MAT 534: HOMEWORK 7
 DUE TH, OCT 23

1. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
2. Determine the greatest common divisor in $\mathbb{Q}[x]$ of $a(x)=x^{3}+4 x^{2}+x-6$ and $b(x)=x^{5}-6 x+5$ and write it as a linear combination of $a(x)$ and $b(x)$.
3. (a) Prove that every $a \in \mathbb{Z}$ can be uniquely written in the form

$$
a= \pm p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}\left(q_{1} \overline{q_{1}}\right)^{m_{1}} \ldots\left(q_{l} \overline{q_{l}}\right)^{m_{l}}
$$

where $p_{i} \in \mathbb{Z}$ are integers which are prime(=irreducible) as elements of $\mathbb{Z}[i]$, and $q_{i} \in \mathbb{Z}[i]$ are irreducible elements of $\mathbb{Z}[i]$ which are not in \mathbb{Z}.
(b) Prove that a prime number $p \in \mathbb{Z}_{+}$remains irreducible in $\mathbb{Z}[i]$ iff equation $a^{2}+b^{2}=$ p has no integer solutions. (Hint: $a^{2}+b^{2}=(a+b i)(a-b i)$.) Deduce from this that prime numbers of the form $4 k+3$ remain irreducible in $\mathbb{Z}[i]$. (In fact, it is known that a prime integer number is irreducible in $\mathbb{Z}[i]$ iff it has the form $4 k+3$.)
(c) Assuming the statement given in the previous part, prove that for a positive integer n the following statements are equivalent:

- n can be written as sum of two squares of integer numbers
- n can be written in the form $n=z \bar{z}, z \in \mathbb{Z}[i]$.
- In the prime factorization for n (in \mathbb{Z}), each prime factor of the form $4 k+3$ has even exponent.

4. Let $p \in \mathbb{Z}_{+}$be a prime number of the form $p=4 k+1$, and let $p=\pi \bar{\pi}$ be its factorization into irreducibles in $\mathbb{Z}[i]$ (see previous problem).
(a) Prove that $\mathbb{Z}[i] /(p)$ is a finite ring, with $\mathbb{Z}[i] /(p)=p^{2}$.
(b) Use Chinese Remainder Theorem to prove that $\mathbb{Z}[i] /(p) \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
5. Consider the ring $R=\mathbb{Z}[\sqrt{-5}]$.
(a) Prove that elements $2,3,1 \pm \sqrt{-5}$ are irreducible in R. [Hint: if $2=z w$, then $N(z) N(w)=N(2)=4$, where $\left.N(z)=z \bar{z} \in \mathbb{Z}_{+}.\right]$
(b) Show that R is not UFD because $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.
(c) Define the ideals

$$
\begin{aligned}
I & =(2,1+\sqrt{-5}) \\
J & =(3,2+\sqrt{-5}) \\
J^{\prime} & =(3,2-\sqrt{-5})
\end{aligned}
$$

Prove that these idelas are prime (see hint in in Exercise 8, p. 293 in the book).
(d) Prove that $(2)=I^{2},(3)=J J^{\prime},(1-\sqrt{-5})=I J,(1+\sqrt{-5})=I J^{\prime}$. Deduce from this that both factorizations $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$. give the same presentation for (6) as a product of prime ideals: $(6)=I^{2} J J^{\prime}$.
6. Dummit and Foote, p. 267, problem 5.

