MAT 534: HOMEWORK 6 DUE MON, OCT 15

- **1.** Let $W \subset V$ be a subspace. Show that one can find a new subspace W' such that $V = W \oplus W'$. [Warning: there is no canonical way to choose W'].
- **2.** Construct an isomorphism $(V \oplus W)^* \simeq V^* \oplus W^*$.
- **3.** Prove the formula for Vandermonde determinant (discussed in class). (Hint: use induction and elementary row and column transformations.)
- 4. Find all eigenvectors of the operator A on \mathbb{C}^2 with the following matrix in the standard basis:

$$A = \begin{pmatrix} 6 & -1\\ 16 & -2 \end{pmatrix}$$

Is it diagonalizable?

5. Let A be an operator on a finite-dimensional vector space V . Define the exponent e^A by the following power series:

$$e^A = 1 + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

(you can use without proof that this sum is absolutely convergent in the natural topology on the space End(V).)

- (a) Let P be an invertible operator on V. Prove that $Pe^{A}P^{-1} = e^{PAP^{-1}}$
- (b) Prove that if A and B commute, then $e^{A+B} = e^A e^B$
- (c) Compute the exponent of the matrix

$$\begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$$

- (d) Prove that if A is antisymmetric (i.e. $A + A^t = 0$), then e^A is orthogonal (i.e. $AA^t = 1$).
- **6.** Let $L: V \to V$ be a linear operator.
 - (a) Prove that L is diagonalizable iff there exists a polynomial p without multiple roots such that p(L) = 0.
 - (b) Let L be diagonalizable and let $W \subset V$ be a subspace which is stable under L: $L(W) \subset W$. Prove that then the restriction of L to W is also diagonalizable.
- 7. Let $A, B: V \to V$ be commuting operators AB = BA.
 - (a) Show that if $V_{(\lambda)}$ is the generalized eigenspace for A (that is, $V_{(\lambda)} = \text{Ker}(A \lambda)^N$ for $N \gg 0$), then $B(V_{(\lambda)}) \subset V_{(\lambda)}$.
 - (b) Show that if A, B are both diagonalizable, then they can be diagonalized simultaneously: there is a basis in which both A, B are diagonal.

*(c) Diagonalize the operator $A \colon \mathbb{C}^n \to \mathbb{C}^n$ defined by

$$A\begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix} = \begin{bmatrix} \frac{x_n+x_2}{2}\\\frac{x_1+x_3}{2}\\\vdots\\\frac{x_{n-1}+x_1}{2} \end{bmatrix}$$

(hint: this operator commutes with the cyclic permutation of x_i).