MAT 534: HOMEWORK 10 DUE TH, NOV 13

- **1.** Let \mathbb{F} be an arbitrary field and let $S = \operatorname{Mat}_{m \times m}(\mathbb{F})$, $R = \operatorname{Mat}_{n \times n}(\mathbb{R})$ be algebras of $m \times m$ (respectively, $n \times n$) matrices. Let $A = \operatorname{Mat}_{m \times n}(\mathbb{F})$ be the space of $m \times n$ matrices considered as an (S, R)-bimodule.
 - (a) Prove that $A \otimes_R \mathbb{F}^n \simeq \mathbb{F}^m$ (as an *S*-module).
 - (b) Compute $A \otimes_R B$, where $B = \operatorname{Mat}_{n \times k}(\mathbb{F})$.
- 2. Dummit and Foote, pp. 375 377, exercise 5.
- 3. Dummit and Foote, pp. 375 377, exercise 9.
- 4. Dummit and Foote, pp. 375 377, exercise 16.
- 5. Dummit and Foote, pp. 375 377, exercise 24.
- 6. Dummit and Foote, pp. 375 377, exercise 27.