MAT 534: HOMEWORK 6
 DUE TH, OCT 9

Throughout this assignment, \mathbb{F} is an arbitrary field.

1. Which of the following rings are fields? integral domains? In each case, find all invertible elements (also called units)
(a) $R=\mathbb{F}[x]$
(b) $R=\mathbb{Z}[\omega] \subset \mathbb{C}$, where $\omega \in \mathbb{C}$ is a primitive cubic root of unity.
(c) $R=\mathbb{R}[A] \subset \operatorname{Mat}_{2 \times 2}(\mathbb{R})$, where $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(d) $R=\mathbb{R}[A] \subset \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
(e) $R=\mathbb{Z} / n \mathbb{Z}$
2. Let $d \in \mathbb{Z}, d>1$ be squarefree (i.e., d is not divisible by a square of any prime number).
(a) Show that $\mathbb{Q}[\sqrt{d}]=\{a+b \sqrt{d}, a, b \in \mathbb{Q}\}$ is a field.
(b) Show that $\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d}, a, b \in \mathbb{Q}\}$ is a an integral domain.
(c) Define "conjugation" $: \mathbb{Q}[\sqrt{d}] \rightarrow \mathbb{Q}[\sqrt{d}]$ by $\overline{a+b \sqrt{d}}=a-b \sqrt{d}$. Prove that then $\overline{x+y}=\bar{x}+\bar{y}, \overline{x y}=\bar{x} \cdot \bar{y}$.
(d) Show that $u \in \mathbb{Z}[\sqrt{d}]$ is a unit (i.e., has a multiplicative inverse in $\mathbb{Z}[\sqrt{d}])$ iff $u \bar{u}= \pm 1$.
3. Using the previous problem, show that the set of all solutions of the Pell equation $a^{2}-d b^{2}=1, a, b \in \mathbb{Z}$, has a structure of an abelian group. Prove that equation $a^{2}-5 b^{2}=1$ has infinitely many integer solutions. (Hint: one solution is (9,4).)
4. Let $\mathbb{F}[[x]]$ be the set of all formal power series in variable x with coefficients in a field \mathbb{F}. Prove that $\mathbb{F}[[x]]$ is a ring, and that $a_{0}+a_{1} x+a_{2} x^{2}+\ldots$ is a unit in this ring iff $a_{0} \neq 0$.
5. Let $p \in \mathbb{R}[x]$ be a quadratic polynomial which has no real roots. Define $R=\mathbb{R}[x] /(p)$.
(a) Show that $R \simeq \mathbb{C}$. [Hint: complete the square]
(b) Show that $R \simeq \mathbb{R}\left[x, x^{-1}\right] /(p)$
6. Let $I=(x-y), J=(x+y)$ be ideals in $\mathbb{C}[x, y]$.
(a) Describe explicitly the rings $\mathbb{C}[x, y] / I, \mathbb{C}[x, y] / J, \mathbb{C}[x, y] / I+J, \mathbb{C}[x, y] / I J$. (Hint: you may make change of variables $\left.x^{\prime}=x+y, y^{\prime}=x-y\right)$. Describe each of these rings as polynomial functions on a certain subset in \mathbb{C}^{2}.
(b) Which of the ideals $I, J, I+J, I J$ is maximal? prime?
7. Let \mathbb{F}_{p} be the finite field with p elements (p is prime). Compute
(a) the number of one-dimensional subspaces in \mathbb{F}_{p}^{n}
(b) $\left|G L_{2}\left(\mathbb{F}_{p}\right)\right|$
