MAT 534: HOMEWORK 4

DUE FRI, SEP. 28, 2012

1. Classify all groups of order 75 .
2. Classify all groups of order 20.
3. Let Q be the subgroup in \mathbb{R}^{n} generated by elements of the form $e_{i}-e_{j}, i \neq j$, and let $P=\left\{\lambda \in \mathbb{R}^{n} \mid \sum \lambda_{i}=0, \lambda \cdot \alpha \in \mathbb{Z} \forall \alpha \in Q\right\}$. (Here e_{i} are the standard generators of $\mathbb{Z}^{n}: e_{i}=(0, \ldots, 1, \ldots 0)$, with 1 in the $i^{\text {th }}$ place, and $\lambda \cdot \alpha=\sum \alpha_{i} \lambda_{i}$ is the usual dot product in \mathbb{R}^{n}.)

Show that P, Q are free abelian groups of rank $n-1$. Show that $Q \subset P$ and describe the quotient P / Q.
4. Let G be the abelian group generated by three elements x, y, z with defining relations $x^{3}=x y^{2} z^{3}=1$. Write this group in the canonical form (i.e., as a product of cyclic groups).
5. Same question for the group \mathbb{Z}^{3} / L, where L is the subgroup generated by elements

$$
\begin{aligned}
& u_{1}=(3,2,5) \\
& u_{2}=(0,1,3) \\
& u_{3}=(0,1,5)
\end{aligned}
$$

6. Let $L \subset \mathbb{Z}^{n}$ be the subgroup generated by rows of an $n \times n$ matrix A with integer entries. Show that if $\operatorname{det} A=0$, then \mathbb{Z}^{n} / L is infinite, and if $\operatorname{det} A \neq 0$, then $\left|\mathbb{Z}^{n} / L\right|=$ $|\operatorname{det} A|$.
