MAT 511: HOMEWORK 5 DUE TH, OCT 6

1. Let the universe be the set of all real numbers. Let $A = [3, 8), B = [2, 6], C = (5, \infty)$. Find

- (a) $A \cap B$ (b) $A \cup B$ (c) $A \cup (B \cap C)$ (d) A - B(e) A^c
- **2.** Prove that $A \cup B = B$ iff $A \subseteq B$
- **3.** Prove that $(A B) \cap (A C) = A (B \cup C)$.
- **4.** Give a counterexample to the following statement: If $(A \cap B) \subseteq (C \cap B)$, then $A \subseteq C$.
- 5. Let the family of sets $A_n, n \in \mathbb{N}$, be defined by $A_n = \left(-n, \frac{1}{n}\right)$ (here $\mathbb{N} = \{1, 2, ...\}$ is the set of positive integers). Find $\bigcup_{n=1}^{\infty} A_n$, $\bigcap_{n=1}^{\infty} A_n$.
- **6.** Prove that if A_i , $i \in I$ is a family of sets indexed by $i \in I$, then for any set B, we have

$$B \cap (\bigcup_{i \in I} A_i) = \bigcup_{i \in I} (B \cap A_i).$$

7. Give an example of a family of subsets $A_i \subset \mathbb{Z}$ indexed by $i \in \mathbb{N}$ such that intersection of any finite collection of them is nonempty, but intersection $\bigcap A_i$ over all i is empty.