MAT 534: HOMEWORK 5 (CORRECTED)
 DUE MON, OCT. 8

Throughout this homework, all vector spaces are considered over the field \mathbb{K}.

1. Let $V^{\prime} \subset V$ be a subspace.
(a) Show that there is a canonical isomorphism

$$
\left(V / V^{\prime}\right)^{*}=\left\{f \in V^{*} \mid f(w)=0 \forall w \in V^{\prime}\right\}
$$

thus, $\left(V / V^{\prime}\right)^{*}$ is naturally a subspace (not a quotient!) of V^{*}.
(b) More generally, show that for any vector space W, one has $\operatorname{Hom}\left(V / V^{\prime}, W\right)=$ $\left\{f \in \operatorname{Hom}(V, W) \mid f(w)=0 \forall w \in V^{\prime}\right\}$.
2. Let T be a linear operator on the finite-dimensional space V. Suppose there is a linear operator U on V such that $T U=I$. Prove that T is invertible, i.e. has both left and right inverse, and $U=T^{-1}$. Show that this is false when V is not finite-dimensional. (Hint: Let $T=D$ be the differentiation operator on the space of polynomials.)
3. Let V_{1} and V_{2} be subspaces of the same vector space V. Verify that $V_{1} \cap V_{2}$ and $V_{1}+V_{2}=\left\{v_{1}+v_{2} \mid v_{1} \in V_{1} ; v_{2} \in V_{2}\right\}$ are also subspaces.
(a) Prove that

$$
\operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)-\operatorname{dim}\left(V_{1} \cap V_{2}\right)
$$

(b) Show that if V is finite-dimensional, then it is possible to choose a basis $\left\{v_{i}\right\}_{i \in I}$ in V and two subsets $I_{1}, I_{2} \subset I$ such that

- $\left\{v_{i}\right\}_{i \in I_{1}}$ is a basis of V_{1}
- $\left\{v_{i}\right\}_{i \in I_{2}}$ is a basis of V_{2}
- $\left\{v_{i}\right\}_{i \in I_{1} \cup I_{2}}$ is a basis of $V_{1}+V_{2}$
*(c) (optional) Formulate and prove an analog of this for infinite-dimensional case.

4. Let $A: V \rightarrow V$ be a linear operator on a finite-dimensional space such that $A^{2}=A$. Prove that then one can write $V=V_{1} \oplus V_{2}$ so that $\left.A\right|_{V_{1}}=\mathrm{id}, A_{V_{2}}=0$, so A is the projection operator. (Hint: take $V_{1}=\operatorname{Im} A, V_{2}=\operatorname{Ker} A$.)
5. Let A, B be commuting linear operators $V \rightarrow V$ such that $A^{2}=A, B^{2}=B$. Prove that then $\operatorname{Ker}(A B)=\operatorname{Ker}(A)+\operatorname{Ker}(B)$
6. For a vector $v \in V$ and $f \in V^{*}$, denote $\langle f, v\rangle:=f(v) \in \mathbb{K}$. Define, for a linear operator $L: V_{1} \rightarrow V_{2}$, the adjoint operator $L^{t}: V_{2}^{*} \rightarrow V_{1}^{*}$ by

$$
\left\langle L^{t}(f), v\right\rangle=\langle f, L(v)\rangle
$$

(a) Prove that $(A B)^{t}=B^{t} A^{t}$.
(b) Without using bases, show that $\operatorname{Ker} L^{t}=\left(V_{2} / \operatorname{Im} L\right)^{*}$. Can you describe $\operatorname{Im} L^{t}$ in terms of $\operatorname{Im} L$, Ker L ?
(c) Assume that V_{1}, V_{2} are finite-dimensional; choose bases $v_{i} \in V_{1}, w_{j} \in V_{2}$ and dual bases $v^{i} \in V_{1}^{*}, w^{j} \in V_{2}^{*}$. Let A be the matrix of L in the basis v_{i}, w_{i}, and let B be the matrix of L^{t} in the basis v^{i}, w^{j}. Prove that B is the transpose of A : $b_{i j}=a_{j i}$.

