MAT 511: HOMEWORK 5
 DUE TH, OCT 6

1. Let the universe be the set of all real numbers. Let $A=[3,8), B=[2,6], C=(5, \infty)$. Find
(a) $A \cap B$
(b) $A \cup B$
(c) $A \cup(B \cap C)$
(d) $A-B$
(e) A^{c}
2. Prove that $A \cup B=B$ iff $A \subseteq B$
3. Prove that $(A-B) \cap(A-C)=A-(B \cup C)$.
4. Give a counterexample to the following statement:

If $(A \cap B) \subseteq(C \cap B)$, then $A \subseteq C$.
5. Let the family of sets $A_{n}, n \in \mathbb{N}$, be defined by $A_{n}=\left(-n, \frac{1}{n}\right)$ (here $\mathbb{N}=\{1,2, \ldots\}$ is the set of positive integers).

Find $\bigcup_{n=1}^{\infty} A_{n}, \bigcap_{n=1}^{\infty} A_{n}$.
6. Prove that if $A_{i}, i \in I$ is a family of sets indexed by $i \in I$, then for any set B, we have

$$
B \cap\left(\bigcup_{i n \in I} A_{i}\right)=\bigcup_{i n \in I}\left(B \cap A_{i}\right) .
$$

7. Give an example of a family of subsets $A_{i} \subset \mathbb{Z}$ indexed by $i \in \mathbb{N}$ such that intersection of any finite collection of them is nonempty, but intersection $\bigcap A_{i}$ over all i is empty.
