MAT 511: HOMEWORK 11

DUE TU, DEC 6

In problems in this assignment, you can write the answers as expressions containing ${ }_{N} C_{k}$, $k!$ and powers. You are not required to compute these expressions.

1. For each of the following sets, determine whether it is finite, denumerable, or neither.
(a) Set \mathbb{Q}_{+}of positive rational numbers
(b) $\mathbb{Q} \times \mathbb{Q}$
(c) Set of all polynomials of degree $\leq N$ with rational coefficients.
(d) Set of all polynomials with rational coefficients.
(e) Set of all algebraic numbers. (A real number x is called algebraic if it is a root of a polynomial with integer coefficients.)
2. Is it true that if A, B are denumerable sets, then $A-B$ is denumerable?
3. Show that the set $\mathbb{R}-\mathbb{Q}$ of all irrational numbers is not denumerable. (Hint: use proof by contradiction.)
4. Prove that the following sets are not denumerable:
(a) Set of all infinite sequences of zeros and ones.
(b) Set of all functions $\mathbb{N} \rightarrow \mathbb{N}$
(c) The unit circle $S=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$
