MAT 534: HOMEWORK 3 DUE FRI, SEPT. 21

- Let Aut(G) be the group of all automorphisms of G. Prove the following.
 (a) Aut(Z_n) = Z_n[×]
 (b) Aut(D₈) = D₈
- **2.** Prove that $\operatorname{Aut}(\mathbb{Z}_8) \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$, and use it to describe all semidirect products $\mathbb{Z}_2 \ltimes \mathbb{Z}_8$ (recall that this means that \mathbb{Z}_8 is the normal subgroup). One of these semidirect products is the dihedral group which one?
- **3.** Let $H \subset A_4$ be the subgroup generated by elements x = (12)(34), y = (13)(24). Describe the structure of H (i.e., is it isomorphic to a cyclic group? a product of cyclic groups? how large is it). Prove that H is normal in A_4 .
- **4.** Show that the groups S_3, S_4 are solvable.
- 5. (a) Let p be a prime number. Classify all groups of order p.
 - (b) Classify all groups of order 6.
 - (c) Let p and q be different prime numbers. Classify all Abelian groups of order pq.
- **6.** Let p and q be primes (not necessarily distinct) with $p \leq q$. Prove that if p does not divide q 1, then any group of order pq is Abelian.

Hint: Using the class equation, prove that any noncommutative group G of order pq has an element of order q. This element generate the normal cyclic subgroup H of order q. Study the action of G on H by conjugations and compare the resulting automorphisms of H with the possible automorphisms of a cyclic group of order q.

- **7.** Describe all Sylow 2-subgroups and 3-subgroups of D_6 (symmetries of a regular hexagon).
- 8. Prove that if |G| = 105, then G has a normal Sylow 5-subgroup and a normal Sylow 7-subgroup.