MAT 511: HOMEWORK 6 DUE TH, OCT 13

- **1.** Use induction to prove the following formulas
 - (a) $1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! 1$
 - (b) $\sum_{i=1}^{n} (3i-2) = n(3n-1)/2$
 - (c) $\overline{n!} > 3n$ for all $n \ge 4$
 - (d) $5^{2n} 1$ is divisible by 8.
- **2.** Let the sequence a_n be defined by $a_1 = 2$, $a_{n+1} = 3a_n 2$. Guess the formula for a_n and use induction to prove it.
- **3.** Read he description of the game "Towers of Hanoi" (e.g., here: https://en.wikipedia.org/wiki/Tower_of_Hanoi) and use induction to prove that this game with n disks can be solved in $2^n - 1$ moves.
- **4.** Let F_n be the Fibonacci sequence defined in class. Prove the following:

 - (a) For any n, $gcd(F_n, F_{n+1}) = 1$ (b) For any n, $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$
- 5. It is known that if a (real or complex) number a is a root of polynomial p(x), then p(x) is divisible by x - a (i.e., it can be written in the form p(x) = (x - a)q(x) for some polynomial q(x)). Use this to prove that a polynomial of degree n can not have more than n roots. Try to be as precise as possible, avoiding words like "and so on..".