MAT 534: HOMEWORK 8

DUE TH, OCT 30

1. Complete the argument started in class: for prime p, the polynomial $\frac{x^{p}-1}{x-1}$ is irreducible over \mathbb{Q}.
2. Dummit and Foote, p. 311, exercise 1
3. Dummit and Foote, p. 311, exercise 2
4. Let $p(x)=x^{3}-2 x^{2}+3 x-6 \in \mathbb{Q}[x]$.
(a) Prove that $\mathbb{Q}[x] /(p)$ is isomorphic to direct product of two fields. Describe these fields.
(b) Find the inverse of $x+1$ in $\mathbb{Q}[x] /(p)$, i.e. a polynomial $f \in \mathbb{Q}[x]$ such that $(x+1) f(x) \equiv 1 \bmod p(x)$.
5. Let \mathbb{F} be an algebraically closed field and let $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ be defined by $D\left(\sum a_{i} x^{i}\right)=$ $\sum i a_{i} x^{i-1}$. (This, of course, is the usual definition of derivative :).
(a) Prove that $D(f g)=D(f) \cdot g+f \cdot D(g)$.
(b) Prove that if $a \in \mathbb{F}$ is a root of multiplicity k of a polynomial f, then a is also a root of multiplicity $k-1$ of $D f$.
(c) Prove that $f \in \mathbb{F}[x]$ has no multiple roots if and only if $\operatorname{gcd}(f, D(f))=1$.
6. Let \mathbb{F} be a field and let

$$
\begin{aligned}
& f=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0} \in \mathbb{F}[x] \\
& g=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0} \in \mathbb{F}[x]
\end{aligned}
$$

be polynomials of degree m, n respectively.
(a) Prove that the following conditions are equivalent:
(i) f, g are relatively prime
(ii) $\operatorname{deg}(\operatorname{lcm}(f, g))=m+n$.
(iii) Collection of $n+m$ polynomials

$$
\begin{array}{ll}
x^{i} f(x), & i=0 \ldots n-1 \\
x^{j} g(x), & j=0 \ldots m-1
\end{array}
$$

are linearly independent (over \mathbb{F}).
(b) Prove that there exists a polynomial $R\left(a_{i}, b_{j}\right)$ in variables $a_{0}, \ldots, a_{m-1}, b_{0}, \ldots, b_{n-1}$ such that f, g are relatively prime iff $R\left(a_{i}, b_{j}\right) \neq 0$. [This polynomial is called the resultant of f, g. Hint: collection of vectors v_{1}, \ldots, v_{k} in k-dimensional vector space are linearly independent iff the determinant of the corresponding $k \times k$ matrix is non-zero.
7. Combine two previous problems to prove that if \mathbb{F} is algebraically closed, then $f(x) \in$ $\mathbb{F}[x]$ has multiple roots iff $D=R(f, D f)=0$. Compute D for $f(x)=x^{2}+p x+q$.
8. (a) Let $I \subset \mathbb{C}[x, y]$ be the ideal generated by 3 monomials: $x^{3} ; y^{3} ; x y$. Prove that I can not be generated by two elements (not necessarily monomials).
*(b) (Optional)Prove that for any n, there exists an ideal in $\mathbb{C}[x, y]$ which can not be generated by fewer than n elements.

