MAT 319 HANDOUT 1: LIMITS OF SEQUENCES OCT 13, 2016 ## 1. Basic theorems about limits We say that the sequence a_n converges (or is convergent) if the limit $\lim a_n$ exists and is finite. **Theorem 1.** If a sequence converges, then it is bounded. **Theorem 2.** If the sequence a_n converges and $a_n \ge 0$ for all n, then $\lim a_n \ge 0$. Note: if we replace \geq by > in both places, the statement could fail: there are positiive sequences whose limit is equal to zero. **Theorem 3** (Comparison theorem). If $\lim a_n = 0$ and $|b_n| \le |a_n|$ for all n, then $\lim b_n = 0$. **Theorem 4** (Sum, product, and quotient rule for limits). If sequences a_n, b_n converge, then - 1. $\lim(k \cdot a_n) = k \lim a_n$ - **2.** $\lim(a_n + b_n) = (\lim a_n) + (\lim b_n)$ - 3. $\lim(a_nb_n)=(\lim a_n)\cdot(\lim b_n)$ - **4.** If, in addition, $\lim b_n \neq 0$, then $\lim (a_n/b_n) = (\lim a_n)/(\lim b_n)$. Some (but not all) of these results also apply when one or both limits are infinite. See Section 9 in the book. ## 2. Existence of limits The results below are based ont he use of Completeness Axiom for real numbers. **Theorem 5** (Monotone convergence). Every bounded above increasing sequence has a limit; moreover, for such a sequence $\lim a_n = \sup a_n$. A similar result also holds for decreasing sequences. **Theorem 6** (Nested intervals property). Let $I_1 = [a_1, b_1]$, $I_2 = [a_2, b_2]$, ... be a sequence of nested intervals: $$I_1 \supset I_2 \supset I_3 \supset \dots$$ Then there exists a common point: $\exists c \in \mathbb{R} : c \in [a_k, b_k]$ for all k. Note: this theorem is not in the book! **Definition.** A sequence is called a *Cauchy sequence* if the following property holds: $$\forall \varepsilon > 0 \ \exists N \colon k \ge N, l \ge N \implies |a_k - a_l| < \varepsilon$$ **Theorem 7.** A sequence converges if and only if it is a Cauchy sequence. ## 3. Subsequences **Theorem 8.** If $\lim a_n = L$ (finite or infinite), then for any subsequence t_n of a_n , we have $\lim t_n = L$. **Theorem 9.** A number A is a limit of some subsequence of a_n if and only if, for every $\varepsilon > 0$, the interval $(A - \varepsilon, A + \varepsilon)$ contains infinitely many terms of the sequence. **Theorem 10** (Bolzano-Weierstrass). Any bounded sequence contains a convergent subsequence. For a sequence s_n , denote by S the set of subsequential limits of S, i.e. the set of limits of all possible subsequences of s_n (including infinite limits): $$S = \{L \mid L = \lim t_n \text{ for some subsequence } t_n \text{ of } s_n\}$$ This set is always non-empty: for a bounded sequence, by Bolzano-Weierstrass theorem; for unbounded sequence, you can find a subsequence with limit $\pm \infty$. **Definition.** Let s_n be a sequence and let S be the set of subsequential limits of s_n as above. Then we define $$\limsup(s_n) = \sup(S)$$ $$\liminf(s_n) = \inf(S)$$ These numbers are defined for any sequence s_n . **Theorem 11.** A sequence s_n has a limit (finite or infinite) if and only if $\limsup s_n = \liminf s_n$. In this case, $\lim s_n = \limsup s_n = \liminf s_n$. **Theorem 12.** $\limsup s_n$ is itself a limit of some subsequence of s_n . Thus, $\limsup s_n = \max(S)$. A similar result holds for $\lim \inf$. The result below was mentioned in class, but was not fully proved. **Theorem 13.** If $A = \limsup s_n$ is finite, then for any $\varepsilon > 0$ there are only finitely many terms of the sequence satisfying $s_n > A + \varepsilon$, and there are infinitely many terms of s_n satisfying $s_n > A - \varepsilon$.