MAT 314: HOMEWORK 7
DUE TH, APRIL 18, 2019

Throughout this problem set, \(F \) is a field.

1. Show that if \(E \) is an extension of field \(F \) such that any polynomial \(f \in F[x] \) splits in \(E \), then \(E \) is algebraically closed: every polynomial from \(E[x] \) splits in \(E \).

2. Show that any extension of \(\mathbb{Q} \) of degree 2 is of the form \(E = \mathbb{Q}(\sqrt{d}) \) for some rational \(d \).

3. Find degree and minimal polynomial over \(\mathbb{Q} \) of the following complex numbers:
 (a) \(\sqrt{-3} + \sqrt{2} \)
 (b) \(\sqrt{1 + \sqrt{2}} \)

4. Let \(\mathbb{F}_q \) be the finite field with \(q \) elements, \(q = p^n \).
 Prove that \(\mathbb{F}_{p^m} \) contains a subfield with \(p^m \) elements if and only if \(m \) is a divisor of \(n \). In this case, such a subfield is unique.

5. A complex number \(z \) is called \emph{primitive} \(n \)th root of unity if \(z^n = 1 \), but for all \(1 \leq k < n \), we have \(z^k \neq 1 \).
 (a) Show that if \(z \) is a primitive \(n \)th root of unity, then all other primitive \(n \)th roots of unity are \(z^k \), where \(k \) is relatively prime with \(n \). In particular, the number of such primitive roots of unity is \(\varphi(n) \), where \(\varphi(n) \) is Euler’s function.
 (b) Define the \emph{cyclotomic polynomial} \(\Phi_n(x) = \prod (x - z_i) \in \mathbb{C}[x] \) where the product is taken over all primitive \(n \)th roots of unity.
 Prove that then \(x^n - 1 = \prod_{d|n} \Phi_d(x) \) where the product is taken over divisors \(d \) of \(n \) (including 1 and \(n \)).
 (c) Prove that \(\Phi_n(x) \) has integer coefficients.
 (d) Compute the following cyclotomic polynomials:
 (i) \(\Phi_p(x) \), where \(p \) is prime
 (ii) \(\Phi_6(x) \)
 (iii) \(\Phi_4(x) \)
 (iv) \(\Phi_{12}(x) \).

 The cyclotomic polynomials play an important role in the study of filed extensions. It is known that for any \(n \), \(\Phi_n(x) \) is irreducible over \(\mathbb{Q} \).

6. Let \(z = e^{2\pi i/5} \in \mathbb{C} \), and let \(t = (z + z^{-1})/2 = \cos(2\pi/5) \).
 (a) Show that we have a chain of extensions \(\mathbb{Q} \subset \mathbb{Q}(t) \subset \mathbb{Q}(z) \)
 and \([\mathbb{Q}(z) : \mathbb{Q}(t)] = [\mathbb{Q}(t) : \mathbb{Q}] = 2 \).
 (b) Find the minimal polynomials of \(t, z \).
 (c) Write a formula for \(z \) which only uses rational numbers, arithmetic operations, and square roots.