MAT 534: HOMEWORK 6
 DUE MON, OCT 15

1. Let $W \subset V$ be a subspace. Show that one can find a new subspace W^{\prime} such that $V=W \oplus W^{\prime}$. [Warning: there is no canonical way to choose W^{\prime}].
2. Construct an isomorphism $(V \oplus W)^{*} \simeq V^{*} \oplus W^{*}$.
3. Prove the formula for Vandermonde determinant (discussed in class). (Hint: use induction and elementary row and column transformations.)
4. Find all eigenvectors of the operator A on \mathbb{C}^{2} with the following matrix in the standard basis:

$$
A=\left(\begin{array}{cc}
6 & -1 \\
16 & -2
\end{array}\right)
$$

Is it diagonalizable?
5. Let A be an operator on a finite-dimensional vector space V. Define the exponent e^{A} by the following power series:

$$
e^{A}=1+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\ldots
$$

(you can use without proof that this sum is absolutely convergent in the natural topology on the space $\operatorname{End}(V)$.)
(a) Let P be an invertible operator on V. Prove that $P e^{A} P^{-1}=e^{P A P^{-1}}$
(b) Prove that if A and B commute, then $e^{A+B}=e^{A} e^{B}$
(c) Compute the exponent of the matrix

$$
\left(\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right)
$$

(d) Prove that if A is antisymmetric (i.e. $A+A^{t}=0$), then e^{A} is orthogonal (i.e. $A A^{t}=1$).
6. Let $L: V \rightarrow V$ be a linear operator.
(a) Prove that L is diagonalizable iff there exists a polynomial p without multiple roots such that $p(L)=0$.
(b) Let L be diagonalizable and let $W \subset V$ be a subspace which is stable under L : $L(W) \subset W$. Prove that then the restriction of L to W is also diagonalizable.
7. Let $A, B: V \rightarrow V$ be commuting operators $A B=B A$.
(a) Show that if $V_{(\lambda)}$ is the generalized eigenspace for A (that is, $V_{(\lambda)}=\operatorname{Ker}(A-\lambda)^{N}$ for $N \gg 0)$, then $B\left(V_{(\lambda)}\right) \subset V_{(\lambda)}$.
(b) Show that if A, B are both diagonalizable, then they can be diagonalized simultaneously: there is a basis in which both A, B are diagonal.
*(c) Diagonalize the operator $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ defined by

$$
A\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
\frac{x_{n}+x_{2}}{2} \\
\frac{x_{1}+x_{3}}{2} \\
\vdots \\
\frac{x_{n-1}+x_{1}}{2}
\end{array}\right]
$$

(hint: this operator commutes with the cyclic permutation of x_{i}).

