak, al] ⊂ ak+l, so Din ⊂ ai+1. This proves nilpotency of
n(F).

To show solvability of b, note that even though for x, y ∈ b we can only say that xy ∈ b, for the
commutator we have a stronger condition: [x, y] ∈ n = a1. Indeed, diagonal entries of xy and yx

coincide. Thus, D1b ⊂ n = a1. From here it easily follows by induction that Di+1b ⊂ a2i .

Note, finally, that b is not nilpotent: D2b = [b, D1b] = D1b = n, which can be easily deduced
from [x,Eij ] = (λi − λj)Eij if x is a diagonal matrix with entries λi.

The following theorem summarizes some basic properties of solvable and nilpotent Lie algebras.

Theorem 6.13.

(1) A real Lie algebra g is solvable (respectively, nilpotent) iff its complexification gC is solvable
(respectively, nilpotent).

(2) If g is solvable, then any subalgebra, quotient of g is also solvable. If g is nilpotent, then
any subalgebra, quotient of g is also nilpotent.

(3) If g is nilpotent, then g is solvable.

(4) If I ⊂ g is an ideal such that both I, g/I are solvable, then g is solvable.

Proof. Parts (1), (2) are obvious if we use definition of solvable algebra in the form “any commutator
of the form . . . is zero”, and similarly for nilpotent. Part (3) follows from inclusion Dig ⊂ Dig, which
can be easily proved by induction.
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Finally, to prove part (4), denote by ϕ the canonical projection g → g/I. Then ϕ(Dng) =
Dn(g/I) = 0 for some n. Thus, Dng ⊂ I. Therefore, Dn+kg ⊂ DkI, so Dn+kg = 0 for large enough
k. ¤

6.3. Lie and Engel theorems

The main result of this section is the following theorem.

Theorem 6.14 (Lie theorem about representations of solvable Lie algebra). Let ρ : g → gl(V ) be a
complex representation of a solvable Lie algebra g. Then there exists a basis in V such that in this
basis, all operators ρ(x) are upper-triangular.

This theorem is a generalization of a well-known result that any operator in a complex vector
space can be brought to an upper-triangular form by a change of basis.

The key step in the proof of the theorem is the following result.

Proposition 6.15. Let ρ : g → gl(V ) be a complex representation of a solvable Lie algebra g. Then
there exists a vector v ∈ V which is a common eigenvector of all ρ(x), x ∈ g.

Proof. The proof goes by induction in dimension of g. Since g is solvable, [g, g] 6= g. Let g′ ⊂ g be
a subspace which contains [g, g] and has codimension 1 in g: g = g′ ⊕ Cx. Then g′ is an ideal in g;
thus, g′ is solvable.

By induction assumption, there exists v ∈ V which is a common eigenvector for all ρ(h), h ∈ g′:
ρ(h)v = λ(h)v. Consider the vector space W spanned by v, v1 = ρ(x)v, v2 = (ρ(x))2v, . . . .

We claim that W is stable under action of any h ∈ g′; moreover,

hvk = λ(h)vk +
∑

l<k

akl(h)vl.

This is easily proved by induction: indeed,

(6.1) hvk = hxvk−1 = xhvk−1 + [h, x]vk−1 = λ(h)xvk−1 + λ([h, x])vk−1 + . . .

Thus, W is stable under the action of g. Since W is finite-dimensional, we can choose some n
such that v, v1, . . . vn is a basis in W . Then we see that in this basis, any ρ(h) is upper-triangular,
with λ(h) on the diagonal. In particular, this implies that trW ρ(h) = (n+ 1)λ(h).

Since trW [ρ(x), ρ(h)] = 0, this implies that λ([h, x]) = 0 for any h ∈ g′. Going back to formula
(6.1), we see that this implies hvk = λ(h)vk. Therefore, any vector w ∈W is a common eigenvector
for all h ∈ g′. Choosing w to be an eigenvector for x, we get the statement of the proposition. ¤

This proposition immediately implies Lie theorem:

Proof of Theorem 6.14. Proof goes by induction in dimV . By Proposition 6.15, there exists a
common eigenvector v for all x ∈ g. Consider the space V/Cv. By induction assumption, there
exists a basis v1, v2, . . . in V/Cv such that the action of g in this basis of V/Cv is upper-triangular.
For each of these vectors, choose a preimage ṽi ∈ V . Then one immediately sees that the action of
any x ∈ g in the basis v, ṽ1, ṽ2, . . . is upper-triangular. ¤

This theorem has a number of useful corollaries.

Corollary 6.16.

(1) Any irreducible representation of a solvable Lie algebra is 1-dimensional.
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(2) If a complex Lie algebra g is solvable, then there exists a sequence 0 ⊂ I1 ⊂ · · · ⊂ In = g,
where each Ik is an ideal in g and Ik+1/Ik is one dimensional.

(3) g is solvable if and only if [g, g] is nilpotent.

Proof. Part (1) is obvious from Proposition 6.15; part (2) is immediately obtained if we apply Lie
theorem to adjoint representation and note that a subrepresentation of the adjoint representation is
the same as an ideal in g.

To prove part (3), note that implication in one direction is obvious. Indeed, if [g, g] is nilpotent,
then it is also solvable; since g/[g, g] is commutative (and thus solvable), by Theorem 6.13, g itsefl
is solvable.

Conversely, assume that g is solvable. Without loss of generality, we may assume that g is
complex. Apply Lie theorem to the adjoint representation. Then ad g ⊂ b (algebra of upper-
triangular matrices) in some basis of g; thus, by results of Example 6.12, the algebra [ad g, ad g] =
ad[g, g] ⊂ n is nilpotent, so ad[x1, [. . . [xn−1, xn] . . . ] = 0 for sufficiently large n and all xi ∈ [g, g].
Thus, [y, [x1, [. . . [xn−1, xn] . . . ] = 0 for sufficiently large n and all xi, y ∈ [g, g]. ¤

One also might ask if there is an analog of Lie theorem for nilpotent Lie algebras. Of course,
since every nilpotent Lie algebra is automatically solvable (Theorem 6.13), Lie theorem shows that
in any representation of a nilpotent algebra, operators ρ(x) are upper-triangular in a certain basis.
One wonders whether one has a stronger result — for example, whether operators ρ(x) can be made
strictly upper–triangular. Here the answer is obviously negative: it suffices to take a commutative
Lie algebra which acts diagonally in Cn.

The proper analog of Lie theorem for nilpotent Lie algebras is given by the following result.

Theorem 6.17. Let V be a finite-dimensional vector space, either real or complex, and let g ⊂ gl(V )
be a Lie subaglebra which consists of nilpotent operators. Then there exists a basis in V such that
all operators x ∈ g are strictly upper-triangular.

The proof of this theorem will not be given here; interested reader can find it in [20], [11], or
[12]. It is not very difficult and in fact is rather similar to the proof of Lie theorem; the only reason
it is not given here is because it does not give any new insight.

As an immediate corollary, we get the following theorem.

Theorem 6.18 (Engel theorem). A Lie algebra g is nilpotent if and only if for every x ∈ g, the
operator adx ∈ End(g) is nilpotent.

Proof. One direction is obvious: if g is nilpotent then by definition, [x, [x, . . . [x, y . . . ] = (adx)n.y =
0 for large enough n.

Conversely, if adx is nilpotent for every x, then by the previous theorem, there exists a sequence
of subspaces 0 ⊂ g1 ⊂ g2 · · · ⊂ gn = g such that adx.gi ⊂ gi−1. This shows that each gi is an ideal
in g and moreover, [g, gi] ⊂ gi−1. Thus, g is nilpotent. ¤

6.4. The radical. Semisimple and reductive
algebras

So far, we have defined the notion of a solvable Lie algebra; informally, a solvable Lie algebra is
the one which is close to being abelian. In this section, we will describe opposite extreme case, Lie
algebras which are as far as possible from being abelian (they are called semisimple) and show that
in a reasonable sense, any Lie algebra is built out of a solvable and semisimple one.
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Definition 6.19. A Lie algebra g is called semisimple if it contains no nonzero solvable ideals.

Note that this in particular implies that the center z(g) = 0.

A special case of semisimple Lie algebras is given by simple ones.

Definition 6.20. A Lie algebra g is called simple if it is not abelian and contains no ideals other
than 0 and g.

The condition that g should not be abelian is included to rule out one-dimensional Lie algebra:
there are many reasons not to include it in the class of simple Lie algebras. One of these reasons is
the following lemma.

Lemma 6.21. Any simple Lie algebra is semisimple.

Proof. If g is simple, then it contains no ideals other than 0 and g. Thus, if g contains a nonzero
solvable ideal, then it must coincide with g, so g must be solvable. But then [g, g] is an ideal which
is strictly smaller than g (because g is solvable) and nonzero (because g is not abelian). This gives
a contradiction. ¤

Example 6.22. The Lie algebra sl(2,C) is simple. Indeed, recall that adh is diagonal in the basis
e, f, h, with eigenvalues 2,−2, 0 (see Section 3.10). Any ideal in g must be stable under adh. Now
we can use the following easy to prove result from linear algebra: if A is a diagonalizable operator
in a finite-dimensional vector space, with distinct eigenvalues: Avi = λivi, λi 6= λj , then the only
subspaces invariant under A are those spanned by some of the eigenvectors vi. Applying this to
adh, we see that any ideal in sl(2,C) must be spanned as a vector space by a subset of {e, f, h}.

But if an ideal I contains h, then [h, e] = 2e ∈ I, [h, f ] = −2f ∈ I, so I = sl(2,C). If I contains
e, then [e, f ] = h ∈ I, so again I = sl(2,C). Similarly, if f ∈ I, then I = sl(2,C). Thus, sl(2,C)
contains no non-trivial ideals.

In the next section, we will generalize this result and show that classical Lie algebras such as
sl(n,C), su(n), sp(2n,C), so(n,C) are semisimple.

For a general Lie algebra g, which is neither semisimple nor solvable, we can try to “separate”
the solvable and semisimple parts.

Proposition 6.23. In any Lie algebra g, there is a unique solvable ideal which contains any other
solvable ideal. This solvable ideal is called the radical of g and denoted by rad(g).

Proof. Uniqueness is obvious. To show existence, note that if I1, I2 are solvable ideals, then so is
I1 + I2. Indeed, it contains solvable ideal I1 and the quotient (I1 + I2)/I1 = I2/(I1 ∩ I2) is also
solvable since it is a quotient of I2. Thus, by Theorem 6.13, I1 + I2 is also solvable. By induction,
this shows that any finite sum of solvable ideals is also solvable. Thus, we can let rad(g) =

∑
I,

where the sum is taken over all solvable ideals (finite-dimensionality of g shows that it suffices to
take finite sum). ¤

Using this definition, we can rewrite the definition of a semisimple Lie algebra as follows: g is
semisimple iff rad(g) = 0.

Theorem 6.24. For any Lie algebra g, the quotient g/ rad(g) is semisimple. Conversely, if b is a
solvable ideal in g such that g/b is semisimple, then b = rad(g).

Proof. Assume that g/ rad(g) contains a solvable ideal I. Consider the ideal Ĩ = π−1(I) ⊂ g, where
π is the canonical map g → g/ rad(g). Then Ĩ ⊃ rad(g) and Ĩ/ rad(g) = I is solvable. Thus, by
Theorem 6.13, Ĩ is solvable, so Ĩ = rad(g), I = 0.
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Proof of the second statement is left to the reader as an exercise. ¤

This theorem shows that any Lie algebra can be included in a short exact sequence 0 → b →
g → gss → 0, where b is solvable and gss is semisimple. In fact, one has a much stronger result.

Theorem 6.25 (Levi theorem). Any Lie algebra can be written as a direct sum

(6.2) g = rad(g)⊕ gss

where gss is a semisimple subalgebra (not an ideal! ) in g. Such a decomposition is called Levi
decomposition for g.

This theorem will not be proved here. A proof can be found in standard textbooks on Lie
algebras, such as [20] or [11]. We only mention here that the proof essentially reduces to showing
that cohomology H2(g,C) = 0 vanishes for semisimple g and is done using methods similar to those
we will use in Section 6.9 to show complete reducibility of representations.

Example 6.26. Let G = SO(3,R)nR3 be the Poincare group, i.e. the group of all maps R3 → R3

which have the form x 7→ Ax + b, A ∈ SO(3,R), b ∈ R3. The corresponding Lie algebra is g =
so(3,R)⊕R3, where the commutator is given by [(A1, b1), (A2, b2)] = ([A1, A2], A1b2−A2b1). Thus,
R3 is an ideal and so(3,R) is a subalgebra. Since R3 is abelian and so(3,R) is semisimple (which
follows from semisimplicity of so(3,R)C ' sl(2,C), see Example 6.22), we see that g = so(3,R)⊕R3

is exactly the Levi decomposition.

Another instructive example of Levi decomposition is the Levi decomposition for parabolic
subalgebras; a special case is given in Exercise 6.3.

As in the theory of associative algebras, there is a relation between the radical of g and kernels
of irreducible representations.

Theorem 6.27. Let V be an irreducible representation of g. Then any h ∈ rad(g) acts in V by
scalar operators: ρ(h) = λ(h) id. Also, any h ∈ [g, rad(g)] acts by zero.

Proof. By Proposition 6.15, there is a common eigenvector in V for all h ∈ rad(g): ρ(h).v = λ(h)v
for some λ : rad(g) → C. Define Vλ = {w ∈ V | ρ(h)w = λ(h)w for all h ∈ rad(g)}. Then the same
argument as in the proof of Proposition 6.15 shows that for any x ∈ g, one has ρ(x)(Vλ) ⊂ Vλ. Thus,
Vλ is a subrepresentation; since it is non-zero and V is irreducible, we must have V = Vλ, which
proves the first statement of the theorem. The second statement immediately follows from the first
one. ¤

From the point of view of representation theory, having non-zero elements which act by zero in
any irreducible representation significantly complicates the theory. Thus, it is natural to consider a
class of algebras for which [g, rad(g)] = 0.

Definition 6.28. A Lie algebra is called reductive if rad(g) = z(g), i.e. if g/z(g) is semisimple.
(Recall that z(g) is the center of g.)

Of course, any semisimple Lie algebra is reductive (because then rad(g) = z(g) = 0), but converse
is not true: for example, any Lie algebra which is a direct sum of an abelian and semisimple

(6.3) g = z⊕ gss, [z, gss] = 0

is reductive. In fact, it follows from Levi theorem that any reductive Lie algebra must have such
form. Later we will give an alternative proof of this result, which does not use Levi theorem (see
Theorem 6.61).
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In the next section we will show that many classical Lie algebras such as gl(n,C) or u(n) are
reductive.

6.5. Invariant bilinear forms and semisimplicity
of classical Lie algebras

So far, we have only one example of a semisimple Lie algebra, namely sl(2,C) (see Example 6.22),
and the proof of its semisimplicity was done by brute force, by analyzing all possibilities for an ideal.
It is clear that such a proof would be difficult to generalize to higher-dimensional Lie algebras: we
need better tools.

The standard approach to the study of semisimplicity is based on the notion of invariant bilinear
form. Recall that a bilinear form B on g is called invariant if

B(adx.y, z) +B(y, adx.z) = 0

for any x, y, z ∈ g (see Example 4.14). The following lemma shows the importance of such forms.

Lemma 6.29. Let B be an invariant bilinear form on g, and I ⊂ g an ideal. Let I⊥ be the orthogonal
complement of I with respect to B: I⊥ = {x ∈ g | B(x, y) = 0 for all y ∈ I}. Then I⊥ is also an
ideal in g. In particular, KerB = g⊥ is an ideal in g.

The proof of this lemma is trivial and left to the reader. Note, however, that in general we can
not write g = I ⊕ I⊥, as it is quite possible that I ∩ I⊥ 6= 0, even for a non-degenerate form B.

Example 6.30. Let g = gl(n,C) and define the form by B(x, y) = tr(xy). Then it is a symmetric
invariant bilinear form on g. Indeed, symmetry is well-known and invariance follows from the
following identity

tr([x, y]z + y[x, z]) = tr(xyz − yxz + yxz − yzx) = tr(xyz − yzx) = 0.

In fact, there is an even easier proof: since tr(gxg−1gyg−1) = tr(gxyg−1) = tr(xy) for any g ∈
GL(n,C), we see that this form is invariant under adjoint action of GL(n,C) which is equivalent to
the invariance under the action of gl(n,C).

This example can be easily generalized.

Proposition 6.31. Let V be a representation of g and define bilinear form on g by

(6.4) BV (x, y) = trV (ρ(x)ρ(y)).

Then BV is a symmetric invariant bilinear form on g.

The proof is identical to the proof in Example 6.30.

However, this form can be degenerate or even zero. It turns out, however, that there is a close
relation between non-degeneracy of such forms and semisimplicity of g.

Theorem 6.32. Let g be a Lie algebra with a representation V such that the form BV defined by
(6.4) is non-degenerate. Then g is reductive.

Proof. It suffices to show that [g, rad(g)] = 0. Let x ∈ [g, rad(g)]; then, by Theorem 6.27, x acts by
zero in any irreducible representation Vi and thus x ∈ KerBVi . But if we have a short exact sequence
of representations 0 → V1 →W → V2 → 0, then BW = BV1 +BV2 (see Exercise 6.1). Thus, arguing
by induction it is easy to see that for any representation V , we would have x ∈ KerBV . Since by
assumption BV is non-degenerate, this shows x = 0. ¤

As an immediate corollary, we have the following important result.
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Theorem 6.33. All classical Lie algebras of Section 2.5 are reductive. Algebras sl(n,K), so(n,K)
(n > 2), su(n), sp(2n,K) are semisimple; algebras gl(n,K) and u(n) have one-dimensional center:
gl(n,K) = K · id⊕sl(n,K), u(n) = iR · id⊕su(n). (As before, K is either R or C.)

Proof. For each of these subalgebras, consider the trace form BV where V is the defining repre-
sentation (Kn for gl(n,K), sl(n,K), so(n,K); Cn for su(n), u(n) and K2n for sp(2n,K)). Then this
form is non-degenerate. Indeed, for gl(n) it follows because B(x, y) =

∑
xijyji which is obviously

non-degenerate; for sl(n) it follows from the result for gl(n) and decomposition gl(n) = K · id⊕sl(n),
with the two summands being orthogonal with respect to the form B.

For so(n), we have B(x, y) =
∑
xijyji = −2

∑
i>j xijyij so it is again non-degenerate. Similarly,

for u(n) we have B(x, y) = − trxyt = −∑
xijyij ; in particular, B(x, x) = −∑ |xij |2, so this form

is negative definite and in particular, non-degenerate. Therefore, its restriction to su(n) ⊂ u(n) is
also negative definite and thus non-degenerate.

The non-degeneracy of this form for sp(2n,K) is left as an exercise (Exercise 6.4).

