Throughout this problem set, \(\mathbb{F} \) is a field.

1. Let \(\alpha = \sqrt{2} + \sqrt{3} \in \mathbb{R} \).

 (a) Show that \(\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3}) \).

 (b) Find the minimal polynomial of \(\alpha \) over \(\mathbb{Q} \).

 (c) Let \(\alpha' = \sqrt{2} - \sqrt{3} \). Show that there exists a field isomorphism \(\mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha') \) which sends \(\alpha \) to \(\alpha' \).

2. For each of the following polynomials, describe its splitting field over \(\mathbb{Q} \).

 (a) \(x^4 + 1 \)

 (b) \(x^3 - 5 \)

 (c) \(x^4 + x^2 + 1 \)

3. Let \(\mathbb{F} \) be a field of characteristic zero.

 For a polynomial \(f = \sum a_k x^k \in \mathbb{F}[x] \), define its derivative by

 \[Df = \sum ka_k x^{k-1} \in \mathbb{F}[x]. \]

 (a) Show that the derivative satisfies familiar rules:

 \[D(f + g) = Df + Dg, \quad D(fg) = (Df)g + f(Dg). \]

 (b) Show that if \(\mathbb{E} \supset \mathbb{F} \) is an extension of \(\mathbb{F} \), and \(a \in \mathbb{E} \) is a root of \(f \) of order \(m \geq 1 \), then \(a \) is a root of \(Df \) of order \(m - 1 \). Is this true if \(\mathbb{F} \) has positive characteristic?

 (c) Show that \(f \) has no multiple roots (in any extensions of \(\mathbb{F} \)) iff \(\gcd(f, Df) = 1 \). In particular, it holds if \(f \) is irreducible.

4. Let \(\mathbb{F} \) be a field of characteristic \(p > 0 \).

 (a) Show that the map \(Fr: \mathbb{F} \to \mathbb{F} \) given by \(Fr(x) = x^p \) is a homomorphism of fields. Deduce from this that if \(\mathbb{F} \) is finite, then \(Fr \) is a bijection. [It is called the Frobenius automorphism].

 (b) Show that the the set \(\{ x \in \mathbb{F} \mid x^p = x \} \) is a subfield in \(\mathbb{F} \), which is isomorphic to \(\mathbb{Z}_p \). [Hint: how many different roots does the polynomial \(x^p - x \) have?]