MAT 534: HOMEWORK 5

- DUE TH, OCT 2, 2014
- 1. Let G be the abelian group generated by three elements x, y, z with defining relations $x^3 = xy^2z^3 = 1$. Write this group in the canonical form (i.e., as a product of cyclic groups).
- **2.** Same question for the group \mathbb{Z}^3/L , where L is the subgroup generated by elements

$$u_1 = (3, 2, 5)$$

 $u_2 = (0, 1, 3)$
 $u_3 = (0, 1, 5)$

- **3.** Let $L \subset \mathbb{Z}^n$ be the subgroup generated by rows of an $n \times n$ matrix A with integer entries. Show that if det A = 0, then \mathbb{Z}^n/L is infinite, and if det $A \neq 0$, then $|\mathbb{Z}^n/L| = |\det A|$.
- 4. Let Q be the subgroup in \mathbb{R}^n generated by elements of the form $e_i e_j$, $i \neq j$, and let $P = \{\lambda \in \mathbb{R}^n \mid \sum \lambda_i = 0, \lambda \cdot \alpha \in \mathbb{Z} \; \forall \alpha \in Q\}$. (Here e_i are the standard generators of \mathbb{Z}^n : $e_i = (0, \ldots, 1, \ldots, 0)$, with 1 in the i^{th} place, and $\lambda \cdot \alpha = \sum \alpha_i \lambda_i$ is the usual dot product in \mathbb{R}^n .)

Show that P, Q are free abelian groups of rank n-1. Show that $Q \subset P$ and describe the quotient P/Q.

- 5. Dummit and Foote, pp. 165–167, problems 2, 3
- 6. Dummit and Foote, pp. 165–167, problem 8
- 7. Dummit and Foote, pp. 165–167, problem 14