MAT 511: HOMEWORK 6
 DUE TH, OCT 13

1. Use induction to prove the following formulas
(a) $1 \cdot 1$! $+2 \cdot 2!+\cdots+n \cdot n!=(n+1)$! -1
(b) $\sum_{i=1}^{n}(3 i-2)=n(3 n-1) / 2$
(c) $n!>3 n$ for all $n \geq 4$
(d) $5^{2 n}-1$ is divisible by 8 .
2. Let the sequence a_{n} be defined by $a_{1}=2, a_{n+1}=3 a_{n}-2$. Guess the formula for a_{n} and use induction to prove it.
3. Read he description of the game "Towers of Hanoi" (e.g., here: https://en.wikipedia.org/wiki/Tower_of_Hanoi) and use induction to prove that this game with n disks can be solved in $2^{n}-1$ moves.
4. Let F_{n} be the Fibonacci sequence defined in class. Prove the following:
(a) For any $n, \operatorname{gcd}\left(F_{n}, F_{n+1}\right)=1$
(b) For any $n, F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$
5. It is known that if a (real or complex) number a is a root of polynomial $p(x)$, then $p(x)$ is divisible by $x-a$ (i.e., it can be written in the form $p(x)=(x-a) q(x)$ for some polynomial $q(x)$). Use this to prove that a polynomial of degree n can not have more than n roots. Try to be as precise as possible, avoiding words like "and so on..".
