MAT 534: HOMEWORK 12

DUE TH, DEC 4

Unless stated otherwise, all vector spaces are considered over a field \mathbb{F}.

1. Find all eigenvectors of the operator A on \mathbb{C}^{2} with the following matrix in the standard basis:

$$
A=\left(\begin{array}{cc}
6 & -1 \\
16 & -2
\end{array}\right)
$$

Is it diagonalizable?
2. Let a sequence a_{n} be defined by

$$
a_{1}=a_{2}=1, \quad a_{n+1}=2 a_{n}+3 a_{n-1}
$$

(a) Let

$$
X_{n}=\left[\begin{array}{c}
a_{n+1} \\
a_{n}
\end{array}\right] \in \mathbb{R}^{2}
$$

Show that then $X_{n+1}=A X_{n}$, for some matrix $A($ not depending on $n)$.
(b) Diagonalize A.
(c) Find a formula for a_{n}.
3. Let $L: V \rightarrow V$ be a linear operator. Assume that the ground field \mathbb{F} is algebraically closed.
(a) Prove that L is diagonalizable iff there exists a polynomial p without multiple roots such that $p(L)=0$.
(b) Let L be diagonalizable and let $W \subset V$ be a subspace which is stable under L : $L(W) \subset W$. Prove that then the restriction of L to W is also diagonalizable.
(c) Prove that if a square matrix A satisfies $A^{k}=1$, then it is diagonalizable.
(d) Prove that if a square matrix A satisfies $A^{3}=A$, then it is diagonalizable.
4. Let $A, B: V \rightarrow V$ be commuting operators: $A B=B A$.
(a) Show that if $V_{(\lambda)}$ is the generalized eigenspace for A (that is, $V_{(\lambda)}=\operatorname{Ker}(A-\lambda)^{N}$ for $N \gg 0$), then $B\left(V_{(\lambda)}\right) \subset V_{(\lambda)}$.
(b) Show that if A, B are both diagonalizable, then they can be diagonalized simultaneously: there is a basis in which both A, B are diagonal.
*(c) Diagonalize the operator $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by

$$
A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{n}+x_{2}}{2} \\
\frac{x_{1}+x_{3}}{2} \\
\vdots \\
\frac{x_{n-1}+x_{1}}{2}
\end{array}\right]
$$

(hint: this operator commutes with the cyclic permutation of x_{i}).
5. Use Jordan canonical form to prove that if A is a real $n \times n$ matrix such that all its eigenvalues are real and positive, then there exists a real matrix B such that $B^{2}=A$.
6. Dummit and Foote, pg. 499, exercise 7
7. Dummit and Foote, pg. 500, exercise 9
8. Dummit and Foote, pg. 501, exercise 18
9. Construct isomorphisms
(a) $(V \oplus W)^{*} \simeq V^{*} \oplus W^{*}$.
(b) $(V / W)^{*} \simeq\{f \in V * \mid\langle f, w\rangle=0 \quad \forall w \in W\}$.

