MAT 534: HOMEWORK 7 DUE TH, OCT 23

- 1. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
- **2.** Determine the greatest common divisor in $\mathbb{Q}[x]$ of $a(x) = x^3 + 4x^2 + x 6$ and $b(x) = x^5 6x + 5$ and write it as a linear combination of a(x) and b(x).
- **3.** (a) Prove that every $a \in \mathbb{Z}$ can be uniquely written in the form

$$a = \pm p_1^{n_1} \dots p_k^{n_k} (q_1 \overline{q_1})^{m_1} \dots (q_l \overline{q_l})^{m_l}$$

where $p_i \in \mathbb{Z}$ are integers which are prime(=irreducible) as elements of $\mathbb{Z}[i]$, and $q_i \in \mathbb{Z}[i]$ are irreducible elements of $\mathbb{Z}[i]$ which are not in \mathbb{Z} .

- (b) Prove that a prime number $p \in \mathbb{Z}_+$ remains irreducible in $\mathbb{Z}[i]$ iff equation $a^2+b^2 = p$ has no integer solutions. (Hint: $a^2 + b^2 = (a + bi)(a bi)$.) Deduce from this that prime numbers of the form 4k + 3 remain irreducible in $\mathbb{Z}[i]$. (In fact, it is known that a prime integer number is irreducible in $\mathbb{Z}[i]$ iff it has the form 4k + 3.)
- (c) Assuming the statement given in the previous part, prove that for a positive integer n the following statements are equivalent:
 - n can be written as sum of two squares of integer numbers
 - n can be written in the form $n = z\overline{z}, z \in \mathbb{Z}[i]$.
 - In the prime factorization for n (in \mathbb{Z}), each prime factor of the form 4k+3 has even exponent.
- 4. Let $p \in \mathbb{Z}_+$ be a prime number of the form p = 4k + 1, and let $p = \pi \overline{\pi}$ be its factorization into irreducibles in $\mathbb{Z}[i]$ (see previous problem).
 - (a) Prove that $\mathbb{Z}[i]/(p)$ is a finite ring, with $\mathbb{Z}[i]/(p) = p^2$.
 - (b) Use Chinese Remainder Theorem to prove that $\mathbb{Z}[i]/(p) \simeq \mathbb{Z}_p \times \mathbb{Z}_p$.
- **5.** Consider the ring $R = \mathbb{Z}[\sqrt{-5}]$.
 - (a) Prove that elements $2, 3, 1 \pm \sqrt{-5}$ are irreducible in R. [Hint: if 2 = zw, then N(z)N(w) = N(2) = 4, where $N(z) = z\overline{z} \in \mathbb{Z}_+$.]
 - (b) Show that *R* is not UFD because $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$.
 - (c) Define the ideals

$$I = (2, 1 + \sqrt{-5})$$

$$J = (3, 2 + \sqrt{-5})$$

$$J' = (3, 2 - \sqrt{-5})$$

Prove that these ideas are prime (see hint in in Exercise 8, p. 293 in the book).

- (d) Prove that $(2) = I^2$, (3) = JJ', $(1 \sqrt{-5}) = IJ$, $(1 + \sqrt{-5}) = IJ'$. Deduce from this that both factorizations $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$. give the same presentation for (6) as a product of prime ideals: (6) = $I^2 JJ'$.
- 6. Dummit and Foote, p. 267, problem 5.