Thus, by Theorem 6.32 we see that each of these Lie algebras is reductive. Since the center of
each of them is easy to compute (see Example 4.23), we get the statement of the theorem. ¤

6.6. Killing form and Cartan criterion

In the previous section, we have shown that for any representation V of a Lie algebra g, the bilinear
form BV (x, y) = tr(ρ(x)ρ(y)) is invariant and bilinear. An important special case is when we take
V to be the adjoint representation.

Definition 6.34. The Killing form is the bilinear form on g defined by K(x, y) = tr(adx ad y).

The notation K(x, y) can be ambiguous: if we have a subalgebra h ⊂ g, then K(x, y), x, y ∈ h,
can mean either trace in g or trace in h. In such cases we will write Kh for Killing form of h and
Kg for the restriction of Killing form of g to h. Note, however, that if I is an ideal in g, then KI

coincides with the restriction of Kg to I (see Exercise 6.1).

It follows from Proposition 6.31 that the Killing form is a symmetric invariant form on g.

Example 6.35. Let g = sl(2,C). Then in the basis e, h, f , the operators ad e, adh, ad f are given
by

ad e =




0 −2 0
0 0 1
0 0 0


 adh =




2 0 0
0 0 0
0 0 −2


 ad f =




0 0 0
−1 0 0
0 2 0




so explicit computation shows that the Killing form is given by K(h, h) = 8,K(e, f) = K(f, e) = 4,
and K(h, e) = K(h, f) = 0. Thus, K(x, y) = 4 tr(xy). This is not surprising: we already know
that sl(2,C) is simple, and by Exercise 4.4, this implies that the invariant bilinear form, if exists, is
unique up to a factor.

The following two theorems show that non-degeneracy of Killing form is closely related to
semisimplicity of g.

Theorem 6.36 (Cartan criterion of solvability). Lie algebra g is solvable iff K([g, g], g) = 0, i.e.
K(x, y) = 0 for any x ∈ [g, g], y ∈ g.

Theorem 6.37 (Cartan criterion of semisimplicity). Lie algebra is semisimple iff the Killing form
is non-degenerate.
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The proof of these theorems will take the rest of this section. It is based on Jordan decom-
position, i.e. the decomposition of a linear operator in a sum of diagonalizable (semisimple) and
nilpotent one. We state here some results about this decomposition. Their proof, which is pure
linear algebra, is given in Appendix B. In this theorem, we use the word “semisimple” as a synonym
of “diagonalizable” (we are only discussing complex vector spaces).?!
Theorem 6.38. Let V be a finite-dimensional complex vector space.

(1) Any linear operator A can be uniquely written as a sum of commuting semisimple and
nilpotent ones:

(6.5) A = As +An, AsAn = AnAs, An nilpotent, As semisimple

(2) For an operator A : V → V , define adA : End(V ) → End(V ) by adA.B = AB−BA. Then

(adA)s = adAs

and adAs can be written in the form adAs = P (adA) for some polynomial P ∈ tC[t]
(depending on A).

(3) Define As to be the operator which has the same eigenspaces as As but complex conjugate
eigenvalues: if Asv = λv, then Asv = λ̄v. Then adAs can be written in the form adAs =
Q(adA) for some polynomial Q ∈ tC[t] (depending on A).

Using this theorem, we can now give the proof of Cartan criterion.

Proof of Theorem 6.36. First, note that if g is a real Lie algebra, then g is solvable iff gC is
solvable (Theorem 6.13), and K([g, g], g) = 0 iff K([gC, gC], gC) = 0 (obvious). Thus, it suffices to
prove the theorem for complex Lie algebras. So from now on we assume that g is complex.

Assume that g is solvable. Then by Lie theorem, there is a basis in g such that all adx are
upper-triangular. Then in this basis, ad y, y ∈ [g, g] are strictly upper-triangular, so tr(adx ad y) = 0.

To prove the opposite direction, we first prove the following lemma.

Lemma 6.39. Let V be a complex vector space and g ⊂ gl(V ) — a Lie subalgebra such that for any
x ∈ [g, g], y ∈ g we have tr(xy) = 0. Then g is solvable.

Proof. Let x ∈ [g, g]. By Theorem 6.38, it can be written in the form x = xs + xn. Consider now
tr(xxs) where xs is as in Theorem 6.38. On one hand, we see that tr(xxs) =

∑
λiλi =

∑ |λi|2,
where λi are eigenvalues of x. On the other hand, if x =

∑
[yi, zi], then

tr(xxs) = tr(
∑

[yi, zi]xs) =
∑

tr(yi[zi, xs]) = −
∑

tr(yi[xs, zi])

By Theorem 6.38, [xs, zi] = adxs.zi = Q(adx).zi ∈ [g, g]. Thus, tr(xxs) =
∑ |λi|2 = 0, so all

eigenvalues of x are zero and x is nilpotent. By one of the versions of Engel’s theorem (Theorem 6.17),
this implies that [g, g] is nilpotent, so g is solvable. This completes the proof of Lemma 6.39. ¤

Now the proof of Theorem 6.36 easily follows. Indeed, if K(g, [g, g]) = 0, then by Lemma 6.39,
ad(g) ⊂ gl(g) is solvable. Thus, both z(g), and g/z(g) = ad(g) are solvable. By Theorem 6.13, this
implies that g is solvable. ¤

Proof of Theorem 6.37. If K is non-degenerate, then by Theorem 6.32, g is reductive. On the
other hand, if x ∈ z(g), then adx = 0, so x ∈ KerK. Thus, z(g) = 0, so g is semisimple.

Conversely, assume that g is semisimple. Consider I = KerK; by Lemma 6.29, I is an ideal in
g. Since restriction of K to I coincides with the Killing form of I (Exercise 6.1), the Killing form
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of I is zero and thus, by previous theorem, I is solvable. But g is semisimple, so I = 0. Thus, K is
non-degenerate. ¤

6.7. Properties of semisimple Lie algebras

Cartan criterion of semimplicity, proved in the previous section, is not very convenient for practical
computations. However, it is extremely useful for theoretical considerations.

Proposition 6.40. Let g be a real Lie algebra. Then g is semisimple iff gC is semisimple.

Proof. Immediately follows from Cartan criterion of semisimplicity. ¤

Remark 6.41. This theorem fails if we replace the word “semisimple” by “simple”: there exist
simple real Lie algebras g such that gC is a direct sum of two simple algebras.

Theorem 6.42. Let g be a semisimple Lie algebra, and I ⊂ g — an ideal. Then there is an ideal
I ′ such that g = I ⊕ I ′.

Proof. Let I⊥ be the orthogonal complement with respect to the Killing form. By Lemma 6.29,
I⊥ is an ideal. Consider the intersection I ∩ I⊥. It is an ideal in g with zero Killing form (by
Exercise 6.1). Thus, by Cartan criterion, it is solvable. By definition of a semisimple Lie algebra,
this means that I ∩ I⊥ = 0, so g = I ⊕ I⊥. ¤

Corollary 6.43. A Lie algebra is semisimple iff it is a direct sum of simple Lie algebras.

Proof. Any simple Lie algebra is semisimple by Lemma 6.21, and it is immediate from Cartan
criterion that direct sum of semisimple Lie algebras is semisimple. This proves one direction.

Opposite direction — that each semisimple algebra is a direct sum of simple ones — easily
follows by induction from the previous theorem. ¤

Corollary 6.44. If g is a semisimple Lie algebra, then [g, g] = g.

Indeed, for a simple Lie algebra it is clear because [g, g] is an ideal in g which can not be zero
(otherwise, g would be abelian).

Proposition 6.45. Let g = g1 ⊕ · · · ⊕ gk be a semisimple Lie algebra, with gi being simple. Then
any ideal I in g is of the form I =

⊕
i∈I gi for some subset I ⊂ {1, . . . , k}.

Note that it is not an “up to isomorphism” statement: I is not just isomorphic to sum of some
of gi but actually equal to such a sum as a subspace in g.

Proof. The proof goes by induction in k. Let πk : g → gk be the projection. Consider πk(I) ⊂ gk.
Since gk is simple, either πk(I) = 0, in which case I ⊂ g1 ⊕ · · · ⊕ gk−1 and we can use induction
assumption, or πk(I) = gk. Then [gk, I] = [gk, πk(I)] = gk. Since I is an ideal, I ⊃ gk, so I = I ′⊕gk

for some I ′ ⊂ g1 ⊕ · · · ⊕ gk−1 and the result again follows from induction assumption. ¤

Corollary 6.46. Any ideal in a semisimple Lie algebra is semisimple. Also, any quotient of a
semisimple Lie algebra is semisimple.

Finally, recall that we have denoted by Der g the Lie algebra of all derivations of g (see (3.13))

Proposition 6.47. If g is a semisimple Lie algebra, then Der g = g, and Aut g/AdG is discrete.



78 6. Structure Theory of Lie Algebras

Proof. Recall that for any x ∈ g, adx : g → g is a derivation. This gives a natural morphism of Lie
algebras g → Der g. Since z(g) = 0, this morphism is injective, so g is a subalgebra in Der g.

Definition of derivation immediately shows that for any derivation δ and x ∈ g, we have ad δ(x) =
[δ, adx]. Thus, g ⊂ Der g is an ideal.

Let us now extend the Killing form of g to Der g by letting K(δ1, δ2) = trg(δ1δ2) and consider
the orthogonal complement I = g⊥ ⊂ Der g. Since K is invariant, I is an ideal; since restriction
of K to g is non-degenerate, I ∩ g⊥ = 0. Thus, Der g = g ⊕ I; since both g, I are ideals, we have
[I, g] = 0, which implies that for every δ ∈ I, x ∈ g, we have ad δ(x) = [δ, adx] = 0, so δ(x) = 0.
Thus, I = 0.

Since Aut g is a Lie group with Lie algebra Der g (see Example 3.30), the second statement of
the theorem immediately follows from the first one. ¤

6.8. Relation with compact groups

In the previous section, we have shown that the Killing form on g is non-degenerate if and only if g

is semisimple. However, in the case of real g, one might also ask whether the Killing form is positive
definite, negative definite, or neither. More generally, the same question can be asked about the
trace form in any representation: BV (x, y) = trV (xy).

It turns out that the answer to this question is closely related with the question of compactness
of the corresponding Lie group.

Example 6.48. Let g = u(n). Then the form (x, y) = tr(xy) is negative definite.

Indeed, tr(xy) = − tr(xyt), and tr(x2) = − tr(xxt) = −∑ |xij |2 ≤ 0, with equality only for
x = 0.

Theorem 6.49. Let G be a compact real Lie group. Then g = Lie(G) is reductive, and the Killing
form on g is negative semidefinite, with KerK = z(g); the Killing form of the semisimple part g/z(g)
is negative definite.

Conversely, let g be a semisimple real Lie algebra with negative definite Killing form. Then g is
a Lie algebra of a compact real Lie group.

Proof. If G is compact, then by Theorem 4.38, every complex representation of G is unitary, so
ρ(G) ⊂ U(V ), ρ(g) ⊂ u(V ). By Example 6.48, this implies that the trace form BV (x, y) is negative
semidefinite, with KerBV = Ker ρ.

Applying this to the complexified adjoint representation V = gC, we see that the Killing form
is negative semidefinite, with KerK = z(g).

Conversely, assume that g is a real Lie algebra with negative definite Killing form. Let G be
a connected Lie group with Lie algebra g. Then B(x, y) = −K(x, y) is positive definite and AdG
invariant. This shows that Ad(G) ⊂ SO(g) (the orthogonal group). Since Ad(G) is the connected
component of unity of the group Aut g (see Proposition 6.47), and Aut g ⊂ GL(g) is a Lie subgroup
(see Example 3.30), Ad(G) is a Lie subgroup in the compact group SO(g). Thus, Ad(G) is a
compact Lie group. Since Ad(G) = G/Z(G), we have Lie(Ad(G)) = g/z(g) = g, which proves the
theorem. ¤

Remark 6.50. In fact, one can prove a stronger result: if g is a real Lie algebra with negative
definite Killing form, then any connected Lie group with Lie algebra g is compact. In particular,
the simply-connected Lie group with Lie algebra g is compact.
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One might also ask for which real Lie algebras the Killing form is positive definite. Unfortunately,
it turns out that there are not many such algebras.

Lemma 6.51. If g is a real Lie algebra with a positive definite Killing form, then g = 0.

The proof of this lemma is given as an exercise (Exercise 6.5).

Finally, let us discuss the relation between complex semisimple Lie groups and algebras with
compact groups. We already know that there are no compact complex Lie groups.Instead, we could ?!
take real compact Lie groups and corresponding Lie algebras, then consider their complexifications.
By Theorem 6.49, such complex Lie algebras will be reductive. A natural question is whether
any reductive complex Lie algebra can be obtained in this way. The following theorem (which for
simplicity is stated only for semisimple Lie algebras) provides the answer.

Theorem 6.52. Let g be a complex semisimple Lie algebra. Then there exists a real subalgebra k

such that g = k⊗C and k is a Lie algebra of a compact Lie group K. The Lie algebra k is called the
compact real form of g; it is unique up to conjugation.

If G is a connected complex Lie group with Lie algebra g, then K can be chosen so that K ⊂ G.
In this case, K is called the compact real form of the Lie group G.

The proof of this theorem will not be given here. Interested readers can find a discussion of this
theorem in [8, Section I.7].

Example 6.53. For g = sl(n,C), G = SL(n,C), the compact form is k = su(n), K = SU(n).

6.9. Complete reducibility of representations

In this section, we will show one of fundamental results of the theory of semisimple Lie algebras:
every representation of a semisimple Lie algebra is completely reducible. Throughout this section,
g is a semisimple complex Lie algebra and V — a finite-dimensional complex representation of g.

This result can be proved in several ways. Historically, the first proof of this result was given by
H. Weyl using the theory of compact groups. Namely, if g is a semisimple complex Lie algebra, then
by Theorem 6.52 g can be written as a complexification of a real Lie algebra k = Lie(K) for some
compact connected, simply connected group K. Then complex representations of g, k and K are the
same, and by Theorem 4.38, every representation of K is completely reducible. This argument is
commonly called “Weyl’s unitary trick”.

However, there is a completely algebraic proof of complete reducibility. It uses some basic ho-
mological algebra: obstruction to complete reducibility is described by a certain type of cohomology,
and we will show that cohomology vanishes. To do it, we will use a special central element in the
universal enveloping algebra, called the Casimir element.

Proposition 6.54. Let g be a Lie algebra, and B — a non-degenerate invariant symmetric bilinear
form on g. Let xi be a basis of g, and xi — the dual basis with respect to B. Then the element

CB =
∑

xix
i ∈ Ug

does not depend on the choice of basis xi and is central. It is called the Casimir element determined
by form B.

Proof. Independence of choice of basis follows from the fact that the element
∑
xi ⊗ xi ∈ g⊗ g is

independent of the choice of basis: under the identification g ⊗ g ' g ⊗ g∗ = End(g) given by the
form B, this element becomes the identity operator in End(g).
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To show that it is central, choose xi to be an orthonormal basis with respect to B (for real
g, this may require replacing g by gC). Then for any y ∈ g, the matrix of ad y in the basis xi is
skew-symmetric (since ad y ∈ so(g)) and thus we have

[y, CB ] = ad y.CB =
∑

(ad y.xi)xi + xi(ad y.xi) =
∑

i,j

aij(xixj + xjxi) = 0

where aij is the matrix of ad y in basis xi. ¤

Note that if g is simple, then by Exercise 4.4, the invariant bilinear form is unique up to a
constant. Thus, in this case the Casimir element is also unique up to a constant; in this case, it is
usually referred to as the Casimir element, without specifying the form.

Proposition 6.55. Let V be a non-trivial irreducible representation of g. Then there exists a central
element CV ∈ Z(Ug) which acts by a non-zero constant in V and which acts by zero in the trivial
representation.

Proof. Let BV (x, y) = tr(ρ(x)ρ(y); by Proposition 6.31, this form is an invariant bilinear form.
If BV is non-degenerate, then let CV = CBV

be the Casimir element of g defined by form BV .
Obviously, CV acts by zero in C. Since V is non-degenerate, by Schur lemma CV acts in V by a
constant: CV = λ idV . On the other hand, tr(CV ) =

∑
tr(xix

i) = dim g, because by definition of
B, tr(xix

i) = B(xi, x
i) = 1. Thus, λ = dim g

dim V 6= 0, which proves the proposition in this special case.

In general, let I = KerBV ⊂ g. Then it is an ideal in g, and I 6= g (otherwise, by Lemma 6.39,
ρ(g) ⊂ gl(V ) is solvable, which is impossible as it is a quotient of a semisimple Lie algebra and
thus itself semisimple). By results of Theorem 6.42, g = I ⊕ g′ for some non-zero ideal g′ ⊂ g. By
Proposition 6.45, g′ is semisimple, and restriction of BV to g′ is non-degenerate. Let CV be the
Casimir element of g′ corresponding to the form BV . Since I, g′ commute, CV will be central in
Ug, and the same argument as before shows that it acts in V by dim g′

dim V 6= 0, which completes the
proof. ¤

Remark 6.56. In fact, a stronger result is known: if we let C be the Casimir element defined by
the Killing form, then C acts by a non-zero constant in any nontrivial irreducible representation.
However, this is slightly more difficult to prove.

Now we are ready to prove the main result of this section.

Theorem 6.57. Any representation of a semisimple Lie algebra g is completely reducible.

Proof. The proof assumes some familiarity with basic homological algebra, such as the notion of
functors Exti(V,W ). They are defined for representations of Lie algebras in the same way as for
modules over an associative algebra. In fact, the same definition works for any abelian category, i.e.
a category where morphisms form abelian groups and where we have the notion of image and kernel
of a morphism satisfying the usual properties.

In particular, the standard argument of homological agebra shows that for fixed V1, V2 equiv-
alence classes of extensions 0 → V1 → W → V2 → 0 are in bijection with Ext1(V1, V2). Thus, our
goal is to show that Ext1(V1, V2) = 0 for any two representations V1, V2. This will be done in several
steps. For convenience, we introduce the notation H1(g, V ) = Ext1(C, V ).

Lemma 6.58. For any irreducible representation V , one has H1(g, V ) = 0.

Proof. To prove that Ext1(C, V ) = 0 it suffices to show that every short exact sequence of the form
0 → C→W → V → 0 splits. So let us assume that we have such an exact sequence.

Let us consider separately two cases: V is a non-trivial irreducible representaton and V = C.
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If V is a non-trivial irreducible representation, consider the Casimir element CV as defined in
Proposition 6.55. Since it acts in C by zero and in V by a non-zero constant λ, its eigenvalues
in W are 0 with multiplicity 1 and λ with multiplicity dimV . Thus, we can split W in a direct
sum of generalized eigenspaces: W = C⊕Wλ, where Wλ is the generalized eigenspace for CV with
egenvalue λ. Since CV commutes with the action of g, this decomposition is preserved by the action
of g, i.e. Wλ is a subrepresentation. Since kernel of the projection W → V is C, this projection
gives an isomorphism Wλ ' V ; thus, W splits as direct sum C⊕ V .

