MAT 534: HOMEWORK 3

DUE TH, SEPT. 18

1. (a) Prove that the group of rotations of a cube is isomorphic to S_{4}.[Hint: it acts on the set of diagonals...] Describe the stabilizer of a vertex; of an edge.
(b) For each pair of parallel faces of a cube consider the line passing through the centers of the faces. Using that all rotations of a cube permute these lines, construct an epimorphism $S_{4} \rightarrow S_{3}$.
2. How many ways are there to group numbers $\{1 \ldots 2 n\}$ into pairs? Order of pairs and order inside each pair is not important. For example, for $n=2$, there are three ways:

$$
(12)(34) ; \quad(13)(24) ; \quad(14)(23)
$$

(Hint: first show that one can define a transitive action of $S_{2 n}$ on the set of all such pairings.)
3. Let $\sigma \in S_{9}$ be defined by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 8 & 5 & 9 & 7 & 4 & 1 & 2 & 6
\end{array}\right)
$$

(a) Find the cycle decomposition of σ. What is the order of σ ?
(b) Find the sign of σ
4. Prove that the group of even permutations A_{n} is generated by cycles of length 3 .
5. (a) Describe all conjugacy classes in S_{5}. How many elements are in each conjugacy class?
(b) Describe all conjugacy classes in A_{5}. How many elements are in each conjugacy class?

