MAT 534: HOMEWORK 9

DUE MON, NOV 19

Throughout this assignment, \mathbb{F} is an arbitrary field.

1. Let $p \in \mathbb{R}[x]$ be a quadratic polynomial which has no real roots. Define $R=\mathbb{R}[x] /(p)$.
(a) Show that $R \simeq \mathbb{C}$. [Hint: complete the square]
(b) Show that $R \simeq \mathbb{R}\left[x, x^{-1}\right] /(p)$
2. Let $I=(x-y), J=(x+y)$ be ideals in $\mathbb{C}[x, y]$.
(a) Describe explicitly the rings $\mathbb{C}[x, y] / I, \mathbb{C}[x, y] / J, \mathbb{C}[x, y] / I+J, \mathbb{C}[x, y] / I J$. (Hint: you may make change of variables $\left.x^{\prime}=x+y, y^{\prime}=x-y\right)$. Describe each of these rings as polynomial functions on a certain subset in \mathbb{C}^{2}.
(b) Which of the ideals $I, J, I+J, I J$ is maximal? prime?
3. Prove that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
4. Determine the greatest common divisor in $\mathbb{Q}[x]$ of $a(x)=x^{3}+4 x^{2}+x-6$ and $b(x)=x^{5}-6 x+5$ and write it as a linear combination of $a(x)$ and $b(x)$.
5. (a) Prove that every $a \in \mathbb{Z}$ can be uniquely written in the form

$$
a= \pm p_{1}^{n_{1}} \ldots p_{k}^{n_{k}}\left(q_{1} \overline{q_{1}}\right)^{m_{1}} \ldots\left(q_{l} \overline{q_{l}}\right)^{m_{l}}
$$

where $p_{i} \in \mathbb{Z}$ are integers which are prime(=irreducible) as elements of $\mathbb{Z}[i]$, and $q_{i} \in \mathbb{Z}[i]$ are irreducible elements of $\mathbb{Z}[i]$ which are not in \mathbb{Z}.
(b) Prove that a prime number $p \in \mathbb{Z}_{+}$remains irreducible in $\mathbb{Z}[i]$ iff equation $a^{2}+b^{2}=$ p has no integer solutions. (Hint: $a^{2}+b^{2}=(a+b i)(a-b i)$.) Deduce from this that prime numbers of the form $4 k+3$ remain irreducible in $\mathbb{Z}[i]$. (In fact, it is known that a prime integer number is irreducible in $\mathbb{Z}[i]$ iff it has the form $4 k+3$.)
(c) Assuming the statement given in the previous part, prove that for a positive integer n the following statements are equivalent:

- n can be written as sum of two squares of integer numbers
- n can be written in the form $n=z \bar{z}, z \in \mathbb{Z}[i]$.
- In the prime factorization for n (in \mathbb{Z}), each prime factor of the form $4 k+3$ has even exponent.

6. Consider the ring $R=\mathbb{Z}[\sqrt{-5}]$.
(a) Prove that elements $2,3,1 \pm \sqrt{-5}$ are irreducible in R. [Hint: if $2=z w$, then $N(z) N(w)=N(2)=4$, where $\left.N(z)=z \bar{z} \in \mathbb{Z}_{+}.\right]$
(b) Show that R is not unique factorization domain by producing two different factorizations of number 6 into irreducibles in R.