If V = C is a trivial representation, so we have an exact sequence 0 → C → W → C → 0,
then W is a two-dimensional representation such that the action of ρ(x) is strictly upper triangular
for all x ∈ g. Thus, ρ(g) is nilpotent, so by Corollary 6.46, ρ(g) = 0. Thus, W ' C ⊕ C as a
representation. ¤

This lemma provides the crucial step; the rest is simple homological algebra.

Lemma 6.59. H1(g, V ) = 0 for any representation V .

Proof. If we have a short exact sequence of representations 0 → V1 → V → V2 → 0, then we have
a long exact sequence of Ext groups; in particular,

· · · → H1(g, V1) → H1(g, V ) → H1(g, V2) → . . .

Thus, if H1(g, V1) = H1(g, V2) = 0, then H1(g, V ) = 0. Since for irreducible representations we have
proved that H1(g, V ) = 0, it is easy to show by induction in dimension that for any representation,
H1(g, V ) = 0. ¤

We are now ready to prove Theorem 6.57. Let 0 → V1 → W → V2 → 0 be a short exact
sequence of g-modules. We need to show that it splits.

Let us apply to this sequence the functor X 7→ HomC(V2, X) = V ∗2 ⊗ X (considered as a
g-module, see Example 4.11). Obviously, this gives a short exact sequence of g-modules

0 → HomC(V2, V1) → HomC(V2,W ) → HomC(V2, V2) → 0

Now, let us apply to this sequence the functor of g-invariants: X 7→ Xg = Homg(C, X). Applying
this functor to HomC(A,B) gives (HomC(A,B))g = Homg(A,B) (see Example 4.13). This functor
is left exact but in general not exact, so we get a long exact sequence

0 → Homg(V2, V1) → Homg(V2,W ) → Homg(V2, V2) → Ext1(C, V ∗2 ⊗ V1) = H1(g, V ∗2 ⊗ V1) → . . .

But since we have already proved that H1(g, V ) = 0 for any module V , we see that in fact we do
have a short exact sequence

0 → Homg(V2, V1) → Homg(V2,W ) → Homg(V2, V2) → 0

In particular, this shows that there exists a morphism f : V2 → W which, when composed with
projection W → V2, gives identity morphism V2 → V2. This gives a splitting of exact sequence
0 → V1 →W → V2 → 0. This completes the proof of Theorem 6.57. ¤

Remark 6.60. The same proof can be rewritten without using the language of Ext groups; see, for
example, [20]. This would make it formally accessible to readers with no knowledge of homological
algebra. However, this does not change the fact that all arguments are essentially homological in
nature; in fact, such a rewriting would obscure the ideas of the proof rather than make them clearer.

In fact, the groups Ext1(V,W ) and in particular, H1(g, V ) = Ext1(C, V ) used in this proof
are just the beginning of a well-developed cohomology theory of Lie algebras. In particular, one
can define higher cohomology groups Hi(g, V ) in a very similar way. The same argument with
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the Casimir element can be used to show that for non-trivial irreducible representation V , one has
Hi(g, V ) = 0 for i > 0. However, it is not true for the trivial representation: Hi(g,C) can be
non-zero. For example, it can be shown that if G is a connected, simply connected compact real
Lie group, and g = Lie(G), then Hi(g,R) = Hi(G,R), where Hi(G,R) are the usual topological
cohomology (which can be defined, for example, as De Rham cohomology). This and much more
can be found, for example, in [7].

Complete reducibility has a number of useful corollaries. One of them is the following result,
announced in Section 6.4.

Theorem 6.61. Any reductive Lie algebra can be written as a direct sum (as Lie algebra) of
semisimple and commutative:

g = z⊕ gss, z commutative, gss semisimple.

Proof. Consider adjoint representation of g. Since z(g) acts by zero in adjoint representation,
the adjoint action descends to an action of g′ = g/z(g). By definition of reductive algebra, g′

is semisimple. Thus, g considered as a representation of g′ is completely reducible. Since z ⊂ g

is stable under adjoint action, it is a subrepresentation. By complete reducibility, we can write
g = z⊕ I for some I ⊂ g such that adx.I ⊂ I for any x ∈ I. Thus, I is an ideal in g, so g = z⊕ I as
Lie algebras. Obviously, I ' g/z = g′ is semisimple. ¤

In a similar way one can prove Levi theorem (Theorem 6.25). We do not give this proof here,
referring the reader to [20],[18], [11]. Instead, we just mention that in the language of homological
algebra, Levi theorem follows from vanishing of cohomology H2(g,C).

Exercises

6.1.
(1) Let V be a representation of g and W ⊂ V be a subrepresentation. Then BV = BW +BV/W ,

where BV is defined by (6.4).
(2) Let I ⊂ g be an ideal. Then the restriction of Killing form of g to I coincides with the Killing

form of I.

6.2. Show that for g = sl(n,C), the Killing form is given by K(x, y) = 2n tr(xy).

6.3. Let g ⊂ gl(n,C) be the subspace consisting of block-triangular matrices:

g =
{(

A B

0 D

)}

where A is a k × k matrix, B is a k × (n− k) matrix, and D is a (n− k)× (n− k) matrix.
(1) Show that g is a Lie subalgebra (this is a special case of so-called parabolic subalgebras).

(2) Show that radical of g consists of matrices of the form
(
λ · I B

0 µ · I
)

, and describe g/ rad(g).

6.4. Show that the bilinear form tr(xy) on sp(2n,K) is non-degenerate.

6.5. Let g be a real Lie algebra with a positive definite Killing form. Show that then g = 0.



Chapter 7

Complex Semisimple Lie
Algebras

In this chapter, we begin the study of semisimple Lie algebras and their representations. This is one
of the most beautiful areas in all of mathematics. ?!

Throughout this chapter, g is a complex semisimple Lie algebra.

7.1. Semisimple elements and toroidal
subalgebras

Recall that the main tool used in the study of representations of sl(2,C) in Section 5.1 was the
weight decomposition, i.e. decomposing a representation of sl(2,C) as a direct sum of eigenspaces
for h. In order to generalize this idea to other Lie algebras, we need to find a proper analog of h.

Looking closely at the proofs of Section 5.1, we see that the key property of h were the commu-
tation relations [h, e] = 2e, [h, f ] = −2f which were used to to show that e, f shift the weight. This
justifies the following definition.

Definition 7.1. An element x ∈ g is called semisimple if adx is a semisimple operator g → g.

An element x ∈ g is called nilpotent if adx is a nilpotent operator g → g.

It is easy to show (see Exercise 7.1) that for g = gl(n,C) this definition coincides with the usual
definition of a semisimple operator.

Of course, we do not yet know if such elements exist for any g. The following theorem, which
generalizes Jordan decomposition theorem (Theorem B.2), answers this question.

Theorem 7.2. If g is a semisimple complex Lie algebra, then any x ∈ g can be uniquely written in
the form

x = xs + xn

where xs is semisimple, xn is nilpotent, and [xs, xn] = 0. Moreover, adxs = P (adx) for some
polynomial P ∈ tC[t] depending on x.

Proof. Uniqueness immediately follows from uniqueness of Jacobi decomposition for adx (Theo-
rem B.2): if x = xs + xn = x′s + x′n, then (adx)s = adxs = adx′s, so ad(xs − x′s) = 0. But by
definition, a semisimple Lie algebra has zero center, so this implies xs − x′s = 0.

To prove existence, let us write g as direct sum of generalized eigenspaces for adx: g =
⊕

gλ,
(adx− λ id)n|gλ

= 0 for nÀ 0.

Lemma 7.3. [gλ, gµ] ⊂ gλ+µ.

83
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Proof. By Jacobi identity, (adx − λ − µ)[y, z] = [(adx − λ)y, z] + [y, (adx − µ)z]. Thus, if y ∈
gλ, z ∈ gµ, then

(adx− λ− µ)n[y, z] =
∑ (

n

k

)
[(adx− λ)ky, (adx− µ)n−kz] = 0

for nÀ 0. ¤

Let adx = (adx)s +(adx)n be the Jacobi decomposition of operator adx (see Theorem B.2), so
that (adx)s|gλ

= λ. Then the lemma implies that (adx)s is a derivation of g. By Proposition 6.47,
any derivation is inner, so (adx)s = adxs for some xs ∈ g; thus, (adx)n = ad(x− xs). This proves
existence of Jordan decomposition for x.

Finally, by Theorem B.2, we have (adx)s = P (adx) for some polynomial P . Applying both
sides to x itself, we see that this polynomial has zero constant term. ¤

Corollary 7.4. In any semisimple complex Lie algebra, there exist non-zero semisimple elements.

Proof. If any semisimple element is zero, then, by Theorem 7.2, any x ∈ g is nilpotent. By Engel
theorem, this implies that g is nilpotent, which contradicts semisimplicity of g. ¤

Theorem 7.5. Let g be a semisimple Lie algebra, and x ∈ g — a semisimple element. Let V be a
finite-dimensional complex representation of g. Then ρ(x) ∈ gl(V ) is semisimple.

Proof. The proof essentially repeats the proof in sl(2,C) case (see Theorem 5.3) with necessary
changes.

By complete reducibility theorem, it suffices to consider the case when V is irreducible. Let
V [λ] = {v ∈ V | ρ(x).v = λv}, and let V ′ =

⊕
λ V [λ]. Our goal is to show that V = V ′.

Since x is semisimple, we can write g =
⊕

α∈C gα, where gα = {y ∈ g | [x, y] = αy}. Easy explicit
calculation shows that if y ∈ gα, v ∈ V [λ], then ρ(y).v ∈ V [λ+ α]. Thus, V ′ is a subrepresentation
of V . Since V is irreducible, and V ′ 6= 0, we have V ′ = V . ¤

Our next step would be considering not just one semisimple element but a family of commuting
semisimple elements.

Definition 7.6. A subalgebra h ⊂ g is called toroidal if it is commutative and consists of semisimple
elements.

Theorem 7.7. Let h ⊂ g be a toroidal subalgebra. Then

(1) g =
⊕

α∈h∗ gα, where gα is a common eigenspace for all operators adh, h ∈ h, with eigen-
value α:

adh.x = 〈α, h〉x, h ∈ h, x ∈ gα.

In particular, h ⊂ g0.

(2) [gα, gβ ] ⊂ gα+β.

(3) If α+ β 6= 0, then gα, gβ are orthogonal with respect to the Killing form K.

(4) For any α, the Killing form gives a non-degenerate pairing gα ⊗ g−α → C. In particular,
restriction of K to g0 is non-degenerate.

Proof. By definition, for each h ∈ h, the operator adh is diagonalizable. Since all operators adh
commute, they can be simultaneously diagonalized, which is exactly the statement of the first part
of the theorem.
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The second part is in fact a very special case of Lemma 7.3. However, in this case it can be
proved much easier: if y ∈ gα, z ∈ gβ , then

adh.[y, z] = [adh.y, z] + [y, adh.z] = 〈α, h〉[y, z] + 〈β, h〉[y, z] = 〈α+ β, h〉[y, z].
For the third part, notice that if x ∈ gα, y ∈ gβ , then adx ad y(gγ) ⊂ gγ+α+β . Thus, if α+β 6= 0,

then all diagonal entries of adx ad y are zero.

The final part immediately follows from the previous part and non-degeneracy of Killing form
(Theorem 6.37). ¤

Of course, since g is finite-dimensional, gα = 0 for all but finitely many α ⊂ h∗.

7.2. Cartan subalgebra

Our next goal is to produce as large a toroidal subalgebra in g as possible. The standard way of
formalizing this is as follows.

Definition 7.8. Let g be a semisimple Lie algebra. A Cartan subalgebra h ⊂ g is a toroidal
subalgebra which coincides with its centralizer: C(h) = {x | [x, h] = 0} = h.

Remark 7.9. This definition should only be used for semisimple Lie algebras: for general Lie
algebras, Cartan subalgebras are defined in a slightly different way (see, e.g., [21]). However, it can
be shown that for semisimple algebras our definition is equivalent to the usual one.

Example 7.10. Let g = sl(n,C) and h = {diagonal matrices with trace 0}. Then h is a Cartan
subalgebra. Indeed, it is obviously commutative, and every diagonal element is semisimple (see
Exercise 7.1), so it is a toroidal subalgebra. On the other hand, choose h ∈ h to be a diagonal
matrix with distinct eigenvalues. By a well-known result of linear algebra, if [x, h] = 0, and h has
distinct eigenvalues, then any eigenvector of h is also an eigenvector of x; thus, x must also be
diagonal. Thus, C(h) = h.

We still need to prove existence of Cartan subalgebras.

Theorem 7.11. Let h ⊂ g be a maximal toroidal subalgebra, i.e. a toroidal subalgebra which is not
properly contained in any other toroidal subalgebra. Then h is a Cartan subalgebra.

Proof. Let g =
⊕

gα be the decomposition of g into eigenspaces for adh as in Theorem 7.7. Then
C(h) = g0. It is a subalgebra in g, and by Theorem 7.7, the restriction of the Killing form of g to
C(h) is non-degenerate.

Step 1. Let x ∈ C(h) and let x = xs +xn be the Jordan decomposition of x (see Theorem 7.2).
Then xs, xn ∈ C(h).

Indeed, if adx.h = 0 for any h ∈ h, then by Theorem 7.2, adxs = P (adx), so adxs.h = 0.
Thus, xs ∈ C(h).

Step 2. C(h) is reductive.

Consider g as a representation of C(h). Then the corresponding trace form (h1, h2) = trg(adh1 adh2)
on C(h) is exactly the restriction of Killing form Kg to C(h) and by Theorem 7.7 is non-degenerate.
But by one of the forms of Cartan criterion (Theorem 6.32), this implies that C(h) is reductive.

Step 3. C(h) is commutative.

Indeed, otherwise C(h) = z⊕ g′ for some semisimple g′. Let x be a non-zero semisimple element
in g′ (which exists by Corollary 7.4). Applying Theorem 7.5 to g considered as a representation of
g′, we see that x is also semisimple as an element of g.
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Then [x, h] = 0, so h⊕C · x would be a toroidal subalgebra, which contradicts maximality of h.

Step 4. C(h) contains no non-zero nilpotent elements.

Indeed, if x ∈ C(h) is nilpotent, then adx : g → g is nilpotent. Since C(h) is commutative, for
any y ∈ C(h), adx ad y is also nilpotent, so trg(adx ad y) = 0. This contradicts to non-degeneracy
of Killing form on C(h).

Now combining the results of step 1 with step 4, we see that every element x ∈ C(h) is semisimple.
Thus, C(h) is a toroidal subalgebra which contains h. Since h was chosen to be maximal, C(h) =
h. ¤

Corollary 7.12. In every complex semisimple Lie algebra g, there exists a Cartan subalgebra.

Finally, we quote without proof the following important result, proof of which can be found in
[21], [11].

Theorem 7.13. Any two Cartan subalgebras in a semisimple Lie algebra are conjugate: if h1, h2 ⊂ g

are Cartan subalgebras, then there exists an element g in the Lie group G corresponding to g such
that h2 = Ad g(h1).

Corollary 7.14. Any two Cartan subalgebras in g have the same dimension. This dimension is
called rank of g:

rank(g) = dim h.

Example 7.15. Rank of sl(n,C) is equal to n− 1.

7.3. Root decomposition and root systems

From now on, we fix a semisimple Lie algebra g and a Cartan subalgebra h ⊂ g.

Theorem 7.16.

(1) We have the following decomposition for g, called the root decomposition

(7.1) g = h⊕
⊕

α∈R

gα,

where

(7.2)
gα = {x | [h, x] = 〈α, h〉x for all h ∈ h}
R = {α ∈ h∗ − {0} | gα 6= 0}

The set R is called the root system of g, and subspaces gα are called the root subspaces.

(2) [gα, gβ ] ⊂ gα+β (here and below, we let g0 = h).

(3) If α+ β 6= 0, then gα, gβ are orthogonal with respect to the Killing form K.

(4) For any α, the Killing form gives a non-degenerate pairing gα ⊗ g−α → C. In particular,
restriction of K to h is non-degenerate.

Proof. This immediately follows from Theorem 7.7 and g0 = h, which is the definition of Cartan
subalgebra. ¤

This decomposition is the most important result one should know about semisimple Lie algebras
— much more important than the definition of semisimple algebras (in fact, this could be taken as
the definition, see Exercise 7.2). Our goal is to use this decomposition to get as much information as
possible about the structure of semisimple Lie algebras, eventually getting full classification theorem
for them.
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From now on, we will denote the Killing form on g by ( , ). Since its restriction to h is non-
degenerate, it defines an isomorphism h

∼−→ h∗ and a non-degenerate bilinear form on h∗, which we
will also denote by ( , ). It can be explicitly defined as follows: if we denote for α ∈ h∗ by Hα the
corresponding element of h, then

(7.3) (α, β) = (Hα,Hβ) = 〈Hα, β〉
for any α, β ∈ h∗.

Example 7.17. Let g = sl(n,C), h = diagonal matrices with trace 0 (see Example 7.10). Denote
by ei : h → C the functional which computes ith diagonal entry of h:

ei :




h1 0 . . .

0 h2 . . .

. . .

0 . . . hn


 7→ hi

Then one easily sees that
∑
ei = 0, so

h∗ =
⊕

Cei/C(e1 + · · ·+ en).

It is easy to see that matrix units Eij are eigenvectors for adh, h ∈ h: [h,Eij ] = (hi − hj)Eij =
(ei − ej)(h)Eij . Thus, the root decomposition is given by

R = {ei − ej | i 6= j} ⊂
⊕

Cei/C(e1 + · · ·+ en)

gei−ej = CEij .

The Killing form on h is given by

(h, h′) =
∑

i 6=j

(hi − hj)(h′i − h′j) = 2n
∑

i

hih
′
i = 2n tr(hh′).

From this, it is easy to show that if λ =
∑
λiei, µ =

∑
µiei ∈ h∗, and λi, µi are chosen so that∑

λi =
∑
µi = 0 (which is always possible), then the corresponding form on h∗ is given by

(α, µ) =
1
2n

∑

i

λiµi.

Lemma 7.18. Let e ∈ gα, f ∈ g−α. Then

[e, f ] = (e, f)Hα.

Proof. Let us compute the inner product ([e, f ], h) for some h ∈ h. Since Killing form is invariant,
we have

([e, f ], h) = (e, [f, h]) = −(e, [h, f ]) = 〈h, α〉(e, f) = (e, f)(h,Hα)

Since ( , ) is a non-degenerate form on h, this implies that [e, f ] = (e, f)Hα. ¤

Lemma 7.19. (1) Let α ∈ R. Then (α, α) = (Hα, Hα) 6= 0.

