MAT 534: HOMEWORK 11

DUE TH, NOV 20

Throughout this homework, all vector spaces are considered over the field \mathbb{F}.

1. Let T be a linear operator on the finite-dimensional space V. Suppose there is a linear operator U on V such that $T U=I$. Prove that T is invertible, i.e. has both left and right inverse, and $U=T^{-1}$. Show that this is false when V is not finite-dimensional. (Hint: Let $T=D$ be the differentiation operator on the space of polynomials.)
2. Let V_{1} and V_{2} be subspaces of the same vector space V. Verify that $V_{1} \cap V_{2}$ and $V_{1}+V_{2}=\left\{v_{1}+v_{2} \mid v_{1} \in V_{1} ; v_{2} \in V_{2}\right\}$ are also subspaces.
(a) Prove that

$$
\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)-\operatorname{dim}\left(V_{1} \cap V_{2}\right)
$$

(b) Show that if V is finite-dimensional, then it is possible to choose a basis $\left\{v_{i}\right\}_{i \in I}$ in V and two subsets $I_{1}, I_{2} \subset I$ such that

- $\left\{v_{i}\right\}_{i \in I_{1}}$ is a basis of V_{1}
- $\left\{v_{i}\right\}_{i \in I_{2}}$ is a basis of V_{2}
- $\left\{v_{i}\right\}_{i \in I_{1} \cup I_{2}}$ is a basis of $V_{1}+V_{2}$
*(c) (optional) Formulate and prove an analog of this for infinite-dimensional case.

3. Let $A: V \rightarrow V$ be a linear operator on a finite-dimensional space such that $A^{2}=A$. Prove that then one can write $V=V_{1} \oplus V_{2}$ so that $\left.A\right|_{V_{1}}=\mathrm{id}, A_{V_{2}}=0$, so A is the projection operator. (Hint: take $V_{1}=\operatorname{Im} A, V_{2}=\operatorname{Ker} A$.)
4. Let A, B be commuting linear operators $V \rightarrow V$ such that $A^{2}=A, B^{2}=B$. Prove that then $\operatorname{Ker}(A B)=\operatorname{Ker}(A)+\operatorname{Ker}(B)$
5. Prove the formula for Vandermonde determinant (discussed in class). (Hint: use induction and elementary row and column transformations.)
6. Let A_{n} be the following $n \times n$ matrix:

$$
\left[\begin{array}{cccccc}
2 & -1 & 0 & 0 & \ldots & 0 \\
-1 & 2 & -1 & 0 & \ldots & 0 \\
0 & -1 & 2 & -1 & \ldots & 0 \\
\ldots & & & & & \\
0 & 0 & \ldots & 0 & -1 & 2
\end{array}\right]
$$

(2 on the diagonal, -1 immediately below and above the diagonal, zeros elsewhere).
Use induction to compute the determinant of A_{n}.
7. Let A be an operator on a finite-dimensional vector space V. Define the exponent e^{A} by the following power series:

$$
e^{A}=1+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots
$$

(you can use without proof that this sum is absolutely convergent in the natural topology on the space $\operatorname{End}(V)$.)
(a) Let P be an invertible operator on V. Prove that $P e^{A} P^{-1}=e^{P A P^{-1}}$
(b) Prove that if A and B commute, then $e^{A+B}=e^{A} e^{B}$
(c) Compute the exponent of the matrix

$$
\left(\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right)
$$

(d) Prove that if A is antisymmetric (i.e. $A+A^{t}=0$), then e^{A} is orthogonal (i.e. $A A^{t}=1$).

