Throughout the assignment, words PID mean “principal ideal domain”. You can use all the results about PIDs discussed in class, in particular:

- \(\gcd(a, b) = d \iff (a) + (b) = (d) \)
- \(\lcm(a, b) = m \iff (a) \cap (b) = (m) \)
- \(\gcd(a, b) = 1 \iff a \) is invertible in \(R/(b) \)

1. Let \(R \) be a PID, and \(a, b \in R \) be such that \(\gcd(a, b) = 1 \).
 (a) Prove that \(ax \) is divisible by \(b \) iff \(x \) is divisible by \(b \).
 (b) Prove that then \(\lcm(a, b) = ab \).

2. Determine the greatest common divisor in \(\mathbb{Q}[x] \) of \(a(x) = x^4 - 1 \) and \(b(x) = x^5 - 1 \) and write it as a linear combination of \(a(x) \) and \(b(x) \).

3. Let \(R \) be a PID.
 (a) Let \(I_1 \subset I_2 \subset I_3 \cdots \subset R \) be a sequence of ideals. Prove that it stabilizes: for large enough \(k \), \(I_k = I_{k+1} = I_{k+2} \ldots \). [Hint: consider \(I = \bigcup I_k \); then it is an ideal and thus must be generated by a single element.]
 (b) Let \(a_1, a_2, \cdots \in R \) be a sequence of non-zero elements such that \(a_{k+1} \) is a proper divisor of \(a_k \) (i.e., \(a_k/a_{k+1} \) is not invertible). Prove that this sequence can not be infinite.

4. Consider the ring \(R = \mathbb{Z}[\sqrt{-5}] = \{ a + bi\sqrt{5} \mid a, b \in \mathbb{Z} \} \subset \mathbb{C} \). For an element \(z = a + ib\sqrt{5} \in R \), we denote \(N(z) = zz = a^2 + 5b^2 \in \mathbb{Z} \).
 (a) Show that \(N(zw) = N(z)N(w) \).
 (b) Show that if \(N(z) = 1 \), then \(z = \pm 1 \).
 (c) Prove that there are no elements \(z \in R \) with \(N(z) = 2 \).
 (d) Prove that elements \(2, 3, 1 \pm \sqrt{-5} \) are irreducible in \(R \). [Hint: if \(2 = zw \), then \(N(z)N(w) = N(2) = 4 \).]
 (e) Show that \(6 \in R \) admits two different factorizations into irreducibles in \(R \). [Thus, \(R \) is not a unique factorization domain and thus can not be a PID.]