(2) Let e ∈ gα, f ∈ g−α be such that (e, f) = 2
(α,α) , and let

(7.4) hα =
2Hα

(α, α)
.

Then 〈hα, α〉 = 2 and the elements e, f, hα satisfy the relations of Lie algebra sl(2,C). We
will denote such a subalgebra by sl(2,C)α ⊂ g.



88 7. Complex Semisimple Lie Algebras

Proof. Assume that (α, α) = 0; then 〈Hα, α〉 = 0. Choose e ∈ gα, f ∈ g−α such that (e, f) 6= 0
(possible by Theorem 7.16). Let h = [e, f ] = (e, f)Hα and consider the algebra a generated by
e, f, h. Then we see that [h, e] = 〈h, α〉e = 0, [h, f ] = −〈h, α〉f = 0, so a is solvable Lie algebra.
By Lie theorem (Theorem 6.14), we can choose a basis in g such that operators ad e, ad f , adh are
upper tringular. Since h = [e, f ], adh will be strictly upper-triangular and thus nilpotent. But since
h ∈ h, it is also semisimple. Thus, h = 0. On the other hand, h = (e, f)Hα 6= 0. This contradiction
proves the first part of the theorem.

The second part is immediate from definitions and Lemma 7.18. ¤

This lemma gives us a very powerful tool for study of g: we can consider g as a module over the
subalgebra sl(2,C)α and then use results about representations of sl(2,C) proved in Section 5.1.

Lemma 7.20. Let α be a root, and let sl(2,C)α be the Lie subalgebra generated by e ∈ gα, f ∈ g−α

and hα as in Lemma 7.19.

Consider the subspace

V = Chα ⊕
⊕

k∈Z,k 6=0

gkα ⊂ g.

Then V is an irreducible representation of sl(2,C)α.

Proof. Since ad e.gkα ⊂ g(k+1)α, and by Lemma 7.18, ad e.g−α ⊂ Chα, and similarly for f , V is a
representation of sl(2,C)α. Since 〈hα, α〉 = 2, we see that the weight decomposition of V is given
by V [k] = 0 for odd k and V [2k] = gkα, V [0] = Chα. In particular, zero weight space V [0] is
one-dimensional. By Exercise 5.1, this implies that V is irreducible. ¤

Now we can prove the main theorem about the structure of semisimple Lie algebras.

Theorem 7.21. Let g be a complex semisimple Lie algebra with Cartan subalgebra h and root
decomposition g = h⊕⊕

α∈R gα.

(1) R spans h∗ as a vector space, and elements hα, α ∈ R, span h as a vector space

(2) For each α ∈ R, the root subspace gα is one-dimensional.

(3) For any two roots α, β, the number

〈hα, β〉 =
2(α, β)
(α, α)

is integer.

(4) For α ∈ R, define the reflection operator sα : h∗ → h∗ by

sα(λ) = λ− 〈hα, λ〉α = λ− 2(α, λ)
(α, α)

α.

Then for any roots α, β, sα(β) is also a root. In particular, if α ∈ R, then −α = sα(α) ∈ R.

(5) For any root α, the only multiples of α which are also roots are ±α.

(6) For roots α, β 6= ±α, the subspace

V =
⊕

k∈Z
gβ+kα

is an irreducible representation of sl(2,C)α.

(7) If α, β are roots such that α+ β is also a root, then [gα, gβ ] = gα+β.
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Proof. (1) Assume that R does not generate h∗; then there exists a non-zero h ∈ h such
that 〈h, α〉 = 0 for all α ∈ R. But then root decomposition (7.1) implies that adh = 0.
However, by definition in a semisimple Lie algebra, the center is trivial: z(g) = 0.

The fact that hα span h now immediately follows: using identification of h with h∗

given by the Killing form, elements hα are identified with non-zero multiples of α.

(2) Immediate from Lemma 7.20 and the fact that in any irreducible representation of sl(2,C),
weight subspaces are one-dimensional.

(3) Consider g as a representation of sl(2,C)α. Then elements of gβ have weight equal to
〈hα, β〉. But by Theorem 5.7, weights of any finite-dimensional representation of sl(2,C)
are integer.

(4) Assume that 〈hα, β〉 = n ≥ 0. Then elements of gβ have weight n with respect to action of
sl(2,C)α. By Theorem 5.7, operator fn

α is an isomorphism of the space of vectors of weight
n with the space of vectors of weight −n. In particular, it means that if v ∈ gβ is non-zero
vector, then fn

αv ∈ gβ−nα is also non-zero. Thus, β − nα = sα(β) ∈ R.
For n ≤ 0, the proof is similar, using e−n insead of fn.

(5) Assume that α and β = cα, c ∈ C are both roots. By part (3), 2(α,β)
(α,α) = 2c is integer, so

c is a half-integer. Same argument shows that 1/c is also a half-integer. It is easy to see
that this implies that c = ±1, ±2, ±1/2. Interchanging the roots if necessary and possibly
replacing α by −α, we have c = 1 or c = 2.

Now let us consider the subspace

V = Chα ⊕
⊕

k∈Z,k 6=0

gkα ⊂ g.

By Lemma 7.20, V is an irreducible representation of sl(2,C)α, and by part (2), V [2] =
gα = Ceα. Thus, the map ad eα : gα → g2α is zero. But the results of Section 5.1 show
that in an irreducible representation, kernel of e is exactly the highest weight subspace.
Thus, we see that V has highest weight 2: V [4] = V [6] = · · · = 0. This means that
V = g−α ⊕ Chα ⊕ gα, so the only integer multiples of α which are roots are ±α. In
particular, 2α is not a root.

Combining these two results, we see that if α, cα are both roots, then c = ±1.

(6) Proof is immediate from dim gβ+kα = 1.

(7) We already know that [gα, gβ ] ⊂ gα+β . Since dim gα+β = 1, we need to show that for
non-zero eα ∈ gα, eβ ∈ gβ , we have [eα, eβ ] 6= 0. This follows from the previous part
and the fact that in an irreducible representation of sl(2,C), if v ∈ V [k] is non-zero and
V [k + 2] 6= 0, then e.v 6= 0.

¤

In the next chapter, we will study in detail the set of roots R. As we will see, it gives us a key
to the classification of semisimple Lie algebras.

Theorem 7.22.

(1) Let hR ⊂ h be the real vector space generated by hα, α ∈ R. Then h = hR ⊕ ihR, and the
restriction of Killing form to hR is positive definite.

(2) Let h∗R ⊂ h∗ be the real vector space generated by α ∈ R. Then h∗ = h∗R ⊕ ih∗R. Also,
h∗R = {λ ∈ h∗ | 〈λ, h〉 ∈ R for all h ∈ hR} = (hR)∗.
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Proof. Let us first prove that the restriction of the Killing form to hR is real and positive definite.
Indeed,

(hα, hβ) = tr(adhα adhβ) =
∑

γ∈R

〈hα, γ〉〈hβ , γ〉.

But by Theorem 7.21, 〈hα, γ〉, 〈hβ , γ〉 ∈ Z, so (hα, hβ) ∈ Z.

Now let h =
∑
cαhα ∈ hR. Then 〈h, γ〉 =

∑
cα〈hα, γ〉 ∈ R for any root γ, so

(h, h) = tr(adh)2 =
∑

γ

〈h, γ〉2 ≥ 0

which proves that the Killing form is positive definite.

By a well known result of linear algebra, this shows that dimR hR ≤ 1
2 dimR h = r, where

r = dimC h is the rank of g. On the other hand, since hα generate h over C, we see that dimR hR ≥ r.
Thus, dimR hR = r, so h = hR ⊕ ihR.

The second part easily follows from the first one. ¤

Exercises

7.1. Show that for g = gl(n,C), Definition 7.1 is equivalent to the usual definition of a semisimple
operator (hint: use results of Appendix B).

7.2. Let g be a Lie algebra which has a root decomposition:

g = h⊕
⊕

α∈R

gα

where R is a finite subset in h∗ − {0}, h is commutative and for h ∈ h, x ∈ gα we have [h, x] =
〈h, α〉x. Show that then g is semisimple, and h is a Cartan subalgebra.

7.3. Let h ⊂ so(4,C) be the subalgebra consisisting of matrices of the form



a

−a
b

−b




(entries not shows are zeros). Show that then h is a Cartan subalgebra abd find the corresponding
root decomposition.



Chapter 8

Root Systems

8.1. Abstract root systems

The results of Section 7.3 show that the set of roots R of a semisimple complex Lie algebra has a
number of remarkable properties. It turns out that the sets with similar properties also appear in
many other areas of mathematics. Thus, we will introduce the notion of abstract root system and
study such objects, leaving for some time the theory of Lie algebras.

Definition 8.1. An abstract root system is a finite set of elements R ⊂ E \ {0}, where E is a real
vector space with a positive definite inner product, such that the following properties hold:

(R1) R generates E as a vector space.

(R2) For any two roots α, β, the number

(8.1) nαβ =
2(α, β)
(β, β)

is integer.

(R3) Let sα : E → E be defined by

(8.2) sα(λ) = λ− 2(α, λ)
(α, α)

α.

Then for any roots α, β, sα(β) ∈ R.

The number r = dimE is called the rank of R.

If, in addition, R satisfies the following property

(R4) If α, cα are both roots, then c = ±1.

then R is called a reduced root system.

Remark 8.2. It is easy to deduce from (R1)—(R3) that if α, cα are both roots, then c = ±1,±2,± 1
2

(see proof of Theorem 7.21). However, there are indeed examples of non-reduced root systems, which
contain α and 2α as roots — see Exercise 8.1. Thus, condition (R4) does not follow from (R1)—(R3).

Note that conditions (R2), (R3) have a very simple geometric meaning. Namely, sα is the
reflection around the hyperplane

(8.3) Lα = {λ ∈ E | (α, λ) = 0}
It can be defined by sα(λ) = λ if (α, λ) = 0 and sα(α) = −α.

91
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Similarly, the number nαβ also has a simple geometric meaning: if we denote by pα the operator
of orthogonal projection onto the line containing α, then pα(β) = nβα

2 α. Thus, (R2) says that the
projection of β onto α is a half-integer multiple of α.

Using the notion of a root system, much of the results of the previous chapter can be reformulated
as follows.

Theorem 8.3. Let g be a semisimple complex Lie algebra, with root decomposition (7.1). Then the
set of roots R ⊂ h∗R \ {0} is a reduced root system.

Finally, for future use it is convenient to introduce, for every root α ∈ R, the corresponding
coroot α∨ ∈ E∗ defined by

(8.4) 〈α∨, λ〉 =
2(α, λ)
(α, α)

.

Note that for the root system of a semisimple Lie algebra, this coincides with the definition of hα ∈ h

defined by (7.4): α∨ = hα.

Then one easily sees that 〈α∨, α〉 = 2 and that

(8.5)
nαβ = 〈α, β∨〉

sα(λ) = λ− 〈λ, α∨〉α.

Example 8.4. Let ei be the standard basis of Rn, with usual inner product: (ei, ej) = δij . Let
E = {(λ1, . . . , λn) ∈ Rn | ∑

λi = 0}, and R = {ei − ej | 1 ≤ i, j ≤ n, i 6= j} ⊂ E. Then R is
a reduced root system. Indeed, one easily sees that for α = ei − ej , the corresponding reflection
sα : E → E is transposition of i, j entries:

sei−ej (. . . , λi, . . . , λj , . . . ) = (. . . , λj , . . . , λi, . . . )

Clearly, R is stable under such transpositions (and, more generally, under all permutations). Thus,
condition (R3) is satisfied.

Since (α, α) = 2 for any α ∈ R, condition (R2) is equivalent to (α, β) ∈ Z for any α, β ∈ R

which is immediate.

Finally, condition (R1) is obvious. Thus, R is a root system of rank n−1. For historical reasons,
this root system is usually referred to as “root system of type An−1” (subscript is chosen to match
the rank of the root system).

Alternatively, one can also define E as a quotient of Rn:

E = Rn/R(1, . . . , 1).

In this description, we see that this root system is exactly the root system of Lie algebra sl(n,C)
(see Example 7.17).

8.2. Automorphisms and Weyl group

Most important information about the root system is contained in the numbers nαβ rather than in
inner product themselves. Thism motivates the following definition.

Definition 8.5. Let R1 ⊂ E1, R2 ⊂ E2 be two root systems. An isomorphism ϕ : R1 → R2 is a
vector space isomorphism ϕ : E1 → E2 which also gives a bijection R1

simeqR2 and such that nϕ(α)ϕ(β) = nαβ for any α, β ∈ R1.
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Note that condition nϕ(α)ϕ(β) = nαβ will be automatically satisfied if ϕ preserves inner product.
However, not every isomorphism of root systems preserves inner products. For example, for any
c ∈ R+, the root systems R and cR = {cα, α ∈ R} are isomorphic. The isomorphism is given by
v 7→ cv, which does not preserve the inner product.

A special class of automorphisms of a root system R are those generated by reflections sα.

Definition 8.6. The Weyl group W of a root system R is the subgroup of GL(E) generated by
reflections sα, α ∈ R.

Lemma 8.7.

(1) The Weyl group W is a finite subgroup in the orthogonal group O(E), and the root system
R is invariant under the action of W .

(2) For any w ∈W , we have sw(α) = wsαw
−1.

Proof. Since every reflection sα is an orthogonal tranformation, W ⊂ O(E). Since sα(R) = R (by
the axioms of a root system), we have w(R) = R for any w ∈ W . Moreover, if some w ∈ W leaves
every root invariant, then w = id (because R generates E). Thus, W is a subgroup of the group
Aut(R) of all automorphisms of R. Since R is a finite set, Aut(R) is finite; thus W is also finite.

The second identity is obvious: indeed, wsαw
−1 acts as identity on the hyperplane wLα = Lw(α),

and wsαw
−1(w(α)) = −w(α), so it is a reflection corresponding to root w(α). ¤

Example 8.8. Let R be the root system of type An−1 (see Example 8.4). Then W is the group
generated by transpositions sij . It is easy to see that these transpositions generate the symmetric
group Sn; thus, for this root system W = Sn.

In particular, for root system A1 (i.e., root system of sl(2,C)), we have W = S2 = Z2 = {1, σ}
where σ acts on E ' R by λ 7→ −λ.

It should be noted, however, that not all automorphisms of a root system are given by elements
of Weyl group. For example, for An, n > 2, the automorphism α 7→ −α is not in the Weyl group.

8.3. Pairs of roots and rank two root systems

Our main goal is to give a full classification of all possible reduced root systems, which in turn will
be used to get a classification of all semisimple Lie algebras. The first step is considering the rank
two case.

Throughout this section, R is a reduced root system.

The first observation is that conditions (R2), (R3) impose very strong restrictions on relative
position of two roots.

Theorem 8.9. Let α, β ∈ R roots which are not multiples of one another, with |α| ≥ |β|, and let ϕ
be the angle between them. Then we must have one of the following possibilities:

(1) ϕ = π/2 (i.e., α, β are orthogonal), nαβ = nβα = 0

(2a) ϕ = 2π/3, |α| = |β|, nαβ = nβα = −1

(2b) ϕ = π/3, |α| = |β|, nαβ = nβα = 1.

(3a) ϕ = 3π/4, |α| = √
2|β|, nαβ = −2, nβα = −1.

(3b) ϕ = π/4, |α| = √
2|β|, nαβ = 2, nβα = 1.

(4a) ϕ = 5π/6, |α| = √
3|β|, nαβ = 3, nβα = 1.

(4b) ϕ = π/6, |α| = √
3|β|, nαβ = −3, nβα = −1.
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Proof. Recall nαβ defined by (8.1). Since (α, β) = |α||β| cosϕ, we see that nαβ = 2
√
|α|√
|β| cosϕ.

Thus, nαβnβα = 4 cos2 ϕ. Since nαβnβα ∈ Z, this means that nαβnβα must be one of 0, 1, 2, 3.
Analyzing each of these possibilities and using nαβ

nβα
= |α|

|β| if cosϕ 6= 0, we get the statement of the
theorem. ¤

It turns out that each of the possibilities listed in this theorem is indeed realized.

Theorem 8.10.

(1) Let A1 × A1, A2, B2, G2 be the sets of vectors in R2 shown in Figure 8.1. Then each of
them is a rank two root system.

(2) Any rank two reduced root system is isomorphic to one of root systems A1 × A1, A2, B2,
G2.

A1 ×A1 A2

B2 G2

Figure 8.1. Rank two root systems

Proof. Proof of part (1) is given by explicit analysis. Since for any pair of vectors in these systems,
the angle and ratio of lengths is among one of the possibilities listed in Theorem 8.9, condition (R2)
is satisfed. It is also easy to see that condition (R3) is satisfied.
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To prove the second part, assume that R is a reduced rank 2 root system. Let us choose α, β
to be two roots such that the angle ϕ between them is as large as possible and |α| ≥ |β|. Then
ϕ ≥ π/2 (otherwise, we could take the pair α, sα(β) and get a larger angle). Thus, we must be in
one of situations (1), (2a), (3a), (4a) of Theorem 8.9.

Consider, for example, case (2a): |α| = |β|, ϕ = 2π/3. By definitions of root system, R is stable
under reflections sα, sβ . But succesively applying these two reflections to α, β we get exactly the
root system of type A2. Thus, in this case R contains as a subset the root system A2 generated by
α, β.

To show that in this case R = A2, note that if we have another root γ which is not in A2, then γ
must be between some of the roots of A2 (since R is reduced). Thus, the angle between γ and some
root δ is less than π/3, and the angle between γ and −δ is greater than 2π/3, which is impossible
because angle between α, β is the maximal possible. Thus, R = A2.

Similar analysis shows that in cases (1), (3a), (4a) of Theorem 8.9, we will get R = A1 × A1,
B2, G2 respectively. ¤

For future use, we also give the following result.

Lemma 8.11. Let α, β ∈ R be two roots such that (α, β) < 0, α 6= cβ. Then α+ β ∈ R.

Proof. It suffices to prove this for each of rank two root systems described in Theorem 8.10. For
each of them, it is easy to check directly. ¤

8.4. Positive roots and simple roots

In order to proceed with classification of root systems, we would like to find for each root system
some small set of “generating roots”, similar to what was done in the previous section for rank 2
root systems. In general it can be done as follows.

Let t ∈ E be such that for any root α, (t, α) 6= 0 (such elements t are called regular). Then we
can write

(8.6)
R = R+ tR−

R+ = {α ∈ R | (α, t) > 0}, R− = {α ∈ R | (α, t) < 0}
Such a decomposition will be called a polarization of R. Note that polarization depends on the
choice of t. The roots α ∈ R+ will be called positive, and the roots α ∈ R− will be called negative.

From now on, let us assume that we have fixed a polarization (8.6) of the root system R.

Definition 8.12. A root α ∈ R+ is called simple if it can not be written as a sum of two positive
roots.

