MAT 534: HOMEWORK 9 DUE MON, NOV 19

Throughout this assignment, \mathbb{F} is an arbitrary field.

- **1.** Let $p \in \mathbb{R}[x]$ be a quadratic polynomial which has no real roots. Define $R = \mathbb{R}[x]/(p)$.
 - (a) Show that $R \simeq \mathbb{C}$. [Hint: complete the square]
 - (b) Show that $R \simeq \mathbb{R}[x, x^{-1}]/(p)$
- **2.** Let I = (x y), J = (x + y) be ideals in $\mathbb{C}[x, y]$.
 - (a) Describe explicitly the rings $\mathbb{C}[x, y]/I$, $\mathbb{C}[x, y]/J$, $\mathbb{C}[x, y]/I + J$, $\mathbb{C}[x, y]/IJ$. (Hint: you may make change of variables x' = x + y, y' = x y). Describe each of these rings as polynomial functions on a certain subset in \mathbb{C}^2 .
 - (b) Which of the ideals I, J, I + J, IJ is maximal? prime?
- **3.** Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
- **4.** Determine the greatest common divisor in $\mathbb{Q}[x]$ of $a(x) = x^3 + 4x^2 + x 6$ and $b(x) = x^5 6x + 5$ and write it as a linear combination of a(x) and b(x).
- **5.** (a) Prove that every $a \in \mathbb{Z}$ can be uniquely written in the form

$$a = \pm p_1^{n_1} \dots p_k^{n_k} (q_1 \overline{q_1})^{m_1} \dots (q_l \overline{q_l})^{m_l}$$

where $p_i \in \mathbb{Z}$ are integers which are prime(=irreducible) as elements of $\mathbb{Z}[i]$, and $q_i \in \mathbb{Z}[i]$ are irreducible elements of $\mathbb{Z}[i]$ which are not in \mathbb{Z} .

- (b) Prove that a prime number $p \in \mathbb{Z}_+$ remains irreducible in $\mathbb{Z}[i]$ iff equation $a^2+b^2 = p$ has no integer solutions. (Hint: $a^2 + b^2 = (a + bi)(a bi)$.) Deduce from this that prime numbers of the form 4k + 3 remain irreducible in $\mathbb{Z}[i]$. (In fact, it is known that a prime integer number is irreducible in $\mathbb{Z}[i]$ iff it has the form 4k + 3.)
- (c) Assuming the statement given in the previous part, prove that for a positive integer n the following statements are equivalent:
 - n can be written as sum of two squares of integer numbers
 - n can be written in the form $n = z\overline{z}, z \in \mathbb{Z}[i]$.
 - In the prime factorization for n (in \mathbb{Z}), each prime factor of the form 4k+3 has even exponent.
- **6.** Consider the ring $R = \mathbb{Z}[\sqrt{-5}]$.
 - (a) Prove that elements $2, 3, 1 \pm \sqrt{-5}$ are irreducible in R. [Hint: if 2 = zw, then N(z)N(w) = N(2) = 4, where $N(z) = z\overline{z} \in \mathbb{Z}_+$.]
 - (b) Show that R is not unique factorization domain by producing two different factorizations of number 6 into irreducibles in R.