		Practice Final MAT 310 Dec 2014
Name:		ID #:
(please print) Your recitation:	Mon	Tu (please circle)

Textbook is allowed; no notes or other materials. Calculators are allowed. Please show your work and **provide full solutions**, with your reasoning, not just answers. Solutions must be readable; the grader should be able to follow your arguments. Cross out anything the grader should ignore: everything not crossed out will be considered to be part of your solution.

	1	2	3	4	5	6	7	Total
Grade								

This practice final is expected to be harder than the real exam.

- (1) Consider $S = \{[2, -3, 4, -1]^t, [-6, 9, -12, 3]^t, [3, 1, -2, 2]^t, [2, 8, -12, 3]^t, [7, 6, -10, 4]^t\}$ (a) Is S linearly independent? If not, find a maximal linearly independent subset.

 - (b) Does S span \mathbb{R}^4 ? If not, express span(S) in terms of a minimal spanning set.

 - (c) Construct a basis for span(S). What is dim(span(S))?
 (d) Construct a basis for R⁴ that contains the maximal linearly independent subset found in part (a).

- (2) Let A be a 5×5 matrix of rank 3.
 - (a) Consider the function $f_A: M_{5\times 5} \to M_{5\times 5}$ given by $f_A(X) = AX$. (Here $M_{5\times 5}$ is the space of 5×5 matrices.) Prove that f_A is a linear transformation. What is the nullity and rank of f_A ?
 - (b) Prove that the set of 5×5 matrices X such that AX = 0 is a vector space. Find its dimension.

[Hint: a 5×5 matrix consists of 5 columns, each being a vector in $\mathbb{F}^5.$]

(3) Let A be an n×n square matrix with integer entries and such that det A ≠ 0. (a) Prove that then A⁻¹ has rational entries. (b) Give an example when A⁻¹ is not an integer matrix . (c) Prove that if det(A) = 1, then A⁻¹ is an integer matrix.

(4) Let

$$A = \begin{bmatrix} 4 & 3 & 1 & 2 \\ 1 & 9 & 0 & 2 \\ 8 & 3 & 2 & -2 \\ 4 & 3 & 1 & 1 \end{bmatrix}$$

- (a) Calculate the determinant of \overline{A} using any method you know. (b) What is the determinant of -2A? Why?

(5) (a) Find eigenvalues of the linear transformation $A: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the matrix

$$\left[\begin{array}{rrrr} -1 & 3 & -3 \\ 0 & 5 & -3 \\ 0 & 3 & -1 \end{array}\right]$$

- (b) Find a basis for each eigenspace of A.
- (c) Is A diagonalizable?

You need to justify all of your answers.

- (6) Let $T: V \to V$ be a diagonalizable linear transformation with characteristic polynomial $(t-1)^2(t+0.5)(t-0.1)^2$.
 - (a) Prove that linear transformation R = (T + 2I) is invertible.
 - (b) Show that the limit $S = \lim_{n \to \infty} T^n$ exists.
 - (c) Prove that S = lim Tⁿ is a projection operator: S² = S. Can you describe R(S) (for example, if {v₁,...,v₅} is a basis of V consisting of eigenvectors of T, then can you choose some subset of {v₁,...,v_n} which would be a basis of R(S)?

(7) Let V be the space of polynomials of degree at most 3, and let $D: V \to V$ be given by

$$D(p) = p' + 2p''$$

- (a) Show that D is nilpotent. What is the smallest k such that $D^k = 0$?
- (b) What is the characteristic polynomial of D?
- (c) What is the Jordan canonical form of D? [You do not need to find a basis, just describe what will be the blocks in the Jordan canonical form.]