We will denote the set of simple roots by Π ⊂ R+.

We have the following easy lemma.

Lemma 8.13. Every positive root can be written as a sum of simple roots.

Proof. If a positive root α is not simple, it can be written in the form α = α′+α′′, with α′, α′′ ∈ R+,
and (α′, t) < (α, t), (α′′, t) < (α, t). If α′, α′′ are not simple, we can apply the same argument to
them to write them as a sum of positive roots. Since (α, t) can only take finitely many values, the
process will terminate after finitely many steps. ¤
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α1

α2 α1 + α2

t

Figure 8.2. Positive and simple roots for A2

Example 8.14. Let us consider the root system A2 and let t be as shown in the figure below. Then
there are three positive roots: two of them are denoted by α1, α2, and the third one is α1 + α2.
Thus, one easily sees that α1, α2 are simple roots, and α1 + α2 is not simple.

Lemma 8.15. If α, β ∈ R+ are simple, then (α, β) ≤ 0.

Proof. Assume that (α, β) > 0. Then, applying Lemma 8.11 to −α, β, we see that β′ = β−α ∈ R.
If β′ ∈ R+, then β = β′ + α can not be simple. If β′ ∈ R−, then −β′ ∈ R+, so α = −β′ + β can not
be simple. This contradiction shows that (α, β) > 0 is impossible. ¤

Theorem 8.16. Let R = R+ tR− ⊂ E be a root system. Then the simple roots form a basis of the
vector space E.

Proof. By Lemma 8.13, every positive root can be written as linear combination of simple roots.
Since R spans E, this implies that the set of simple roots spans E.

Linear independence of simple roots follows from the results of Lemma 8.15 and the following
linear algebra lemma proof of which is given in the exercises (Exercise 8.3).

Lemma 8.17. Let v1, . . . vk be a collection of non-zero vectors in a Euclidean space E such that for
i 6= j, (vi, vj) ≤ 0. Then {v1, . . . , vk} are linearly independent.

¤

Corollary 8.18. Every α ∈ R can be uniquely written as a linear combination of simple roots with
integer coefficients:

(8.7) α =
r∑

i=1

niαi, ni ∈ Z

where {α1, . . . , αr} = Π is the set of simple roots. If α ∈ R+, then all ni ≥ 0; if α ∈ R−, then all
ni ≤ 0.

For a positive root α ∈ R+, we define its height by

(8.8) ht
(∑

niαi

)
=

∑
ni ∈ Z+
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so that ht(αi) = 1. In many cases, statements about positive roots can be proved by induction in
height.

Example 8.19. Let R be the root system of type An−1 or equivalently, the root system of sl(n,C)
(see Example 7.17, Example 8.4). Choose the polarization as follows:

R+ = {ei − ej | i < j}
(the corresponding root subspaces Eij , i < j, generate the Lie subalgebra n of strictly upper-
triangular matrices in sl(n,C)).

Then it is easy to show that the simple roots are

α1 = e1 − e2, α2 = e2 − e3, . . . , αn−1 = en−1 − en

and indeed, any positive root can be written as a sum of simple roots with non-negative integer
coefficients. For example, e2 − e4 = (e2 − e3) + (e3 − e4) = α2 + α3. The height is given by
ht(ei − ej) = j − i.

8.5. Weight and root lattices

In the study of root systems of simple Lie algebras, we will frequently use the following lattices.
Recall that a lattice in a real vector space E is an abelian group generated by a basis in E. Of
course, by a suitable change of basis any lattice L ⊂ E can be identified with Zn ⊂ Rn.

Every root system R ⊂ E gives rise to the following lattices:

(8.9)
Q = {abelian group generated by α ∈ R} ⊂ E

Q∨ = {abelian group generated by α∨, α ∈ R} ⊂ E∗

Lattice Q is called the root lattice of R, and Q∨ is the coroot lattice.

To justify the use of the word lattice, we need to show that Q, Q∨ are indeed generated by a basis
in E (respectively E∗). This can be done as follows. Fix a polarization of R and let Π = {α1, . . . , αr}
be the corresponding system of simple roots. Since every root can be written as a linear combination
of simple roots with integer coefficients (Corollary 8.18), one has

(8.10) Q =
⊕

Zαi,

which shows that Q is indeed a lattice. Similarly, it follows from Exercise 8.2 that

(8.11) Q∨ =
⊕

Zα∨i .

Even more important in the applications to representation theory of semisimple Lie algebras is
the weight lattice P ⊂ E defined as follows:

(8.12) P = {λ ∈ E | 〈λ, α∨〉 ∈ Z for all α ∈ R} = {λ ∈ E | 〈λ, α∨〉 ∈ Z for all α∨ ∈ Q∨}.
In other words, P ⊂ E is exactly the dual lattice of Q∨ ⊂ E∗. Elements of P are frequently called
integral weights. Their role in representation theory will be discussed in Chapter 9.

Since Q∨ is generated by α∨i , the weight lattice can also be defined by

(8.13) P = {λ ∈ E | 〈λ, α∨i 〉 ∈ Z for all simple roots αi}.
One can easily define a basis in P . Namely, define fundamental weights ωi ∈ E by

(8.14) 〈ωi, α
∨
j 〉 = δij .

Then one easily sees that so defined ωi form a basis in E and that

P =
⊕

i

Zωi.



98 8. Root Systems

Finally, note that by the axioms of a root system, we have nαβ = 〈α, β∨〉 ∈ Z for any roots α, β.
Thus, R ⊂ P which implies that

Q ⊂ P

However, in general P 6= Q, as the examples below show. Since both P,Q are free abelian groups
of rank r, general theory of finitely generated abelian groups implies that the quotient group P/Q

is a finite abelian group. It is also possible to describe the order |P/Q| in terms of the matrix
aij = 〈α∨i , αj〉 (see Exercise 8.4).

Example 8.20. Consider the root system A1. It has the unique positive root α, so Q = Zα,
Q∨ = Zα∨. If we define the inner product ( , ) by (α, α) = 2, and use this product to identify
E∗ ' E, then under this identification α∨ 7→ α, Q∨ ∼−→ Q.

Since 〈α, α∨〉 = 2, we see that the fundamental weight is ω = α
2 , and P = Zα

2 . Thus, in this
case P/Q = Z2.

Example 8.21. For the root system A2, the root and weight lattices are shown in Figure 8.3. This
figure also shows simple roots α1, α2 and fundamental weights ω1, ω2.

α1

α2

ω1

ω2

Figure 8.3. Weight and root lattices for A2. Bold dots show α ∈ Q, empty dots α ∈ P −Q.

It is easy to see from the figure (and also easy to prove algebraically) that one can take α1, ω2

as a basis of P , and that α1, 3ω2 = α2 + 2α1 is a basis of Q. Thus, P/Q = Z3.

8.6. Weyl chambers

In the previous sections, we have constructed, starting with a root system R, first the set of positive
roots R+ and then a smaller set of simple roots Π = {α1, . . . , αr} which in a suitable sense generates
R. Schematically this can be shown as follows:

R −→ R+ −→ Π = {α1, . . . , αr}
The first step (passage from R to R+) requires a choice of polarization, which is determined by a
regular element t ∈ E; the second step is independent of any choices.

Our next goal is to use this information to get a classification of reduced root systems, by
classifying possible sets of simple roots. However, before doing this we need to answer the following
two questions:

(1) Is it possible to recover R from Π?
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(2) Do different choices of polarization give rise to equivalent in a suitable sense sets of simple
roots Π,Π′?

We will start with the second question as it is easier to answer.

Recall that a polarization is defined by an element t ∈ E which does not lie on any of the
hyperplanes orthogonal to roots:

(8.15)
t ∈ E \

⋃

α∈R

Lα

Lα = {λ ∈ E | (α, λ) = 0}

Moreover, the polarization actually depends not on t itself but only on the signs of (t, α); thus,
polarization is unchanged if we change t as long as we do not cross any of the hyperplanes. This
justifies the following definition.

Definition 8.22. A Weyl chamber is a connected component of the complement to the hyperplanes:

C = connected component of

(
E \

⋃

α∈R

Lα

)

For example, for root system A2 there are 6 Weyl chambers; one of them is shaded in the figure
below.

Figure 8.4. A Weyl chamber for A2

Clearly, to specify a Weyl chamber we need to specify, for each hyperplane Lα, on which side of
the hyperplane the Weyl chamber lies. Thus, a Weyl chamber is defined by a system of inequalities
of the form

±(α, λ) > 0

(one inequality for each pair of roots α,−α). Any such system of inequalities defines either an empty
set or a Weyl chamber.

For future use, we state here some results about geometry of Weyl chambers.
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Lemma 8.23.

(1) The closure C of a Weyl chamber C is an unbounded convex cone.

(2) The boundary ∂C is a union of finite number of codimension one faces: ∂C =
⋃
Fi. Each

Fi is a closed convex unbounded subset in one of the hyperplanes Lα, given by a system of
inequalities. The hyperplanes containing Fi are called walls of C.

This lemma is geometrically obvious (in fact, it equally applies to any subset in a Euclidean
space defined by a finite system of strict inequalities) and we omit the proof.

We can now return to the polarizations. Note that any Weyl chamber C defines a polarization
given by

(8.16) R+ = {α ∈ R | α(t) > 0}, t ∈ C
(this does not depend on the choice of t ∈ C). Conversely, given a polarization R = R+tR−, define
the corresponding positive Weyl chamber C+ by

(8.17) C+ = {λ ∈ E | (λ, α) > 0 for all α ∈ R+} = {λ ∈ E | (λ, αi) > 0 for all αi ∈ Π}
(to prove the last equality, note that if (λ, αi) > 0 for all αi ∈ Π, then by Lemma 8.13, for
any α =

∑
niαi, we have (λ, α) > 0). This system of inequalities does have solutions (because

the element t used to define the polarization satisfies these inequalities) and thus defines a Weyl
chamber.

Lemma 8.24. Formulas (8.16), (8.17) define a bijection between the set of all polarizations of R
and the set of Weyl chambers.

Proof is left as an exercise to the reader.

In order to relate polarizations defined by different Weyl chambers, recall the Weyl group W

defined in Section 8.2. Since action of W maps root hyperplanes to root hyperplanes, we have a
well-defined action of W on the set of Weyl chambers.

Theorem 8.25. The Weyl group acts transitively on the set of Weyl chambers.

Proof. The proof is based on several facts which are of significant interest in their own right.
Namely, let us say that two Weyl chambers C,C ′ are adjacent if they have a common codimension
one face F (obviously, they have to be on different sides of F ). If Lα is the hyperplane containing
this common face F , then we will say that C,C ′ are adjacent chambers separated by Lα.

Then we have the following two lemmas, proof of which as an exercise to the reader.

Lemma 8.26. Any two Weyl chambers C,C ′ can be connected by a sequence of chambers C0 = C,
C1, . . . , Cl = C ′ such that Ci is adjacent to Ci+1.

Lemma 8.27. If C,C ′ are adjacent Weyl chambers separated by hyperplane Lα then sα(C) = C ′.

The statement of theorem now easily follows from these two lemmas. Indeed, let C,C ′ be two
Weyl chambers. By Lemma 8.26, they can be connected by a sequence of Weyl chambers C0 = C,
C1, . . . , Cl = C ′. Let Lβi be the hyperplane separating Ci−1 and Ci. Then, by Lemma 8.27,

(8.18)
Cl = sβl

(Cl−1) = sβl
sβl−1(Cl−2) = . . .

= sβl
. . . sβ1(C0)

so C ′ = w(C), with w = sβl
. . . sβ1 . This completes the proof of Theorem 8.25. ¤

Corollary 8.28. Every Weyl chamber has exactly r = rank(R) walls. Walls of positive Weyl
chamber C+ are Lαi , αi ∈ Π.
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Proof. For positive Weyl chamber C+, this follows from (8.17). Since every Weyl chamber can
be written in the form C = w(C+) for some w ∈ W , all Weyl chambers have the same number of
walls. ¤
Corollary 8.29. Let R = R+ t R− = R′+ t R′− be two polarizations of the same root system,
and Π,Π′ the corresponding sets of simple roots. Then there exists an element w ∈ W such that
Π = w(Π′).

Proof. By Lemma 8.24, each polarization is defined by a Weyl chamber. Since W acts transitvely
on the set of Weyl chambers, it also acts transitively on the set of all polarizations. ¤

This last corollary provides an answer to the question asked in the beginning of this section: sets
of simple roots obtained from different polarizations can be related by an orthogonal transformation
of E.

8.7. Simple reflections

We can now return to the first question asked in the beginning of the previous section: is it possible
to recover R from the set of simple roots Π? The answer is again based on the use of Weyl group.

Theorem 8.30. Let R be a reduced root system, with fixed polarization R = R+ t R−. Let Π =
{α1, . . . , αr} be the set of simple roots. Consider reflections corresponding to simple roots si = sαi

(they are called simple reflections).

(1) The simple refelections si generate W .

(2) W (Π) = R: every α ∈ R can be written in the form w(αi) for some w ∈W and αi ∈ Π.

Proof. We start by proving the following result

Lemma 8.31. Any Weyl chamber can be written as

C = si1 . . . sil
(C+)

for some sequence of indices i1, . . . , il ∈ {1, . . . , r}.

Proof. By the construction given in the proof of Theorem 8.25, we can connect C+, C by a chain
of adjacent Weyl chambers C0 = C+, C1, . . . , Cl = C. Then C = sβl

. . . sβ1(C+), where Lβi is the
hyperplane separating Ci−1 and Ci.

Since β1 separates C0 = C+ from C1, it means that Lβ1 is one of the walls of C+. Since the
walls of C+ are exactly hyperplanes Lαi corresponding to simple roots (see Corollary 8.28), we see
that β1 = ±αi1 for some index i1 ∈ {1, . . . , r}, so sβ1 = si1 and C1 = si1(C+).

Consider now the hyperplane Lβ2 separating C1 from C2. It is a wall of C1 = si1(C+); thus, it
must be of the form Lβ2 = si1(L) for some hyperplane L which is a wall of C+. Thus, we get that
β2 = ±si1(αi2) for some index i2. By Lemma 8.7, we therefore have sβ2 = si1si2si1 and thus

sβ2sβ1 = si1si2si1 · si1 = si1si2

C2 = si1si2(C+)

Repeating the same argument, we finally get that

C = si1 . . . sil
(C+)

and the indices ik are computed inductively, by

(8.19) βk = si1 . . . sik−1(αik
)

which completes the proof of the lemma. ¤
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Now the theorem easily follows. Indeed, every hyperplane Lα is a wall of some Weyl chamber
C. Using the lemma, we can write C = w(C+) for some w = si1 . . . sil

. Thus, Lα = w(Lαj
) for

some index j, so α = ±w(αj) and sα = wsjw
−1, which proves both statements of the theorem.

¤

It is also possible to write the full set of defining relations for W (see Exercise 8.8).

Example 8.32. Let R be the root system of type An−1. Then the Weyl group is W = Sn (see
Example 8.8) and simple reflections are transpositions si = (i i + 1). And indeed, it is well known
that these transpositions generate the symmetric group.

We can also describe the Weyl chambers in this case. Namely, the positive Weyl chamber is

C+ = {(λ1, . . . , λn) ∈ E | λ1 ≥ λ2 ≥ · · · ≥ λn}
and all other Weyl chambers are obtained by applying to C+ permutations σ ∈ Sn. Thus, they are
of the form

Cσ = {(λ1, . . . , λn) ∈ E | λσ(1) ≥ ασ(2) ≥ · · · ≥ λσ(n)}, σ ∈ Sn.

Corollary 8.33. The root system R can be recovered from the set of simple roots Π.

Proof. Given Π, we can recover W as the group generated by si and then recover R = W (Π). ¤

Let us say that a root hyperplane Lα separates two Weyl chambers C,C ′ if these two chambers
are on different sides of Hα, i.e. α(C), α(C ′) have different signs.

Definition 8.34. Let R be a reduced root system, with set of simple roots Π. Then we define, for
an element w ∈W , its length by

(8.20) l(w) = number of root hyperplanes separating C+ and w(C+) = |{α ∈ R+ | w(α) ∈ R−}|.

It should be noted that l(w) depends not only on w itself but also on the choice of polarization
R = R+ tR− or equivalently, the set of simple roots.

Example 8.35. Let w = si be a simple reflection. Then the Weyl chambers C+ and si(C+) are
separated by exactly one hyperplane, namely Lαi . Therefore, l(si) = 1, and

(8.21) {α ∈ R+ | w(α) ∈ R−} = {αi}.
In other words, si(αi) = −αi ∈ R− and si permutes elements of R+ \ {αi}.

This example is very useful in many arguments involving Weyl group, such as the following
lemma.

Lemma 8.36. Let

(8.22) ρ =
1
2

∑

α∈R+

α.

Then 〈ρ, α∨i 〉 = 2(ρ,αi)
(αi,αi)

= 1.

Proof. Writing ρ = (αi +
∑

α∈R+\{αi} α)/2 and using results of Example 8.35, we see that si(ρ) =
ρ− αi. On the other hand, by definition si(λ) = λ− 〈α∨i , λ〉αi. ¤

Theorem 8.37. Let
w = si1 . . . sil

be an expression for w as product of simple reflections which has minimal possible length (such
expressions are called reduced). Then l = l(w).



8.8. Dynkin diagrams and classification of root systems 103

Proof. We can connect C and C+ by a chain of Weyl chambers C0 = C+, C1, . . . , Cl = w(C+), where
Ck = si1 . . . sik

(C+). The same argument as in the proof of Theorem 8.31 shows that then Ck and
Ck−1 are adjacent Weyl chambers separated by root hypeplane Lβk

, with βk = si1 . . . sik−1(αik
). This

shows that we can connect C+ and w(C+) by a path crossing exactly l hyperplanes. In particular,
this means that C+ and w(C+) are separated by at most l hyperplanes, so l(w) ≤ l.

Note, however, that we can not yet conclude that l(w) = l: it is possible that the path we
had constructed crosses some hyperplane more than once. For example, we can write 1 = sisi,
which gives us a path connecting C+ with itself but crossing hypeplane Lαi twice. So to show that
that l(w) = l, we need to show that if w = si1 . . . sil

is a reduced expression, then all hyperplanes
Lβ1 , . . . , Lβl

are distinct: we never cross any hyperplane more than once. The proof of this fact is
given as an exercise (see Exercise 8.5). ¤

Corollary 8.38. The action of W on the set of Weyl chambers is simply transitive.

Proof. Otherwise, there exists w ∈ W such that w(C+) = C+. But then, by definition, l(w) =
0. ¤

Lemma 8.39. Let C− be the negative Weyl chamber: C− = −C+ and let w0 ∈ W be such that
w0(C+) = C− (by Corollary 8.38, such an element exists and is unique). Then l(w0) = |R+| and
for any w ∈ W , w 6= w0 we have l(w) < l(w0). For this reason w0 is called the longest element in
W .

