MAT 511: HOMEWORK 9 DUE TU, NOV 15

- **1.** Prove that if f, g are functions such that composition $f \circ g$ is injective, then g is injective. Show that f might not be injective.
- **2.** Construct bijections
 - (a) $\mathbb{R}_{>0} \to \mathbb{R}$
 - (b) $(0,1) \to \{x \in \mathbb{R} \mid x > 1\}$
 - (c) $(0,1) \to \mathbb{R}_{>0}$
 - (d) $(0,1) \to \mathbb{R}$
- **3.** Prove that if $f: A \to B$ is injective, and $X_1, X_2 \subseteq A$, then $f(X_1 \cap X_2) = f(X_1) \cap f(X_2)$.
- **4.** Prove that if A, B, C are finite sets, then

$$\begin{aligned} |A \cup B \cup C| = |A| + |B| + |C| \\ - |A \cap B| - |A \cap C| - |B \cap C| \\ + |A \cap B \cap C| \end{aligned}$$

- 5. Consider the sequence of integer numbers $a_1 = 1$, $a_2 = 11$, $a_3 = 111$, $a_4 = 1111$, Prove that in this sequence there are two numbers whose difference is a multiple of 37.
- 6. Let $S \subseteq \mathbb{N}$ be a set which consists of 10 two-digit integers. Prove that then it is possible to find two different subsets $S_1, S_2 \subseteq S$ such that sum of all elements in S_1 is equal to sum of elements in S_2 .
- 7. (Extra Bonus problem) Formulate and prove an analogue of Problem 4 for four sets.