MAT 511: HOMEWORK 9

DUE TU, NOV 15

1. Prove that if f, g are functions such that composition $f \circ g$ is injective, then g is injective. Show that f might not be injective.
2. Construct bijections
(a) $\mathbb{R}_{>0} \rightarrow \mathbb{R}$
(b) $(0,1) \rightarrow\{x \in \mathbb{R} \mid x>1\}$
(c) $(0,1) \rightarrow \mathbb{R}_{>0}$
(d) $(0,1) \rightarrow \mathbb{R}$
3. Prove that if $f: A \rightarrow B$ is injective, and $X_{1}, X_{2} \subseteq A$, then $f\left(X_{1} \cap X_{2}\right)=f\left(X_{1}\right) \cap f\left(X_{2}\right)$.
4. Prove that if A, B, C are finite sets, then

$$
\begin{aligned}
|A \cup B \cup C|= & |A|+|B|+|C| \\
& -|A \cap B|-|A \cap C|-|B \cap C| \\
& +|A \cap B \cap C|
\end{aligned}
$$

5. Consider the sequence of integer numbers $a_{1}=1, a_{2}=11, a_{3}=111, a_{4}=1111, \ldots$. Prove that in this sequence there are two numbers whose difference is a multiple of 37.
6. Let $S \subseteq \mathbb{N}$ be a set which consists of 10 two-digit integers. Prove that then it is possible to find two different subsets $S_{1}, S_{2} \subseteq S$ such that sum of all elements in S_{1} is equal to sum of elements in S_{2}.
7. (Extra Bonus problem) Formulate and prove an analogue of Problem 4 for four sets.