The proof of this lemma is left to the reader as an exercise.

8.8. Dynkin diagrams and classification of root
systems

In the previous sections, we have discussed that given a reduced root system R, we can choose a
polarization R = R+tR− and then define the set of simple roots Π = {α1, . . . , αr}. We have shown
that R can be recovered from Π (Corollary 8.33) and that different choices of polarization give rise
to sets of simple roots which are related by the action of the Weyl group (Corollary 8.29). Thus,
classifying root systems is equivalent to classifying possible sets of simple roots Π.

The main goal of this section will be to give a complete solution of this problem, i.e. give a
classification of all root systems.

The first step is to note that there is an obvious construction which allows one to construct
larger root systems from smaller ones. Namely, if R1 ⊂ E1 and R2 ⊂ E2 are two root systems, then
we can define R = R1 tR2 ⊂ E1 ⊕E2, with the inner product on E1 ⊕E2 defined so that E1 ⊥ E2.
It is easy to see that so defined R is again a root system.

Definition 8.40. A root system R is called reducible if it can be written in the form R = R1 tR2,
with R1 ⊥ R2. Otherwise, R is called irreducible.

For example, root system A1 × A1 discussed in Section 8.3 is reducible; all other root systems
discussed in that section are irreducible.

Remark 8.41. It should be noted that a root system being reducible or irreducible is completely
unrelated to whether the root system is reduced or not. It would be best if a different terminology
were used, to avoid confusion; however, both of these terms are so widely used that changing them
is not feasible.

There is an analogous notion for the set of simple roots.



104 8. Root Systems

Lemma 8.42. Let R be a reduced root system, with given polarization, and let Π be the set of simple
roots.

(1) If R is reducible: R = R1 tR2, then Π = Π1 tΠ2, where Πi = Π ∩Ri is the set of simple
roots for Ri.

(2) Conversely, if Π = Π1 tΠ2, with Π1 ⊥ Π2, then R = R1 tR2, where Ri is the root system
generated by Πi.

Proof. The first part is obvious. To prove the second part, notice that if α ∈ Π1, β ∈ Π2, then
sα(β) = β and sα, sβ commute. Thus, if we denote by Wi the group generated by simple reflections
sα, α ∈ Πi, then W = W1 × W2, and W1 acts trivially on Π2, W2 acts trivially on Π1. Thus,
R = W (Π1 tΠ2) = W1(Π1) tW2(Π2). ¤

It can be shown that every reducible root system can be uniquely written in the form R1 t
R2 · · · t Rn, where Ri are mutually orthogonal irreducible root systems. Thus, in order to classify
all root systems, it suffices to classify all irreducible root systems. Fro this reason, from now on R is
an irreducible root system and Π is the corresponding set of simple roots. We assume that we have
chosen an order on the set of simple roots: Π = {α1 . . . , αr}.

The compact way of describing relative position of roots αi ∈ Π is by writing all inner products
between these roots. However, this is not invariant under isomorphisms of root systems. A better
way of describing relative position of simple roots is given by Cartan matrix.

Definition 8.43. The Cartan matrix A of a set of simple roots Π ⊂ R is the r × r matrix with
entries

(8.23) aij = nαjαi = 〈α∨i , αj〉 =
2(αi, αj)
(αi, αi)

.

The following properties of Cartan matrix immediately follow from definitions and from known
properties of simple roots.

Lemma 8.44.

(1) For any i, aii = 2.

(2) For any i 6= j, aij is a non-positive integer: aij ∈ Z, aij ≤ 0.

(3) For any i 6= j, aijaji = 4 cos2 ϕ, where ϕ is angle between αi, αj . If ϕ 6= π/2, then

|αi|2
|αj |2 =

aji

aij
.

Example 8.45. For the root system An, the Cartan matrix is

A =




2 −1 0
−1 2 −1

−1 2 −1
...
−1 2 −1

−1 2




(entries which are not shown are zeroes).

The same information contained in the Cartan matrix can also be presented in a graphical way.

Definition 8.46. Let Π be a set of simple roots of a root sytem R. The Dynkin diagram of Π is
the graph constructed as follows:
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• For each simple root αi, we construct a vertex vi of the Dynkin diagram (traditionally,
vertices are drawn as small circles rather than as dots)

• For each pair of simple roots αi 6= αj , we connect the corresponding vertices by n edges,
where n depends on the angle ϕ between αi, αj :
For ϕ = π/2, n = 0 (vertices are not connnected)
For ϕ = 2π/3, n = 1 (case of A2 system)
For ϕ = 3π/4, n = 2 (case of B2 system)
For ϕ = 5π/6, n = 3 (case of G2 system)

• Finally, for every pair of distinct simple roots αi 6= αj , if |αi| 6= |αj | and they are not
orthogonal, we orient the corresponding (multiple) edge by putting on it an arrow pointing
towards the shorter root.

Example 8.47. The Dynkin diagrams for rank two root systems are shown in Figure 8.5.

A1 ×A1: A2:

B2: G2:

Figure 8.5. Dynkin diagrams of rank two root systems

Theorem 8.48. Let Π be a set of simple roots of a reduced root system R.

(1) The Dynkin diagram is connected if and only if R is irreducible.

(2) The Dynkin diagram determines the Cartan matrix A.

(3) R is determined by the Dynkin diagram uniquely up to an isomorphism: if R,R′ are two
reduced root systems with the same Dynkin diagram, then they are isomorphic.

Proof. (1) Assume that R is reducible; then, by Lemma 8.42, we have Π = Pi1 t Π2, with
Π1 ⊥ Π2. Thus, by construction of Dynkin diagram, it will be a disjoint union of the
Dynkin diagram of Π1 and the Dynkin diagram of Π2. Proof in the oppsoite direction is
similar.

(2) Dynkin diagram determines, for each pair of simple roots αi, αj , the angle between them
and shows which of them is longer. Since all possible configurations of two roots are listed
in Theorem 8.9, one easily sees that this information, together with (αi, αj) ≤ 0, uniquely
determines nαiαj , nαjαi .

(3) By part (2), the Dynkin diagrma determines Π uniquely up to an isomorphism. By Corol-
lary 8.33, Π determines R uniquely up to an isomorphism.

¤

Thus, the problem of classifying all irreducible root systems reduces to the following problem:
which graphs can appear as Dynkin diagrams of an irreducible root systems? The answer is given
by the following theorem.

Theorem 8.49. Let R be a reduced irreducible root system. Then its Dynkin diagram is isomorphic
to one of the diagrams below (in each diagram, the number of vertices is equal to the subscript, so
An has exactly n vertices):

• An (n ≥ 1) :

• Bn (n ≥ 2) :

• Cn (n ≥ 2) :
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• Dn (n ≥ 4) :

• E6 :

• E7 :

• E8 :

• F4 :

• G2 :

Conversely, each of these diagrams does appear as a Dynkin diagram of a reduced irreducible
root system.

The proof of this theorem is rather long. A sketch of proof is given in ??; full proof can be found
in [12], [11], or [2] and will not be repeated here.?!

Explicit construction of the root systems corresponding to each of these diagrams is given in
Appendix C, along with useful information such as a description of the Weyl group, and much more.

The letters A,B, . . . , G do not have any deep meaning: these are just the first 7 letters of the
alphabet. However, this notation has become standard. Since the Dynkin diagram determines the
root system up to isomorphism, it is also common to use the same notation An, . . . , G2 for the
corresponding root system.

Remark 8.50. In the list above, we have imposed restrictions n ≥ 2 for Bn, Cn and n ≥ 4 for Dn,
which is natural from the point of view of diagrams. In fact, constructions of root systems given in
Appendix C also work for smaller values of n. Namely, constructions of root systems Bn, Cn also
make sense for n = 1; however, these root systems coincide with A1: B1 = C1 = A1, so they do
not give any new diagrams (note also that for n = 2, B2 = C2). Similarly, construction of the root
system Dn also makes sense for n = 2, 3, in which case it gives D2 = A2, D3 = A3. Other then the
equalities listed above, all root systems An, . . . , G2 are distinct.

Corollary 8.51. If R is a reduced irreducible root system, then (α, α) can take at most two different
values. The number

(8.24) m =
max(α, α)
min(α, α)

is equal to the maximal multiplicity of an edge in the Dynkin diagram; thus, m = 1 for root systems
of types ADE (these are called simply-laced diagrams), m = 2 for types BCF, and m = 3 for G2.

For non-simply laced systems, the roots with (α, α) being the larger of two possible values are
called the long roots, and the remaining roots are called short.

8.9. Serre relations and classification of
semisimple Lie algebras

We can now return to the question of classification of complex semisimple Lie algebras. Since every
semisimple algebra is a direct sum of simple ones, it suffices to classify simple algebras.
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According to the results of Section 7.3, every semisimple Lie algebra defines a reduced root
system; if the algebra is not simple but only semisimple, then the root system is reducible. The one
question we have not yet answered is whether one can go back and recover the Lie algebra from the
root system. If the answer is positive, then the isomorphism classes of simple Lie algebras are in
bijection with the isomorphism classes of reduced irreducible root systems, and thus we could use
classification results of Section 8.8 to classify simple Lie algebras.

Theorem 8.52. Let g be a semisimple complex Lie algebra with root system R ⊂ h∗. Let R =
R+ tR− be a polarization of R, and Π = {α1, . . . , αr} — the corresponding system of simple roots.

(1) The subspaces

(8.25) n± =
⊕

α∈R±

gα

are subalgebras in g, and

(8.26) g = n− ⊕ h⊕ n+

as a vector space.

(2) Let ei ∈ gαi
, fi ∈ g−αi

be chosen so that (ei, fi) = 2
(αi,αi)

, and let hi = hαi
∈ h be defined

by (7.4). Then e1, . . . , er generate n+, f1, . . . , fr generate n−, and h1, . . . , hr form a basis
of h. In particular, {ei, fi, hi}i=1...r generate g.

(3) The elements ei, fi, hi satisfy the following relations, called the Serre relations:

[hi, hj ] = 0(8.27)

[hi, ej ] = aijej , [hi, fj ] = −aijfj(8.28)

[ei, fj ] = δijhi(8.29)

(ad ei)1−aijej = 0(8.30)

(ad fi)1−aijfj = 0(8.31)

where aij = nαj ,αi = 〈α∨i , αj〉 are the entries of the Cartan matrix.

Proof.

(1) The fact that n+ is a subalgebra follows from [gα, gβ ] ⊂ gα+β (see Theorem 7.16) and the
fact that sum of positive roots is positive. Equation (8.26) is obvious.

(2) The fact that hi form a basis of h follows from Theorem 8.16. To prove that ei generate
n+, we first prove the following lemma.

Lemma 8.53. Let R = R+ t R− be a reduced root system,, with set of simple roots
{α1, . . . , αr}. Let α be a positive root which is not simple. Then α = β + αi for some
positive root β and simple root αi.

Proof. Let us consider the inner products (α, αi). If all of them are non-positive, then,
by Lemma 8.17, {α, α1, . . . , αr} are linearly independent, which is impossible since {αi} is
a basis. Thus, there exists i such that (α, αi) > 0. Thus, (α,−αi) < 0. By Lemma 8.11,
this implies that β = α − αi is a root, so α = β + αi. We leave it to the reader to check
that β must be a positive root. This completes the proof of the lemma. ¤

By Theorem 7.21, under the assumption of the lemma we have gα = [gβ , ei]. Using
induction in height ht(α) (see equation (8.8)), it is now easy to show that ei generate n+.
Similar argument shows that fi generate n−.
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(3) Relations (8.27), (8.28) are an immediate corollary of the definition of Cartan subalgebra
and root subspace. Commutation relation [ei, fi] = hi is part of Lemma 7.19 (about sl-
triple determined by a root). Commutation relation [ei, fj ] = 0 for i 6= j follows from the
fact that [ei, fj ] ∈ gαi−αj . But αi − αj is not a root (it can not be a positive root because
the coefficient of αj is negative, and it can not be a negative root because the coefficient
of αi is positive). Thus, [ei, fj ] = 0.

To prove relations (8.31), consider the subspace
⊕

gαj+kαi
⊂ g as a module over

sl(2,C) triple generated by ei, fi, hi. Since ad ei.fj = 0, fj is a highest-weight vector; by
(8.29), its weight is equal to −aij . Results of Section 5.1 about representation theory of
sl(2,C), imply that if v is a vector of weight λ in a finite-dimensional representation, with
e.v = 0, then fλ+1.v = 0. Applying it to fj , we get (8.31). Equality (8.30) is proved
similarly.

This completes the proof of Theorem 8.52.

¤

A natural question is whether (8.27)–(8.31) is a full set of defining relations for g. The answer
is given by the following theorem.

Theorem 8.54. Let R be a reduced irreducible root system, with a polarization R = R+ t R−
and system of simple roots Π = {α1, . . . , αr}. Let g(R) be the complex Lie algebra with generators
ei, fi, hi, i = 1 . . . , r and relations (8.27)-(8.31). Then g is a finite-dimensional semisimple Lie
algebra with root system R.

The proof of this theorem is not given here; interested reader can find it in [21], [12], or [11].
We note only that it is highly non-trivial that g(R) is finite-dimensional (in fact, this is the key step
of the proof), which in turn is based on the use of Weyl group.

Corollary 8.55.

(1) If g is a semisimple Lie algebra with root system R, then there is a natural isomorphism
g ' g(R).

(2) There is a natural bijection between the set of isomorphism classes of reduced root systems
and the set of isomorphism classes of finite-dimensional complex semisimple Lie algebras.
The Lie algebra is simple iff the root system is irreducible.

Combining this corollary with the classification given in Theorem 8.49, we get the following
famous result.

Theorem 8.56. Simple finite-dimensional complex Lie algebras are classified by Dynkin diagrams
An . . . G2 listed in Theorem 8.49.

It is common to refer to the simple Lie algebra corresponding to the Dynkin diagram, say, E6,
as “simple Lie algebra of type E6”.

It is possible to give an explicit construction of the simple Lie algebra corresponding to each
of the Dynkin diagrams of Theorem 8.49. For example, Lie algebra of type An is nothing but
sl(n + 1,C). Series Bn, Cn, Dn correspond to classical Lie algebras so and sp. These root systems
and Lie algebras are described in detail in Appendix C.

Exercises

8.1. Let R ⊂ Rn be given by

R = {±ei,±2ei | 1 ≤ i ≤ n} ∪ {±ei ± ej | 1 ≤ i, j ≤ n, i 6= j}
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where ei is the standard basis in Rn. Show that R is a non-reduced root system. (This root
system is usually denoted BCn.)

8.2. (1) Let R ⊂ E be a root system. Show that the set

R∨ = {α∨ | α ∈ R} ⊂ E∗

is also a root system. It is usually called dual root system of R.
(2) Let Π = {α1, . . . , αr} ⊂ R be the set of simple roots. Show that the set Π∨ = {α∨1 , . . . , α∨r } ⊂

R∨ is the set of simple roots of R∨. [Note: this is not completely trivial, as α 7→ α∨ is not a
linear map. Try using equation (8.17).]

8.3. Prove Lemma 8.17. (Hint: any linear dependence can be written in the form
∑

i∈I

civi =
∑

j

cjvj

where I ∩ J = ∅, ci, cj ≥ 0. Show that if one denotes v =
∑

i∈I civi, then (v, v) ≤ 0. )

8.4. Show that |P/Q| = | detA|, where A is the Cartan matrix: aij = 〈α∨i , αj〉.
8.5. Complete the gap in the proof of Theorem 8.37. Namely, assume that w = si1 . . . sil

. Let
βk = si1 . . . sik−1(αik

). Show that if we have βk = ±βj for some j < k (thus, the path constructed
in the proof of Theorem 8.37 crosses the hyperplane Lβj twice), then w = si1 . . . ŝij . . . ŝik

. . . sil

(hat means that the corresponding factor should be skipped) and thus, original expression was
not reduced.

8.6. Let w = si1 . . . sil
be a reduced expression. Show that then

{α ∈ R+ | w(α) ∈ R−} = {β1, . . . , βl}
where βk = si1 . . . sik−1(αik

) (cf. proof of Lemma 8.31).

8.7. Let W = Sn be the Weyl group of root system An−1. Show that the longest element w0 ∈W
is the permutation w0 = (n n− 1 . . . 1).

8.8.
(1) Let R be a reduced root system of rank 2, with simple roots α1, α2. Show that the longest

element in the corresponding Weyl group is

w0 = s1s2s1 · · · = s2s1s2 . . . (m factors in each of the products)

where m depends on the angle ϕ between α1, α2: ϕ = π− π
m (so m = 2 for A1×A1, m = 3 for

A2, m = 4 for B2, m = 6 for G2). If you can not think of any other proof, give a case-by-case
proof.

(2) Show that the following relations hold in W (these are called Coxeter relations):

(8.32)
s2i = 1

(sisj)mij = 1,

where mij is determined by the angle between αi, αj in the same way as in the previous part.
(It can be shown that the Coxeter relations is a definining set of relations for the Weyl group:
W could be defined as the group generated by elements si subject to Coxeter relations. A
proof of this fact can be found in [13] or in [2].)

8.9. Let ϕ : R1
∼−→ R2 be an isomorphism between irreducible root systems. Show that then ϕ is a

composition of an isometry and a scalar operator: (ϕ(v), ϕ(w)) = c(v, w) for any v, w ∈ E1.

8.10. Let R ⊂ E be an irreducible root system. Show that then E is an irreducible representation
of the Weyl group W .





Chapter 9

Representations of
Semisimple Lie Algebras

In this chapter, we study representations of complex semisimple Lie algebras. Recall that by results
of Section 6.9, every finite-dimensional representation is completely reducible and thus can be written
in the form V =

⊕
niVi, where Vi are irreducible representations, and ni ∈ Z+ are the multiplicities.

Thus, the study of representations reduces to classification of irreducible representations and finding
a way to determine, for a given representation V , the multiplicities ni. Both of these questions have
a complete answer, which will be given below.

Throoughout this section, g is a complex finite-dimensional semisimple Lie algebra. We fix a
choice of a Cartan subalgebra and thus the root decomposition g = h⊕⊕

R gα (see Section 7.3).

All representations considered in this section are complex and unless specified otherwise, finite-
dimensional.

9.1. Weight decomposition

As in the study of representations of sl(2,C) (see Section 5.1), the key to the study of representations
of g is decomposing the representation into eigenspaces for the Cartan subalgebra.

Definition 9.1. Let V be a representation of g. A vector v ∈ V is called a vector of weight λ ∈ h∗

if, for any h ∈ h, one has hv = 〈λ, h〉v. The space of all vectors of weight λ is called the weight space
and denoted V [λ]:

(9.1) V [λ] = {v ∈ V | hv = 〈λ, h〉v ∀h ∈ h}.
If V [λ] 6= 0, then λ is called a weight of V . The set of all weights of V is denoted by P (V ):

(9.2) P (V ) = {λ ∈ h∗ | V [λ] 6= 0}

Note that it easily follows from standard linear algebra results that vectors of different weights
are linearly independent. This, in particular, implies that P (V ) is finite for a finite-dimensional
representation.

