MAT 534: HOMEWORK 10

DUE WED, DEC 5

Throughout this assignment, \mathbb{F} is an arbitrary field.

1. For each of the following polynomials, determine whether it is irreducible in the indicated ring. [$\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is the finite field with p elements.]
(a) $x^{4}+4$ in $\mathbb{Q}[x]$
(b) $x^{4}-4 x^{3}+6$ in $\mathbb{Q}[x]$
(c) $x^{2}+x+1$ in $\mathbb{F}_{2}[x]$
(d) $x^{4}+1$ in $\mathbb{F}_{5}[x]$
(e) $x^{4}+10 x^{2}+5 x+1$ in $\mathbb{Q}[x]$
2. Dummit and Foote, p. 312, exercise 19 (a), (b).
3. Dummit and Foote, p. 315, exercise 6. [You can use results of exercise 5 on the same page.]
4. (a) Show that if M is an R-module and N - a submodule such that $N, M / N$ are finitely generated, then M is also finitely generated.
(b) Let M be a finitely generated module over a Noetherian ring. Prove that any submodule of M is also finitely generated. [Hint: prove this first for free modules using induction in rank.]
5. Dummit and Foote, p. 344, exercise 8.
6. Dummit and Foote, p. 344, exercise 9.
7. Let M be a module over a PID R and $a \in R$ annihilates $M: a m=0$ for any $m \in M$. Assume that $a=a_{1} \ldots a_{n}$, where a_{i} are pairwise relatively prime. Prove that then

$$
M=M_{1} \oplus \cdots \oplus M_{n}, \quad M_{i}=\left\{m \in M \mid a_{i} M=0\right\}
$$

[Hint: first prove it for $n=2$ and then use induction.]
8. Dummit and Foote, p. 356, exercise 2.

