Midterm 1 Makeup MAT 310 Oct 14, 2014

Name:			ID #:				
(please print)							
Your recitation:	Mon	Tu (please circle)					
show your work an your reasoning, not readable; the grade arguments. Cross o	d provide just answer should ut anythin ot crossed	rs are allowed. Please e full solutions, with ers. Solutions must be be able to follow your g the grader should ig- out will be considered	Grade	1	2	3	Total

(1) Consider the following three vectors in \mathbb{R}^3

$$v_1 = (2, 3, 1)$$

 $v_2 = (0, -1, 3)$
 $v_3 = (3, 3, 6)$

- (a) Prove that these three vectors are linearly dependent
- (b) Choose a maximal linearly independent subset of $\{v_1, v_2, v_3\}$. (c) Extend the subset you chose in part (b) to a basis in \mathbb{R}^3

(2) Let P_2 be the space of polynomials with real coefficients of degree at most 2. Let $D \colon P_2 \to P_2$ be given by

$$D(p) = p' - p$$

- (a) Write the matrix of R in the basis $\beta = \{x^2, x, 1\}$ of P_2 . (b) Write the matrix of R in the basis $\beta' = \{x^2, x + 1, x 1\}$

- (3) Let V be a vector space and let $A, B: V \to V$ be linear transformations such that A is invertible and $B^2 = AB$.
 - (a) Is it necessarily true that A = B? If yes, prove; if not, give a counterexample.
 - (b) Prove that $N(B) \cap R(B) = \{0\}$

- (4) Let $T: V \to W$ be a linear transformation, and let $L \subset V$ be a subspace.
 - (a) Prove that $T(L) = \{T(v) \mid v \in L\}$ is a subspace in W, of dimension $d = \dim L \dim(L \cap N(T))$.
 - (b) If dim V = 7, dim R(T) = 4, and dim L = 5, what is the maximal possible dim T(L)? What is the minimum possible dimension of T(L)?