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1. Basic theorems about limits

We say that the sequence an converges (or is convergent) if the limit lim an exists and is
finite.

Theorem 1. If a sequence converges, then it is bounded.

Theorem 2. If the sequence an converges and an ≥ 0 for all n, then lim an ≥ 0.

Note: if we replace ≥ by > in both places, the statement could fail: there are positiive
sequences whose limit is equal to zero.

Theorem 3 (Comparison theorem). If lim an = 0 and |bn| ≤ |an| for all n, then lim bn = 0.

Theorem 4 (Sum, product, and quotient rule for limits). If sequences an, bn converge, then

1. lim(k · an) = k lim an
2. lim(an + bn) = (lim an) + (lim bn)
3. lim(anbn) = (lim an) · (lim bn)
4. If, in addition, lim bn 6= 0, then lim(an/bn) = (lim an)/(lim bn).

Some (but not all) of these results also apply when one or both limits are infinite. See
Section 9 in the book.

2. Existence of limits

The results below are based ont he use of Completeness Axiom for real numbers.

Theorem 5 (Monotone convergence). Every bounded above increasing sequence has a limit;
moreover, for such a sequence lim an = sup an.

A similar result also holds for decreasing sequences.

Theorem 6 (Nested intervals property). Let I1 = [a1, b1], I2 = [a2, b2], . . . be a sequence of
nested intervals:

I1 ⊇ I2 ⊇ I3 ⊇ . . .

Then there exists a common point: ∃c ∈ R : c ∈ [ak, bk] for all k.

Note: this theorem is not in the book!

Definition. A sequence is called a Cauchy sequence if the following property holds:

∀ε > 0 ∃N : k ≥ N, l ≥ N =⇒ |ak − al| < ε

Theorem 7. A sequence converges if and only if it is a Cauchy sequence.



3. Subsequences

Theorem 8. If lim an = L (finite or infinite), then for any subsequence tn of an, we have
lim tn = L.

Theorem 9. A number A is a limit of some subsequence of an if and only if, for every
ε > 0, the interval (A− ε, A + ε) contains infinitely many terms of the sequence.

Theorem 10 (Bolzano–Weierstrass). Any bounded sequence contains a convergent subse-
quence.

4. Lim sup, lim inf

For a sequence sn, denote by S the set of subsequential limits of S, i.e. the set of limits
of all possible subsequences of sn (including infinite limits):

S = {L | L = lim tn for some subsequence tn of sn}
This set is always non-empty: for a bounded sequence, by Bolzano-Weierstrass theorem; for
unbounded sequence, you can find a subsequence with limit ±∞.

Definition. Let sn be a sequence and let S be the set of subsequential limits of sn as above.
Then we define

lim sup(sn) = sup(S)

lim inf(sn) = inf(S)

These numbers are defined for any sequence sn.

Theorem 11. A sequence sn has a limit (finite or infinite) if and only if lim sup sn =
lim inf sn. In this case, lim sn = lim sup sn = lim inf sn.

Theorem 12. lim sup sn is itself a limit of some subsequence of sn. Thus, lim sup sn =
max(S).

A similar result holds for lim inf.
The result below was mentioned in class, but was not fully proved.

Theorem 13. If A = lim sup sn is finite, then for any ε > 0 there are only finitely many
terms of the sequence satisfying sn > A + ε, and there are infinitely many terms of sn
satisfying sn > A− ε.


