MAT 511: PRACTICE MIDTERM SOLUTIONS TU, OCT 11, 2016

Your name:______(please print)

This is a practice midterm. It is longer and the actual one — to give you more practice. No books or notes other than the handout posted on course web page. Notation:

 \mathbb{Z} — integer numbers

 \mathbb{Z}_+ — positive integers

 \mathbb{R} — real numbers

1. A (fictional) tax form contains the following statement:

You can use the tax deduction if you do not itemize deductions and your adjusted gross income is less than \$54, 000 (\$61, 000 for married filing jointly).

Write this statement in the language of propositional logic using notation

D: you can use the tax deduction

I: you itemize deductions

M: your filing status is "married filing jointly"

P: your adjusted gross income is less than \$54, 000

Q: your adjusted gross income is less than \$61, 000

Solution: This can be written as

 $\left(\sim I \land (\text{your income is lower than the cutoff})\right) \implies D$

The income condition can be written as $P \vee (M \wedge Q)$. Thus, the answer is

$$\Big(\sim I \wedge (P \lor (M \land Q)) \Big) \implies D$$

Note: the income condition can be also written as $(\sim M \land P) \lor (M \land Q)$. Both forms are correct (in fact, they are equivalent.)

2. Consider the following statement:

"Any student in this class who gets an A for the midterm is either a genius or a hard worker".

(a) Rewrite this statement using quantifiers, logical connectives, and the following notation:

S — set of all students in the class

A(x): student x gets an A for the midterm.

G(x): student x is a genius

H(x): student x is a hard worker

Solution:

$$\forall x \in S : A(x) \implies (G(x) \lor H(x))$$

(b) Write the negation of this statement, both in formal language using quantifiers and in plain English.

Solution:

$$\sim \left(\forall x \in S \colon A(x) \implies (G(x) \lor H(x)) \right)$$

Using the laws of logic, we can rewrite this as

$$\exists x \in S \colon \sim (A(x) \implies (G(x) \lor H(x)))$$

or, equivalently

 $\exists x \in S \colon (A(x) \land \sim (G(x) \lor H(x)))$

In plain English: some students in the class get A for the midterm without being geniuses or working hard.

3. Prove that for any $n \ge 3$, we have

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{3}{5}$$

Solution: proof by induction.

Base case: n = 3. In this case, the inequality becomes

$$\frac{1}{4} + \frac{1}{5} + \frac{1}{6} \ge \frac{3}{5}$$

Since the left-hand side is equal to

$$\frac{15}{60} + \frac{12}{60} + \frac{10}{60} = \frac{37}{60}$$

and $\frac{3}{5} = \frac{36}{60}$, the inequality is true. Induction step: denote for simplicity

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} = a_n.$$

Assume that $a_n \ge 3/5$. We need to prove that then, $a_{n+1} \ge 3/5$. But

$$a_{n+1} = \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n+2}$$
$$= a_n - \frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2n+2}$$

Since

$$\frac{1}{n+1} + \frac{1}{2n+1} + \frac{1}{2n+2} \ge -\frac{1}{n+1} + \frac{1}{2n+2} + \frac{1}{2n+2} = -\frac{1}{n+1} + \frac{2}{2n+2} = 0$$

we see that $a_{n+1} \ge a_n$. Thus, if $a_n \ge 3/5$, then $a_{n+1} \ge 3/5$. This completes the proof.

4. Prove the following statement

(1)

$$\forall x \in \mathbb{R} - \{0\}: \ x + \frac{1}{x} > 0 \implies x > 0$$

You can use all the usual properties of real numbers, including properties of inequalities.

Solution: Let $x \in \mathbb{R} - \{0\}$. We need to prove that then

$$x + \frac{1}{x} > 0 \implies x > 0$$

Since $x \neq 0$, either x > 0 or x < 0. Consider these two cases separately. **Case 1:** x > 0. Then $x + \frac{1}{x} > 0$ is true, and x > 0 is also true, so (1) is true.

Case 2: x < 0. Then $\frac{1}{x} < 0$, so $x + \frac{1}{x} < 0$. Thus, in this case (1) becomes $F \implies F$, which is true. So, in this case (1) is also true.

- 5. For each of the following statements tell whether it is true or false, and justify your answer by giving a proof. You can use all the usual properties of real numbers, including properties of inequalities.
 - (a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : 0 < y < x$ TRUE FALSE Solution: FALSE. Counterexample: take x = -1.

(b) $\forall x \in \mathbb{R}_+, \exists y \in \mathbb{R}_+ : 0 < y < x$ TRUE FALSE (here \mathbb{R}_+ is the set of positive real numbers) Solution: TRUE. Given x > 0, take y = x/2. Then 0 < y < x.

(c) $\exists y \in \mathbb{R}_+, \forall x \in \mathbb{R}_+ : 0 < y < x$ TRUE FALSE (here \mathbb{R}_+ is the set of positive real numbers) Solution: FALSE. Assume that such a y exists; then for any $x \in \mathbb{R}_+$, we have 0 < y < x. Taking x = y, we get a contradiction. **6.** Prove that for any sets A, B we have $A \cap (A \cup B) = A$. Note: you can use Venn diagrams to illustrate your proof; however, Venn diagrams by themselves will not be considered sufficient proof.

Solution: Assume $x \in A \cap (A \cup B)$. Then, by definition of intersection, $x \in A$ and $x \in A \cup B$. This implies $x \in A$.

Conversely, assume $x \in A$. Then, by definition of union, $x \in A \cup B$. Thus, $(x \in A) \land (x \in A \cup B)$, so $x \in A \cap (A \cup B)$.

Therefore, we have shown that $(x \in A) \iff (x \in A \cap (A \cup B))$. By definition, it means that $A \cap (A \cup B) = A$.