MAT 511: HOMEWORK 7
 DUE TH, OCT 27

1. Which of the following relations on the set \mathbb{R} are equivalence relations? For each realtion that is an equivalence relation, describe the equivalence class $[\sqrt{2}]$.
(a) $x \sim y$ if $x y \geq 0$
(b) $x \sim y$ if $x+y=1$
(c) $x \sim y$ if $x-y \in \mathbb{Q}$ (here \mathbb{Q} is the set of rational numbers)
(d) $x \sim y$ if $x^{2}=y^{2}$.
(e) $x \sim y$ if $(x=y$ or $x y=1)$.
2. Recall the equivalence relation on the set \mathbb{Z} defined by

$$
a \equiv b \quad \bmod n \quad \text { if } n \mid a-b
$$

(it is called "congruence modulo n ").
(a) Prove that if $a \equiv b \bmod n$ and $c \equiv d \bmod n$, then $a+c \equiv b+d \bmod n($ in other words, congruences can be added).
(b) Prove that if $a \equiv b \bmod n$ and $c \equiv d \bmod n$, then $a c \equiv b d \bmod n($ in other words, congruences can be multiplied).
(c) Show that it is possible that $a b \equiv 0 \bmod n$, but $a \not \equiv 0 \bmod n, b \not \equiv 0 \bmod n$.
3. Let $A=\mathbb{R} \times \mathbb{R}-\{(0,0)\}$ be the plane with the origin removed. Consider the following relation on A :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \quad \text { if } \exists t \in \mathbb{R}_{>0}: x_{2}=t x_{1}, y_{2}=t y_{1}
$$

(a) Prove that this is an equivalence relation.
(b) Describe and plot on the cooridnate plane the equivalence class $[(1,1)]$.
4. Let $A=\mathbb{Z} \times \mathbb{Z}$. Consider the following relation on A :

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \quad \text { if } x_{1}-x_{2} \text { is even, } \quad y_{1}-y_{2} \text { is even } .
$$

(a) Prove that this is an equivalence relation.
(b) Describe the equivalence class $[(1,1)]$.
(c) How many equivalence classes are there?

