MAT 534: HOMEWORK 10

DUE TH, NOV 13

1. Let \mathbb{F} be an arbitrary field and let $S=\operatorname{Mat}_{m \times m}(\mathbb{F}), R=\operatorname{Mat}_{n \times n}(\mathbb{R})$ be algebras of $m \times m$ (respectively, $n \times n$) matrices. Let $A=\operatorname{Mat}_{m \times n}(\mathbb{F})$ be the space of $m \times n$ matrices considered as an (S, R)-bimodule.
(a) Prove that $A \otimes_{R} \mathbb{F}^{n} \simeq \mathbb{F}^{m}$ (as an S-module).
(b) Compute $A \otimes_{R} B$, where $B=\operatorname{Mat}_{n \times k}(\mathbb{F})$.
2. Dummit and Foote, pp. 375-377, exercise 5.
3. Dummit and Foote, pp. 375-377, exercise 9.
4. Dummit and Foote, pp. 375-377, exercise 16.
5. Dummit and Foote, pp. 375-377, exercise 24.
6. Dummit and Foote, pp. 375-377, exercise 27.
