MAT 312: HOMEWORK 8

1. Consider the set $Aff(\mathbb{R}^n)$ of all functions $\mathbb{R}^n \to \mathbb{R}^n$ which have the form

$$\mathbf{x} \mapsto A\mathbf{x} + \mathbf{b}, \quad \mathbf{x} \in \mathbb{R}^n$$

where A is an invertible $n \times n$ matrix and $\mathbf{b} \in \mathbb{R}^n$. Thus, every such function is described by a pair (A, \mathbf{b})

Such functions are called affine transformations.

- (a) Show that $Aff(\mathbb{R}^n)$ is a group. Write explicitly the group law: $(A_1, \mathbf{b}_1) \circ (A_2, \mathbf{b}_2) = 2$
- (b) Let $H_1 = \{(A, \mathbf{b}) \mid A = I_n\} \subset \text{Aff}(\mathbb{R}^n)$, where I_n is the $n \times n$ identity matrix; thus, H_1 consists of transformations $\mathbf{x} \mapsto \mathbf{x} + \mathbf{b}$. Show that H_1 is a subgroup of $\text{Aff}(\mathbb{R}^n)$.
- (c) Let $H_2 = \{(A, \mathbf{b}) \mid \mathbf{b} = 0\} \subset \text{Aff}(\mathbb{R}^n)$; thus, H_2 consists of transformations $\mathbf{x} \mapsto A\mathbf{x}$. Show that H_2 is also a subgroup of $\text{Aff}(\mathbb{R}^n)$.
- (d) Which of the subgroups H_1, H_2 is normal? can you describe the quotient group $Aff(\mathbb{R}^n)/H$ for that subgroup?
- **2.** Let $A_4 \subset S_4$ be the group of even permutations, and let $H \subset A_4$ be the subgroup generated by elements x = (12)(34), y = (13)(24), i.e. the subgroup consisting of all permutations you can get from x, y by taking products and inverses.
 - (a) Show that $x^2 = e, y^2 = e, xy = yx$.
 - (b) Show that H has 4 elements, but is not isomorphic to \mathbb{Z}_4 .
 - (c) Prove that H is normal in A_4 . Can you describe the quotient?
- **3.** Let $H \subset G$ be a subgroup such that |G/H| = 2. Prove that H is normal.
- **4.** Describe all subgroups of symmetric group S_3 . For each of them, say whether it is normal; if it is, describe the quotient S_3/H .
- **5.** An element z in a group G is called *central* if zx = xz for any $x \in G$. Denote by Z(G) the set of all central elements in G. (this is called the *center* of G).
 - (a) Show that Z(G) is a normal subgroup of G.
 - (b) Compute the center of the group D_n of all symmetries of regular n-gon. [Hint: you can use the fact mentioned in class: if R_{α} is rotation by angle α around the origin, and s is reflection across a line going through the origin, then $sR_{\alpha}s^{-1} = R_{-\alpha}$].