MAT 534: HOMEWORK 7

DUE MON, OCT 22

1. Find an orthonormal eigenbasis for the operator $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ (in the standard basis of \mathbb{R}^{2})
2. Show that if B is a non-degenerate bilinear form on a vector space V of dimension n (i.e., $\operatorname{Ker} B=\{0\}$), and W is a subspace of V of dimension k, then the image $B(W,-) \subset V^{*}$ has dimension k, and the orthogonal complement W^{\perp} has dimension $n-k$.
3. Let V be a finite-dimensional Euclidean space with inner product (,). Prove that then, for any symmetric operator A, the form $B_{A}(v, w)=(A v, w)$ is also symmetric bilinear form and that conversely, every symmetric bilinear form can be written in this form for some symmetric operator A.
4. Consider the (infinite-dimensional) vector space of complex C^{∞} functions on \mathbb{R} with compact support. Define the inner product in this space by

$$
(f, g)=\int_{\mathbb{R}} \overline{f(x)} g(x) d x
$$

Is the operator $\frac{d}{d x}$ Hermitian? skew-Hermitian? neither?
5. Let B be a symmetric bilinear form in a finite-dimensional real vector space V.
(a) Show that then one can write $V=V_{+} \oplus V_{0} \oplus V_{-}$, where subspaces $V_{ \pm}, V_{0}$ are orthogonal with respect to B (i.e., $B\left(v_{1}, v_{2}\right)=0$ if v_{1}, v_{2} are from different subspaces), and restriction of B to V_{+}is positive definite, to V_{-}negative definite, and to V_{0} - zero. (Hint: choose some inner product in V, write $B(v, w)=(A v, w)$ for some symmetric operator A, and then diagonalize A.)
(b) Show that if $V=V_{+} \oplus V_{0} \oplus V_{-}=V_{+}^{\prime} \oplus V_{0}^{\prime} \oplus V_{-}^{\prime}$ are two such decompositions, then $\operatorname{dim} V_{+}=\operatorname{dim} V_{+}^{\prime}, \operatorname{dim} V_{-}=\operatorname{dim} V_{-}^{\prime}, \operatorname{dim} V_{0}=\operatorname{dim} V_{0}^{\prime}$. (Hint: prove that $\left.V_{+}^{\prime} \cap\left(V_{0} \oplus V_{-}\right)=\{0\}.\right)$
(c) Deduce that there exists a basis in which B is diagonal, with $+1,-1$, and 0 on the diagonal, and the number of pluses, minuses, and zeros does not depend on the choice of such a basis. (This is called the Inertia Theorem)

