MAT 534: HOMEWORK 8 DUE TH, OCT 30

- 1. Complete the argument started in class: for prime p, the polynomial $\frac{x^p 1}{x 1}$ is irreducible over \mathbb{Q} .
- 2. Dummit and Foote, p. 311, exercise 1
- 3. Dummit and Foote, p. 311, exercise 2
- 4. Let $p(x) = x^3 2x^2 + 3x 6 \in \mathbb{Q}[x]$.
 - (a) Prove that $\mathbb{Q}[x]/(p)$ is isomorphic to direct product of two fields. Describe these fields.
 - (b) Find the inverse of x + 1 in $\mathbb{Q}[x]/(p)$, i.e. a polynomial $f \in \mathbb{Q}[x]$ such that $(x+1)f(x) \equiv 1 \mod p(x)$.
- 5. Let \mathbb{F} be an algebraically closed field and let $D: \mathbb{F}[x] \to \mathbb{F}[x]$ be defined by $D(\sum a_i x^i) = \sum i a_i x^{i-1}$. (This, of course, is the usual definition of derivative :).
 - (a) Prove that $D(fg) = D(f) \cdot g + f \cdot D(g)$.
 - (b) Prove that if $a \in \mathbb{F}$ is a root of multiplicity k of a polynomial f, then a is also a root of multiplicity k 1 of Df.
 - (c) Prove that $f \in \mathbb{F}[x]$ has no multiple roots if and only if gcd(f, D(f)) = 1.
- **6.** Let \mathbb{F} be a field and let

$$f = x^{m} + a_{m-1}x^{m-1} + \dots + a_{0} \in \mathbb{F}[x]$$

$$g = x^{n} + b_{n-1}x^{n-1} + \dots + b_{0} \in \mathbb{F}[x]$$

be polynomials of degree m, n respectively.

- (a) Prove that the following conditions are equivalent:
 - (i) f, g are relatively prime
 - (ii) deg(lcm(f,g)) = m + n.
 - (iii) Collection of n + m polynomials

$$x^{i}f(x), \qquad i = 0 \dots n - 1$$
$$x^{j}g(x), \qquad j = 0 \dots m - 1$$

are linearly independent (over \mathbb{F}).

- (b) Prove that there exists a polynomial $R(a_i, b_j)$ in variables $a_0, \ldots, a_{m-1}, b_0, \ldots, b_{n-1}$ such that f, g are relatively prime iff $R(a_i, b_j) \neq 0$. [This polynomial is called the *resultant* of f, g]. Hint: collection of vectors v_1, \ldots, v_k in k-dimensional vector space are linearly independent iff the determinant of the corresponding $k \times k$ matrix is non-zero.
- 7. Combine two previous problems to prove that if \mathbb{F} is algebraically closed, then $f(x) \in \mathbb{F}[x]$ has multiple roots iff D = R(f, Df) = 0. Compute D for $f(x) = x^2 + px + q$.
- 8. (a) Let $I \subset \mathbb{C}[x, y]$ be the ideal generated by 3 monomials: $x^3; y^3; xy$. Prove that I can not be generated by two elements (not necessarily monomials).
 - *(b) (Optional)Prove that for any n, there exists an ideal in $\mathbb{C}[x, y]$ which can not be generated by fewer than n elements.