MAT 534: HOMEWORK 5 (CORRECTED) DUE MON, OCT. 8

Throughout this homework, all vector spaces are considered over the field \mathbb{K} .

- **1.** Let $V' \subset V$ be a subspace.
 - (a) Show that there is a canonical isomorphism

 $(V/V')^* = \{ f \in V^* \mid f(w) = 0 \ \forall w \in V' \}$

thus, $(V/V')^*$ is naturally a subspace (not a quotient!) of V^* .

- (b) More generally, show that for any vector space W, one has $\operatorname{Hom}(V/V', W) = \{f \in \operatorname{Hom}(V, W) \mid f(w) = 0 \ \forall w \in V'\}.$
- 2. Let T be a linear operator on the finite-dimensional space V. Suppose there is a linear operator U on V such that TU = I. Prove that T is invertible, i.e. has both left and right inverse, and $U = T^{-1}$. Show that this is false when V is not finite-dimensional. (Hint: Let T = D be the differentiation operator on the space of polynomials.)
- **3.** Let V_1 and V_2 be subspaces of the same vector space V. Verify that $V_1 \cap V_2$ and $V_1 + V_2 = \{v_1 + v_2 \mid v_1 \in V_1; v_2 \in V_2\}$ are also subspaces. (a) Prove that

 $\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$

- (b) Show that if V is finite-dimensional, then it is possible to choose a basis $\{v_i\}_{i \in I}$ in V and two subsets $I_1, I_2 \subset I$ such that
 - $\{v_i\}_{i\in I_1}$ is a basis of V_1
 - $\{v_i\}_{i\in I_2}$ is a basis of V_2
 - $\{v_i\}_{i\in I_1\cup I_2}$ is a basis of $V_1 + V_2$
- *(c) (optional) Formulate and prove an analog of this for infinite-dimensional case.
- 4. Let $A: V \to V$ be a linear operator on a finite-dimensional space such that $A^2 = A$. Prove that then one can write $V = V_1 \oplus V_2$ so that $A|_{V_1} = \text{id}, A_{V_2} = 0$, so A is the projection operator. (Hint: take $V_1 = \text{Im } A, V_2 = \text{Ker } A$.)
- **5.** Let A, B be commuting linear operators $V \to V$ such that $A^2 = A, B^2 = B$. Prove that then Ker(AB) = Ker(A) + Ker(B)
- **6.** For a vector $v \in V$ and $f \in V^*$, denote $\langle f, v \rangle := f(v) \in \mathbb{K}$. Define, for a linear operator $L: V_1 \to V_2$, the *adjoint* operator $L^t: V_2^* \to V_1^*$ by

$$\langle L^t(f), v \rangle = \langle f, L(v) \rangle$$

- (a) Prove that $(AB)^t = B^t A^t$.
- (b) Without using bases, show that Ker $L^t = (V_2 / \text{Im } L)^*$. Can you describe Im L^t in terms of Im L, Ker L?
- (c) Assume that V_1, V_2 are finite-dimensional; choose bases $v_i \in V_1, w_j \in V_2$ and dual bases $v^i \in V_1^*, w^j \in V_2^*$. Let A be the matrix of L in the basis v_i, w_i , and let B be the matrix of L^t in the basis v^i, w^j . Prove that B is the transpose of A: $b_{ij} = a_{ji}$.