MAT 534: HOMEWORK 2

DUE FRI, SEPT. 14

1. Let A, B be groups and let π be an action of B on A by automorphisms: for every $b \in B, \pi_{b}: A \rightarrow A$ is a group automorphism. Let $G=A \times B$ (as a set) and define on it a binary operation by

$$
(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a \pi_{b}\left(a^{\prime}\right), b b^{\prime}\right) .
$$

Prove that this turns G into a group which is generated by two subgroups $\tilde{A}=$ $\left.\left\{\left(a, e_{B}\right)\right\} \simeq A, \tilde{B}=\left\{e_{A}, b\right)\right\} \simeq B$. Moreover, \tilde{A} is normal in G and the composition morphism

$$
\tilde{B} \hookrightarrow G \rightarrow G / \tilde{A}
$$

is an isomorphism.
(So constructed group is called a semidirect product: $G=A \rtimes B$)
2. (a) Prove that the group of symmetries of an equilateral triangle is isomorphic to S_{3}.
(b) Prove that the group of rotations of a cube is isomorphic to S_{4}. [Hint: it acts on the set of diagonals...] Describe the stabilizer of a vertex; of an edge.
(c) For each pair of parallel faces of a cube consider the line passing through the centers of the faces. Using that all rotations of a cube permute these lines, construct an epimorphism $S_{4} \rightarrow S_{3}$.
3. How many ways are there to group numbers $\{1 \ldots 2 n\}$ into pairs? Order of pairs and order inside each pair is not important. For example, for $n=2$, there are three ways:

$$
(12)(34) ; \quad(13)(24) ; \quad(14)(23)
$$

(Hint: first show that one can define a transitive action of $S_{2 n}$ on the set of all such pairings.)
4. Let $\sigma \in S_{9}$ be defined by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
3 & 8 & 5 & 9 & 7 & 4 & 1 & 2 & 6
\end{array}\right)
$$

(a) Find the cycle decomposition of σ. What is the order of σ ?
(b) Find the sign of σ
5. (a) Prove that the alternating group A_{n} is a normal subgroup in S_{n}.
(b) Prove that A_{n} is generated by cycles of length 3 .
6. (a) Describe all conjugacy classes in S_{5}. How many elements are in each conjugacy class?
(b) Describe all conjugacy classes in A_{5}. How many elements are in each conjugacy class?
7. Show that if G is a group, and $\varphi_{g}: G \rightarrow G$ is conjugation by $g: \varphi_{g}(x)=g x g^{-1}$, then for any automorphism σ we have $\sigma \circ \varphi_{g} \circ \sigma^{-1}=\varphi_{\sigma(g)}$. Deduce from this that the group $\operatorname{Inn}(G)$ of inner automorphisms is a normal subgroup in $\operatorname{Aut}(G)$.
8. Show that if $G / Z(G)$ is cyclic, then G is Abelian. (Here $Z(G)$ is the center of G.)
9. From Dummit and Foote, p. 132, problem 33

