MAT 534: HOMEWORK 2 DUE TH, SEPT. 11

Problems marked by asterisk (*) are optional.

1. Prove the Third Isomorphism Theorem: if $H, K \subset G$ are normal subgroups, with $K \subset H$, then one has a group isomorphism

$$G/H \simeq \overline{G}/\overline{H}$$

where $\overline{G} = G/K$, $\overline{H} = H/K$.

- **2.** Let $H \subset A_4$ be the subgroup generated by elements x = (12)(34), y = (13)(24). Describe the structure of H (i.e., is it isomorphic to a cyclic group? a product of cyclic groups? how large is it). Prove that H is normal in A_4 .
- **3.** Show that the groups S_3, S_4 are solvable.
- **4.** Let $\operatorname{Aut}(G)$ be the group of all automorphisms of G, i.e., all isomorphisms $f: G \to G$. Prove that $\operatorname{Aut}(\mathbb{Z}_n) = \mathbb{Z}_n^{\times}$, where \mathbb{Z}_n^{\times} is the group of invertible remainders mod n (with respect to multiplication).
- **5.** Let A, B be groups and let π be an action of B on A by automorphisms: for every $b \in B, \pi_b \colon A \to A$ is a group automorphism. Let $G = A \times B$ (as a set) and define on it a binary operation by

$$(a,b)(a',b') = (a\pi_b(a'),bb').$$

Prove that this turns G into a group which is generated by two subgroups $\tilde{A} = \{(a, e_B)\} \simeq A$, $\tilde{B} = \{e_A, b\} \simeq B$. Moreover, \tilde{A} is normal in G and the composition morphism

$$\tilde{B} \hookrightarrow G \to G/\tilde{A}$$

is an isomorphism.

(So constructed group is called a *semidirect* product: $G = A \rtimes B$)

- 6. Prove that $\operatorname{Aut}(\mathbb{Z}_8) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$, and use it to describe all semidirect products $\mathbb{Z}_2 \ltimes \mathbb{Z}_8$ (recall that this means that \mathbb{Z}_8 is the normal subgroup). One of these semidirect products is the dihedral group which one?
- **7.** Let G be a group. For any $g \in G$, let $\varphi_g \colon G \to G$ be the conjugation by $g \colon \varphi_g(x) = gxg^{-1}$.
 - (a) Prove that each φ_g is an automorphism of G. (Automorphisms of this form are called *inner automorphisms*).
 - (b) Prove that $\varphi_g \varphi_h = \varphi_{gh}$. Deduce from it that inner automorphisms form a group, isomorphic to G/Z(G):

$$\operatorname{Inn}(G) \simeq G/Z(G)$$

(Here Z(G) is the center of G.)

- (c) Prove that for any (not necessarily inner) automorphism σ , we have $\sigma \circ \varphi_g \circ \sigma^{-1} = \varphi_{\sigma(g)}$. Deduce from this that the group $\operatorname{Inn}(G)$ of inner automorphisms is a normal subgroup in $\operatorname{Aut}(G)$.
- *8. Show that if G/Z(G) is cyclic, then G is Abelian.