Theorem 9.2. Every finite-dimensional representation of g admits a weight decomposition:

(9.3) V =
⊕

λ∈P (V )

V [λ].

Moreover, all weights of V are integral: P (V ) ⊂ P , where P is the weight lattice defined in Sec-
tion 8.5.
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Proof. Let α ∈ R be a root. Consider the corresponding sl(2,C) subalgebra in g generated by
eα, fα, hα as in Lemma 7.19. Considering V is a module over this sl(2,C) and using results of
Section 5.1, we see that hα is a diagonalizable operator in V . Since elements hα, α ∈ R span
h, and sum of commuting diagonalizable operators is diagonalizable, we see that any h ∈ h is
diagonalizable. Since h is commutative, all of them can be diagonalized simultaneously, which gives
the weight decomposition.

Since weights of sl(2,C) must be integer, we see that for any weight λ of V , we must have
〈λ, hα〉 ∈ Z, which by definition implies that λ ∈ P . ¤

As in the sl(2,C) case, this weight decomposition agrees nicely with the root decomposition of
g.

Lemma 9.3. If x ∈ gα, then x.V [λ] ⊂ V [λ+ α].

Proof of this lemma is almost identical to the proof in sl(2,C) case (see Lemma 5.2). Details
are left to the reader.

9.2. Highest-weight representations and Verma
modules

To study irreducible representations, we introduce a class of representatins which are generted by a
single vector. As we will later show, all finite-dimensional irreducible representations fall into this
class. However, it turns out that to study finite-dimensional representations, we need to consider
infinite-dimensional representations as an auxiliary tool. Thus, in the definition below we allow V

to be infinite-dimensional.

Definition 9.4. A non-zero representation V (not necessarily finite-dimensional) of g is called a
highest weight representation if it is generated by a vector v ∈ V [λ] such that eα.v = 0 for all α ∈ R+.
In this case, v is called the highest weight vector, and λ is the highest weight of V .

The importance of such representations is explained by the following theorem.

Theorem 9.5. Every irreducible finite-dimensional representation of g is a highest-weight represen-
tation.

Proof. Let P (V ) be the set of weights of V . Let λ ∈ P (V ) be such that for all α ∈ R+, λ+α /∈ P (V ).
Such a λ exists: for example, we can take h ∈ h such that 〈h, α〉0 for all α ∈ R+, and then consider
λ such that 〈h, λ〉 is maximal possible.

Now let v ∈ V [λ] be a non-zero vector. Since λ + α /∈ P (V ), we have eαv = 0 for any
α ∈ R+. Consider the subrepresentation V ′ ⊂ V generated by v. By definition V ′ is a highest
weight representation. On the other hand, since V is irreducible, one has V ′ = V . ¤

Note that there can be many non-isomorphic highest weight representations with the same
highest weight. However, in any highest weight representation with highest weight vector vλ ∈ V [λ],
the following conditions hold:

(9.4)

hvλ = 〈h, λ〉vλ ∀h ∈ h

xvλ = 0 ∀x ∈ n+ =
⊕

R+

gα
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Let us define the universal highest weight representation Mλ as a representation generated by a
vector vλ satisfying conditions (9.4) and no other relations. More formally, define

(9.5) Mλ = Ug/Iλ

where Iλ is the left ideal in Ug generated by (h− 〈h, λ〉), n+. This module is called Verma module
and plays an important role in the future.

Remark 9.6. For readers familiar with the notion of induced representation, we note that Mλ can
be naturally described as an induced representation:

Mλ = IndUg
Ub Cλ = Ug⊗Uh Cλ

where b = h⊕ n+ is the Borel subalgebra, and Cλ is one-dimensional representation of b defined by
equations (9.4).

Example 9.7. Let g = sl(2,C) and identify h∗ ' C by λ 7→ 〈h, λ〉. Then Verma module Mλ, λ ∈ C,
is the module described in Lemma 5.5.

The following lemma shows that Verma modules are indeed universal in a suitable sense.

Lemma 9.8. If V is a highest weight module with highest weight λ, then

V 'Mλ/W

for some submodule W ⊂Mλ.

Thus, the study of highest weight representations essentially reduces to the study of submodules
in Verma modules.

Theorem 9.9. Let λ ∈ h∗ and let Mλ be the Verma module with highest weight λ.

(1) Every vector v ∈ Mλ can be uniquely written in the form v = uvλ, u ∈ Un−, where
n− =

⊕
R− gα. In other words, the map

Un− →Mλ

u 7→ uvλ

is an isomorphism of vector spaces.

(2) Mλ admits a weight decomposition: Mλ =
⊕

µMλ[µ], with finite-dimensional weight
spaces. The set of weights of Mλ is

P (Mλ) = λ−Q+, Q+ =
{∑

niαi, ni ∈ Z+

}

(3) dimMλ[λ] = 1.

Proof. To prove part (1), note that since vλ generates V , any vector v ∈ vλ can be written in the
form v = xvλ, x ∈ Ug. But by one of the corollaries of PBW theorem (Corollary 4.63), we have an
isomorphism Ug = Un− ⊗ Uh⊗ Un+. Thus, we can write.... ¤ ?!

Since every highest-weight representation is a quotient of a Verma module, the above theorem
can be generalized to arbitrary highest-weight module.

Theorem 9.10. Let V be a highest weight representation with highest weight λ (not necessarily
finite-dimensional).
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(1) Every vector v ∈ Mλ can be written in the form v = uvλ, u ∈ Un−. In other words, the
map

Un− →Mλ

u 7→ uvλ

is surjective.

(2) V admits a weight decomposition: V =
⊕

µ V [µ], with finite-dimensional weight subspaces,
and

(9.6) P (V ) ⊂ λ−Q+, Q+ =
{∑

niαi, ni ∈ Z+

}

(3) dimMλ[λ] = 1.

Proof. Part (1) immediately follows from the similar statement for Verma modules. Part (2) also
follows from weight decomposition for Verma modules and the following linear algebra lemma, the
proof of which is left as an exercise (see Exercise 9.1).

Lemma 9.11. Let h be a commutative finite-dimensional Lie algebra and M a module over h (not
necessarily finite-dimensional) which admits weight decomposition with finite-dimensional weight
spaces:

M =
⊕

M [λ], M [λ] = {v | hv = 〈h, λ〉v}
Then any submodule, quotient of M also admits a weight decomposition.

Similarly, to prove part (3), note that dimV [λ] ≤ dimMλ[λ] = 1. On hte other hand, by
definition of a highets-weight module, V does have a non-zero highest-weight vectro v ∈ V [λ].

¤

Corollary 9.12. In any highest weight module, there is a unique highest weight and unique up to a
scalar highest weight vector.

Proof. Indeed, if λ, µ are highest weights, then by (9.6), λ − µ ∈ Q+ and also µ − λ ∈ Q+, which
is impossible unless λ = µ. ¤

9.3. Classification of irreducible
finite-dimensional representations

Our next goal is to classify all irreducible finite-dimensional representations. Since, by Theorem 9.5,
every such representation is a highest weight representation, this question can be reformulated as
follows: classify all highest weight representations which are finite-dimensional and irreducible.

The first step is the following easy result.

Theorem 9.13. For any λ ∈ h∗, there exists a unique up to isomorphism irreducible highest weight
representation with highest weight λ. This representation is denoted Lλ.

Proof. All highest weight representations with highest weight λ are of the form Mλ/W for some
W ⊂ Mλ. It is easy to see that Mλ/W is irreducible iff W is a maximal proper subrepresentation
(that is, not properly contained in any other proper subrespresentation). Thus, it suffices to prove
that Mλ has a unique proper submodule.

Note that every proper submodule W ⊂ Mλ has the property W [λ] = 0 (otherwise, we would
have W [λ] = Mλ[λ], which would force W = Mλ). Let Jλ be the sum of all submodules W ⊂ Mλ

such that W [λ] = 0. Then Jλ ⊂ Mλ is proper (because Jλ[λ] = 0). Since it contains every other
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proper submodule of Mλ, it is the unique maximal proper submodule of Mλ. Thus, Lλ = Mλ/Jλ is
the unique irreducible highest-weight module with highest weight λ. ¤

Example 9.14. For g = sl(2,C), results of Section 5.1 show that if λ ∈ Z+, then Lλ = Vλ is the
finite-dimensional irreducible module of dimension λ+ 1, and Lλ = Mλ for λ /∈ Z+.

As we will later see, the situation is similar for other Lie algebras. In particular, for “generic”
λ, Verma module is irreducible, so Mλ = Lλ.

Corollary 9.15. Every irreducible finite-dimensionl representation V must be isomorphic to one of
Lλ.

Thus, to classify all irreducible finite-dimensional representations of g, we need to find which of
Lλ are finite-dimensional.

To give an answer to this question, we need to introduce some notation. Recall the weight lattice
P ⊂ h∗ defined by (8.12).

Definition 9.16. A weight λ ∈ h∗ is called dominant integral the following condition holds

(9.7) 〈λ, α∨〉 ∈ Z+ for all α ∈ R+.

The set of all integral dominant weights is denoted by P+.

Note that it is immediate form the definitions that P+ ⊂ P . It also follows from results of
Exercise 8.2 that condition (9.7) is equivalent to

(9.8) 〈λ, α∨i 〉 ∈ Z+ for all αi ∈ Π.

Theorem 9.17. Irreducible highest-weight representation Lλ is finite-dimensional iff λ ∈ P+.

Before proving this theorem, note that it immediately implies the following corollary.

Corollary 9.18. For every λ ∈ P+, representation Lλ is an irreducible finite-dimensional represen-
tation. These representations are pairwise non-isomorphic, and every irreducible finite-dimensional
representation is isomorphic to one of them.

Proof. First, let us prove that if Lλ is finite-dimensional, then λ ∈ P+. Indeed, let αi be a simple
root and let sl(2,C)i be the subalgebra in g generated by eαi , hαi , fαi (see ). Consider Lλ as sl(2,C)i

module. Then vλ satisfies relations eivλ = 0, hivλ = 〈hi, λ〉 = 〈α∨i , λ〉. It generates a highest weight
sl(2,C)i submodule, which is finite-dimensional (since Lλ is finite-dimensional). By classification
theorem for irreducible representation of sl(2,C) (Theorem 5.6), this implies that the highest weight
〈hi, λ〉 ∈ Z+. Repeating the argument for each simple root, we see that λ ∈ P+.

Now let us prove that if λ ∈ P+, then Lλ is finite-dimensional. This is a more difficult result;
we break the proof in several steps.

Step 1. Let ni = 〈α∨i , λ〉 ∈ Z+. Consider the vector

(9.9) vsi.λ = fni+1
i vλ ∈Mλ[si.λ],

where vλ ∈Mλ is the highest-weight vector and

(9.10) si.λ = λ− (ni + 1)αi.

(see ?? for more general definition). Then we have

ejvsi.λ = 0 for all i, j



116 9. Representations of Semisimple Lie Algebras

Indeed, for i 6= j we have [ej , fi] = 0 (see equation (8.29)), so ejf
ni+1
i vλ = fni+1

i ejvλ = 0. For i = j,
this follows from the results of Section 5.1: if v is a vector of weight n in a representation of sl(2,C)
such thatev = 0, then efn+1v = 0.

Step 2. Let Mi ⊂ Mλ be the subrepresentation generated by vector vsiλ. By (9.10), Mi

is a highest weight representation. In particular, all weights of Mi are of the form si.λ − Q+ =
λ − (ni + 1)αi − Q+. Thus, λ is not a weight of Mi; therefore, each Mi is a proper submodule in
Mλ.

Consider now the quotient

(9.11) L̃λ = Mλ/
∑

Mi.

Since each Mi is a proper subrepresentation, so is
∑
MI (see the proof of Theorem 9.13 ); thus, L̃λ

is a non-zero highest-weight module.

Step 3. The key step of the proof is the following theorem.

Theorem 9.19. Let λ ∈ P+, and let L̃λ be defined by (9.11). Then Lλ is finite-dimensional.

The proof of this theorem is rather long. It is given in a separate section (Section 9.7) at the
end of this chapter.

Now we can complete the proof of Theorem 9.17. Since Lλ is the quotient of Mλ by the
maximal proper ideal, we see that Lλ is a quotient of L̃λ. Since L̃λ is finite-dimensional, so is Lλ.
This completes the proof. ¤

Note that this theorem does not exactly give an explicit construction of the modules Lλ. To
some extent, this will be adddressed in the next section, where we study the structure of the modules
Mi ⊂ Mλ and Lλ in more detail. However, for all classical algebras there also exist very explicit
constructions of the irreducible finite-dimensional representations which are usually not based on
realizing Lλ as quotients of Verma modules. We will give an example of this for g = sl(n,C) in
Section 9.6.

9.4. Bernstein–Gelfand–Gelfand resolution

In the previous section, we have shown that for λ ∈ P+, the irreducible highest-weight mdoule Lλ

is irreducible. Our next goal is to study the structure of these representations.

Recall that the proof of Theorem 9.17 defined, for each λ ∈ P+, a collection of submodules
Mi ⊂ Mλ. We have shown that each of them is a highest weight module. In fact, we can make a
more precise statement.

Lemma 9.20. Let v ∈Mλ[µ] be a vector such that eαv = 0 for all α ∈ R+, and let M ′ ⊂M be the
submodule generated by v. Then M ′ is a Verma module with highest weight µ.

Proof. Since eαv = 0, by definition M ′ is a highest weight module with highest weight µ and thus
is isomorphic to a quotient of the Verma module Mµ. To show that M ′ = Mµ, it suffices to show
that the map Un− →M ′ : u 7→ uv is injective.

Indeed, assume that uv = 0 for some u ∈ Un−. On the other hand, by Theorem 9.9, we can
write v = u′vλ for some u′ ∈ Un−. Thus, we get uu′vλ = 0. By Theorem 9.9, this implies that
uu′ = 0 as eleemnt of Un−. But by Corollary 4.64, Un− has no zero divisors. ¤
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9.5. Characters and Weyl character formula

9.6. Representations of sl(n,C)

9.7. Proof of Theorem 9.19

Exercises

9.1. Prove Lemma 9.11. You can do it by breaking it into several steps as shown below.
(1) Show that given any finite set of distinct weights λ1, . . . , λn ∈ P (V ), there exists an element

p ∈ Uh such that p(λ1) = 1, p(λi) = 0 for i 6= 1 (considering elements of Uh = Sh as
polynomial functions on h∗).

(2) Let V ⊂ M be an h-submodule, and v ∈ V . Write v =
∑
vi, vi ∈ M [λi]. Show that then

each of vi ∈ V .
(3) Deduce Lemma 9.11.
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Appendix B

Jordan Decomposition

In this section, we give the proof of the Jordan decomposition for linear operators, which was used
in Section 6.6, and several related results.

Throughout this appendix, V is a finite-dimensional complex vector space. Recall that an
operator A : V → V is called nilpotent if An = 0 for sufficiently large n. We will call A semisimple
if any A-invariant subspace has an A-invariant complement: if W ⊂ V , AW ⊂ W , then there
exists W ′ ⊂ V such that V = W ⊕ W ′, AW ′ ⊂ W ′. It is easy to see that for operators in a
finite-dimensional complex vector space, this is equivalent to requiring that A be diagonalizable.

Lemma B.1.

(1) Sum of two commuting semisimple operators is semisimple. Sum of two commuting nilpo-
tent operators is nilpotent.

(2) Let A : V → V be semisimple, and W ⊂ V stable under A: AW ⊂ W . Then restrictions
of A to W and to V/W are semisimple operators.

Proof. Replacing in the first part the “semisimple” by “diagonalizable”, we arrive at a well-known
result of linear algebra. The second follows from the following result: A is semisimple iff there exists
a polynomial p without multiple roots such that p(A) = 0. ¤

Theorem B.2. Any linear operator A can be uniquely written as a sum of commuting semisimple
and nilpotent ones:

(B.1) A = As +An, AsAn = AnAs, An nilpotent, As semisimple

Moreover, As, An can be written as polynomials of A: As = p(A), An = A − p(A) for some
polynomial p ∈ C[t] depending on A.

Decomposition (B.1) is called the Jordan decomposition of A.

Proof. It is well-known from linear algebra that one can decompose V in the direct sum of gener-
alized eigenvalues: V =

⊕
V(λ), where λ runs over the set of distinct eigenvalues of A and V(λ) is

generalized eigenspace with eigenvalue λ: restriction of A− λ id to V(λ) is nilpotent.

Define As by As|V(λ) = λ id, and An by An = A − As. Then it is immediate from definition
that As is semisimple and An is nilpotent. It is also easy to see that they commute: in fact, As

commutes with any operator V(λ) → V(λ). This shows existence of Jordan decomposition.
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Let us also show that so defined As, An can be written as polynomials in A. Indeed, let p ∈ C[t]
be defined by system of congruences

p(t) ≡ λi mod (t− λi)ni

where λi are distinct eigenvalues of A and ni = dimV(λi). By Chinese remainder theorem, such
a polynomial exists. Since (A − λi)ni = 0 on V(λi), we see that p(A)|V(λ) = λ = As|V(λ) . Thus,
As = p(A).

Finally, let us prove uniqueness. Let As, An be as defined above. Assume that A = A′s +A′n be
another Jordan decomposition. Then As +An = A′s +A′n. Since A′s, A′n commute with each other,
they commute with A; since As = p(A), we see that As, An commute with A′s, A

′
n. Consider now

the operator As − A′s = A′n − An. On one hand, it is semisimple as difference of two commuting
semisimple operators. on the other hand, it is nilpotent as difference of two commuting nilpotent
operators (see Lemma B.1). Thus, all its eigenvalues are zero; since it is semisimple, it shows that
it is a zero operator, so As = A′s, An = A′n. ¤

The proof also shows that it is possible to choose a basis in V such that in this basis, As is
diagonal and An is strictly upper-triangular, and that if 0 is an eigenvalue of A, then the polynomial
p can be chosen so that p(0) = 0.

Theorem B.3. Let A be an operator V → V . Define adA : End(V ) → End(V ) by adA.b =
AB −BA. Then (adA)s = adAs, and adAs can be written in the form adAs = Q(adA) for some
polynomial Q ∈ C[t] such that Q(0) = 0.

Proof. Let A = As + An be the Jordan decomposition for A. Then adA = adAs + adAn, and it
is immediate to check that adAs, adAn commute.

