MAT 511: PRACTICE MIDTERM

TU, OCT 11, 2016

Your name:
(please print)
This is a practice midterm. It is longer and the actual one — to give you more practice
No books or notes other than the handout posted on course web page.
Notation:
\mathbb{Z} — integer numbers
\mathbb{Z}_+ — positive integers
\mathbb{R} — real numbers

1. A (fictional) tax form contains the following statement:

You can use the tax deduction if you do not itemize deductions and your adjusted gross income is less than \$54,000 (\$61,000 for married filing jointly).

Write this statement in the language of propositional logic using notation

D: you can use the tax deduction

I: you itemize deductions

M: your filing status is "married filing jointly"

P: your adjusted gross income is less than \$54,000

Q: your adjusted gross income is less than \$61,000

2. Consider the following statement:

"Any student in this class who gets an A for the midterm is either a genius or a hard worker".

- (a) Rewrite this statement using quantifiers, logical connectives, and the following notation:
 - S set of all students in the class
 - A(x): student x gets an A for the midterm.
 - G(x): student x is a genius
 - H(x): student x is a hard worker

(b) Write the negation of this statement, both in formal language using quantifiers and in plain English.

3. Prove that for any $n \geq 3$, we have

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge \frac{3}{5}$$

4. Prove the following statement

$$\forall x \in \mathbb{R} - \{0\}: \ x + \frac{1}{x} > 0 \implies x > 0$$

You can use all the usual properties of real numbers, including properties of inequalities.

- 5. For each of the following statements tell whether it is true or false, and justify your answer by giving a proof. You can use all the usual properties of real numbers, including properties of inequalities.
 - (a) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : 0 < y < x$

TRUE FALSE

(b) $\forall x \in \mathbb{R}_+, \exists y \in \mathbb{R}_+ : 0 < y < x$ (here \mathbb{R}_+ is the set of positive real numbers)

TRUE FALSE

(c) $\exists y \in \mathbb{R}_+, \forall x \in \mathbb{R}_+ : 0 < y < x$ (here \mathbb{R}_+ is the set of positive real numbers)

TRUE FALSE

6. Prove that for any sets A, B we have $A \cap (A \cup B) = A$. Note: you can use Venn diagrams to illustrate your proof; however, Venn diagrams by themselves will not be considered sufficient proof.