Choose a basis in V such that in this basis, As is diagonal, An is strictly upper-triangular.
Then it also gives a basis of matrix units Eij in End(V ). In this basis, action of adAs is diagonal:
adAs.Eij = (λi − λj)Eij , as is easily verified by direct computation. Using this basis, it is also
easy to check that adAn is nilpotent (see Exercise B.1). Thus, adA = adAs + adAn is the Jordan
decomposition for adA, so (adA)s = adAs.

By Theorem B.2 applied to operator adA, we see that (adA)s can be written in the form
(adA)s = Q(adA) for some polynomial Q ∈ C[t]; moreover, since 0 is an eigenvalue of adA (e.g.,
adA.A = 0), we see that Q(0) = 0. ¤

Theorem B.4. Let A be an operator V → V . Define As to be the operator which has the same
eigenspaces as As but complex conjugate eigenvalues: if Asv = λv, then Asv = λ̄v. Then adAs can
be written in the form adAs = Q(adA) for some polynomial Q ∈ tC[t] (depending on A).

Proof. Let {vi} be a basis of eigenvectors for As: Asvi = λivi so that Asvi = λivi. Let Eij be the
corresponding basis in End(V ); then, as discussed in the proof of Theorem B.3, in this basis adAs

is given by adAs.Eij = (λi − λj)Eij , and adAs.Eij = (λi − λj)Eij .

Choose a polynomial f ∈ C[t] such that f(λi − λj) = λi − λj (in particular, f(0) = 0); such a
polynomial exists by interpolation theorem. Then adAs = f(adAs) = f(Q(adA)). ¤

Exercises

B.1. Let A : V → V be an upper-triangular operator. Let F k ⊂ End(V ) be the subspace spanned
by matrix units Eij with i− j = k. Show that then adA.F k ⊂ F k−1 and thus, adA : End(V ) →
End(V ) is nilpotent.



Appendix C

Root Systems and
Simple Lie Algebras

In this appendix, for each of the Dynkin diagrams of types An, . . . Dn, we give an explicit description
of the corresponding root system and simple Lie algebra, along with some relevant information such
as the description of the Weyl group. This section contains no proofs; we refer the reader to ?? for
proofs and descriptions of exceptional root systems E6, . . . , G2.

In this appendix, we use the following notation:

g — a complex simple Lie algebra, with fixed Cartan subalgebra h ⊂ g

R ⊂ h∗ — the root system

E = h∗R — the real vector space spanned by roots

( , ) — the symmetric invariant bilinear form on h∗ normalized so that (α, α) = 2 for long roots

R+ — set of positive roots (of course, there are many ways to choose it; we will only give the
most common and widely used choice)

Π = {α1, . . . , αr}, r = rank(R) — set of simple roots (see Definition 8.12)

W — the Weyl group (see Section 8.2)

P ⊂ E — the weight lattice (see Section 8.5)

Q ⊂ E — the root lattice (see Section 8.5)

θ — highest root

ρ = 1
2

∑
R+

α (see (8.22))

h = ht(θ) + 1, h∨ = ht(θ∨) + 1 = 〈ρ, θ∨〉+ 1 — Coxeter number and dual Coxeter number
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C.1. An = sl(n + 1,C)

Lie algebra: g = sl(n+1,C), with Cartan subalgebra h = {diagonal matrices with trace 0}.
We denote by ei ∈ h∗ the functional defined by

ei :



h1 0 . . . 0

. . .

0 . . . hn+1


 7→ hi

Then h∗ =
⊕
Cei/C(e1 + · · ·+ en+1), and

E = h∗R =
⊕

Rei/R(e1 + · · ·+ en+1)

with the inner product defined by defined by (λ, µ) =
∑
λiµi if representatives λ, µ are

chosen so that
∑
λi =

∑
µi = 0.

Root system: R = {ei − ej | i 6= j}
Root subspace corresponding to root α = ei − ej is gα = CEij , and the corresponding

coroot hα = α∨ ∈ h is hα = Eii − Ejj .

Positive and simple roots: R+ = {ei − ej | i < j}, |R+| = n(n+1)
2

Π = {α1, . . . , αn}, αi = ei − ei+1.

Dynkin diagram:

Cartan matrix:

A =




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2




Weyl group: W = Sn+1, acting on E by permutations. Simple reflections are si = (i i+1).

Weight and root lattices:
P = {(λ1, . . . , λn+1) | λi − λj ∈ Z}/R(1, . . . , 1) =

= {(λ1, . . . , λn, 0) | λi ∈ Z}.
Q = {(λ1, . . . , λn+1) | λi ∈ Z,

∑
λi = 0}

P/Q ' Z/(n+ 1)Z
Dominant weights and positive Weyl chamber:

C+ = {λ1, . . . , λn+1) | λ1 > λ2 > · · · > λn+1}/R(1, . . . , 1)
= {λ1, . . . , λn, 0) | λ1 > λ2 > · · · > λn > 0}.

P+ = {(λ1, . . . , λn+1) | λi − λi+1 ∈ Z+}/R(1, . . . , 1)
= {(λ1, . . . , λn, 0) | λi ∈ Z, λ1 ≥ λ2 · · · ≥ λn ≥ 0}.

Maximal root, ρ, and the Coxeter number:
θ = e1 − en+1 = (1, 0, . . . , 0,−1)
ρ = (n, n− 1, . . . , 1, 0) =

(
n
2 ,

n−2
2 , . . . , −n

2

)
h = h∨ = n+ 1
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C.2. Bn = so(2n + 1,C)

Lie algebra: g = so(2n+1,C), with Cartan subalgebra consisiting of block-diagonal matrices

h =








A1

A2

. . .
An

0








, Ai =
[

0 ai

−ai 0

]

Lie algebra (alternative description): g = so(B) = {a ∈ gl(2n+1,C) | a+BatB−1 = 0},
where B is the symmetric non-degenerate bilinear form on C2n+1 with the matrix

B =




0 In 0
In 0 0
0 0 1




This Lie algebra is isomorphic to the usual so(2n + 1,C); the isomorphism is given by
a 7→ aB.

In this description, the Cartan subalgebra is

h = g ∩ {diagonal matrices} = {diag(x1, . . . , xn,−x1, . . . ,−xn, 0)}
Define ei ∈ h∗ by

ei : diag(x1, . . . , xn,−x1, . . . ,−xn, 0) 7→ xi.

Then ei, i = 1 . . . n form a basis in h∗. The bilinear form is defined by (ei, ej) = δij .

Root system: R = {±ei ± ej (i 6= j),±ei} (signs are chosen independently)
The corresponding root subspaces and coroots in g (using the alternative description)

are given by
• For α = ei − ej : gα = C(Eij − Ej+n,i+n), hα = Hi −Hj .
• For α = ei + ej : gα = C(Ei,j+n − Ej,i+n), hα = Hi +Hj .
• For α = −ei − ej : gα = C(Ei+n,j − Ej+n,i), hα = −Hi −Hj .
• For α = ei, gα = C(Ei,2n+1 − E2n+1,n+i), hα = 2Hi.
• For α = −ei, gα = C(En+i,2n+1 − E2n+1,i), hα = −2Hi

where Hi = Eii − Ei+n,i+n.

Positive and simple roots: R+ = {ei ± ej (i < j), ei}, |R+| = n2

Π = {α1, . . . , αn}, α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en.

Dynkin diagram:

Cartan matrix:

A =




2 −1 0
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−2 2




Weyl group: W = Snn(Z2)n, acting on E by permutations and sign changes of coordinates.
Simple reflections are si = (i i+ 1) (i = 1 . . . n− 1), sn : (λ1, . . . , λn) 7→ (λ1, . . . ,−λn).

Weight and root lattices:
P = {(λ1, . . . , λn) | λi ∈ 1

2Z, λi − λj ∈ Z}
Q = Zn



126 C. Root Systems and Simple Lie Algebras

P/Q ' Z2

Dominant weights and positive Weyl chamber:
C+ = {λ1, . . . , λn) | λ1 > λ2 > · · · > λn > 0}.
P+ = {(λ1, . . . , λn) | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, λi ∈ 1

2Z, λi − λj ∈ Z}.
Maximal root, ρ, and the Coxeter number:

θ = e1 + e2 = (1, 1, 0, . . . , 0)
ρ = (n− 1

2 , n− 3
2 , . . . ,

1
2 )

h = 2n, h∨ = 2n− 1
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C.3. Cn = sp(n,C)

Lie algebra: g = sp(n,C) = {a ∈ gl(2n,C) | a+JatJ−1 = 0}, where J is the skew-symmetric
nondegenerate matrix

J =
[

0 In
−In 0

]

The Cartan subalgebra is given by

h = g ∩ {diagonal matrices} = {diag(x1, . . . , xn,−x1, . . . ,−xn)}
Define ei ∈ h∗ by

ei : diag(x1, . . . , xn,−x1, . . . ,−xn) 7→ xi.

Then ei, i = 1 . . . n, form a basis in h∗. The bilinear form is defined by (ei, ej) = 1
2δij .

Root system: R = {±ei ± ej (i 6= j),±2ei} (signs are chosen independently)
The corresponding root subspaces and coroots are given by
• For α = ei − ej : gα = C(Eij − Ej+n,i+n), hα = Hi −Hj .
• For α = ei + ej : gα = C(Ei,j+n + Ej,i+n), hα = Hi +Hj .
• For α = −ei − ej : gα = C(Ei+n,j + Ej+n,i), hα = −Hi −Hj .
• For α = 2ei, gα = CEi,i+n, hα = Hi

• For α = −2ei, gα = CEi+n,i, hα = −Hi

where Hi = Eii − Ei+n,i+n.

Positive and simple roots: R+ = {ei ± ej (i < j), 2ei}, |R+| = n2

Π = {α1, . . . , αn}, α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = 2en.

Dynkin diagram:

Cartan matrix:

A =




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −2
−1 2




Weyl group: W = Snn(Z2)n, acting on E by permutations and sign changes of coordinates.
Simple reflections are si = (i i+ 1) (i = 1 . . . n− 1), sn : (λ1, . . . , λn) 7→ (λ1, . . . ,−λn).

Weight and root lattices: P = Zn

Q = {(λ1, . . . , λn) | λi ∈ Z,
∑
λi ∈ 2Z}

P/Q ' Z2

Dominant weights and positive Weyl chamber:
C+ = {λ1, . . . , λn) | λ1 > λ2 > · · · > λn > 0}.
P+ = {(λ1, . . . , λn) | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, λi ∈ Z}.

Maximal root, ρ, and the Coxeter number:
θ = 2e1 = (2, 0, . . . , 0)
ρ = (n, n− 1, . . . , 1)
h = 2n, h∨ = n+ 1
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C.4. Dn = so(2n,C)

Lie algebra: g = so(2n,C), with Cartan subalgebra consisting of block-diagonal matrices

h =








A1

A2

. . .
An







, Ai =

[
0 hi

−hi 0

]

Lie algebra (alternative description): g = so(B) = {a ∈ gl(2n,C) | a + BatB−1 = 0},
where B is the symmetric non-degenerate bilinear form on C2n with the matrix

B =
[

0 In
In 0

]

This Lie algebra is isomorphic to the usual so(2n + 1,C); the isomorphism is given by
a 7→ aB.

In this description, the Cartan subalgebra is

h = g ∩ {diagonal matrices} = {diag(x1, . . . , xn,−x1, . . . ,−xn)}
Define ei ∈ h∗ by

ei : diag(x1, . . . , xn,−x1, . . . ,−xn) 7→ xi.

Then ei, i = 1 . . . n form a basis in h∗. The bilinear form is given by (ei, ej) = δij .

Root system: R = {±ei ± ej (i 6= j)} (signs are chosen independently)
The corresponding root subspaces and coroots in g (using the alternative description)

are given by
• For α = ei − ej : gα = C(Eij − Ej+n,i+n), hα = Hi −Hj .
• For α = ei + ej : gα = C(Ei,j+n − Ej,i+n), hα = Hi +Hj .
• For α = −ei − ej : gα = C(Ei+n,j − Ej+n,i), hα = −Hi −Hj

where Hi = Eii − Ei+n,i+n.

Positive and simple roots: R+ = {ei ± ej (i < j)}, |R+| = n(n− 1)
Π = {α1, . . . , αn}, α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en.

Dynkin diagram:

Cartan matrix:

A =




2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1 −1
−1 2
−1 2




Weyl group: W = {permutations and even number of sign changes}. Simple reflections are
si = (i i+ 1), i = 1 . . . n− 1, sn : (λ1, . . . , λn−1, λn) 7→ (λ1, . . . ,−λn,−λn−1).

Weight and root lattices:
P = {(λ1, . . . , λn) | λi ∈ 1

2Z, λi − λj ∈ Z}
Q = {(λ1, . . . , λn) | λi ∈ Z,

∑
λi ∈ 2Z}

P/Q ' Z2 × Z2 for even n, P/Q ' Z4 for odd n
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Dominant weights and positive Weyl chamber:
C+ = {(λ1, . . . , λn) | λ1 > λ2 > · · · > λn, λn−1 + λn > 0}.
P+ = {(λ1, . . . , λn) | λ1 ≥ λ2 ≥ · · · ≥ λn, λn−1 + λn ≥ 0, λi ∈ 1

2Z, λi − λj ∈ Z}.
Maximal root, ρ, and the Coxeter number:

θ = e1 + e2 = (1, 1, 0, . . . , 0)
ρ = (n− 1, n− 2, . . . , 0)
h = h∨ = 2n− 2





List of Notation

K — either R or C. This notation is used when a result
holds for both R and C.

Linear algebra

V ∗ — dual vector space
〈 , 〉 : V ⊗ V ∗ → C — canonical pairing of V with V ∗.
Hom(V, W ) — space of linear maps V → W
End(V ) = Hom(V, V ) — space of linear maps V → V

considered as an associative algebra
gl(V ) = Hom(V, V ) — space of linear maps V → V con-

sidered as a Lie algebra, see Example 3.13
tr A — trace of a linear operator
Ker B = {v | B(V, w) = 0 for all w}, for a symmetric

bilinear form B — kernel, or radical of B

At — adjoint operator: if A : V → W is a linear operator,
then At : W∗ → V ∗.

A = As + An— Jordan decomposition of an operator A,
see Theorem B.2

Differential geometry
TpM — tangent space to manifold M at point p
Vect(M) — space of C∞ vector fields on M
Diff(M) — group of diffeomorphisms of a manifold M

Φt
ξ — time t flow of vector field ξ, see Section 3.5

Lie groups and Lie algebras
g = Lie(G) — Lie algebra of group G, see Theorem 3.17
z(g) — center of g, see Definition 3.31
Der(g) — Lie algebra of derivations of g, see (3.13)
[g, g] — commutant of g, see Definition 6.3
rad(g) — radical of Lie algebra g, see Proposition 6.23
K(x, y) — Killing form, see Definition 6.34
Ad g — adjoint action of G on g, see
ad x.y = [x, y], see (2.3)
Stab(m) — stabilizer of point m, see Lemma 2.18
exp: g → G — exponential map, see Definition 3.2

Representations
χV — character of representation V , see Definition 4.41

V G, V g — spaces of invariants, see Definition 4.12
HomG(V, W ), Homg(V, W ) — spaces of intertwining op-

erators, see Definition 4.1

Semisimple Lie algebras and root systems
h — Cartan subalgebra, see Definition 7.8
gα — root subspace, see Theorem 7.16
R ⊂ h∗ \ {0}) — root system

hα = α∨ = 2Hα
(α,α) ∈ h — dual root, see (7.4), (7.3) (for

root system of a Lie algebra) and (8.4) for an abstract
root system

rank(g) = dim h — rank of a semisimple Lie algebra, see
Corollary 7.14

sα — reflection defined by a root α, see Definition 8.1
V [λ] — weight subspace, see Definition 5.1
R± — positive and negative roots, see (8.6)
Π = {α1, . . . , αr} ⊂ R+ — simple roots, see Defini-

tion 8.12
ht(α) — height of a positive root, see (8.8)
Lα = {λ ∈ E | (λ, α) = 0} — root hyperplane, see (8.15)
C+ — positive Weyl chamber, see (8.17)
W — Weyl group, see Definition 8.6
si = sαi

— simple reflection, see Theorem 8.30

l(w) — length of element w ∈ W , see Definition 8.34,
Theorem 8.37

ρ = 1
2

P
R+

α, see Lemma 8.36

P — weight lattice, see
Q — root lattice, see
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Index

Action
of a Lie group on a manifold 12
left 14
right 14
adjoint 14, 40

Ado theorem 34

Campbell–Hausdorff formula 30
Cartan criterion

of solvability 75
of semisimplicity 75

Cartan subalgebra 85
Cartan matrix 104
Casimir operator 79
Character 49
Commutant 67
Commutator 24

of vector fields 26
Complexification 34
Coroot 92

lattice 97
Coset space 11
Coxeter relations 109

Density 46
Derivations

of an associative algebra 29
of a Lie algebra 29
inner 37

Distribution 32
Dynkin diagram 104

Engel theorem 71
Exponential map

for matrix algebras 16
for arbitrary Lie algebra 21

Flag manifold 14
Frobenius integrability criterion 33

Haar measure 46
Heisenberg algebra 38
Height 96
Highest weight 60, 112
Highest weight vector 60, 112
Highest weight representation 112
Homogeneous space 13

Ideal (in a Lie algebra) 25
Immersed subgroup 31
Intertwining operator 39
Invariant bilinear form 42

Jacobi identity 25

Killing form 75

Laplace operator 37
Levi decomposition 73
Length of an element of Weyl group 102
Lie group 9
Lie algebra 25

of a Lie group 25
abelian 24
solvable 68
nilpotent 69
semisimple 72
simple 72
reductive 73

Lie theorem (about representations of a solvable algebra)
70

Multiplicity 42

One-parameter subgroup 21
Orbit 13
Orthogonality relations

for matrix elements 48
for characters 49

Peter–Weyl theorem 51
Poincaré–Birkhoff–Witt theorem 54
Polarization of a root system 95

Radical 72
Rank 86, 91
Reduced expression in Weyl group 102
Regular elements of h∗ 95
Representation 12, 39

adjoint 40
irreducible 42
completely reducible 42
unitary 45

Root decomposition 86
Root lattice 97
Root system

of a semisimple Lie algebra 86
abstract 91
reduced 91
dual 109
irreducible 103

Roots
positive, negative 95
simple 95
short, long 106
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Schur Lemma 44
Semisimple

Lie algebra 72
operator 121
element in a Lie algebra 83

Serre relations 107
Simple reflection 101
Simply-laced Lie algebra 106
Stabilizer 13, 28
Subalgebra (in a Lie algebra) 25
Subrepresentation 41
Spin 66

Toroidal subalgebra 84

Unitary representation 45
Universal enveloping algebra 52

Verma module 113

Wall (of a Weyl chamber) 100
Weight 59

integer 97
dominant 115

Weight decomposition 59
Weight lattice 97
Weyl group 93
Weyl chamber 99

positive 100
adjacent 100
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