MAT 200: HOMEWORK 11

DUE WED, MAY 4, 2016

Notation \mathbb{Z}_{n} used in the book is the same thing as $\mathbb{Z} / n \mathbb{Z}$ we used in class.
You are allowed to use wihtout proof the fact that if n is prime, then any non-zero class in \mathbb{Z}_{n} has a multiplicative inverse.

1. Consider the equivalence relation on \mathbb{R} given by $a \sim b$ if $a-b$ is an integer multiple of 360. Construct a bijection between the set of equivalence classes \mathbb{R} / \sim and the unit circle in \mathbb{R}^{2}.
2. Let $[a] \in \mathbb{Z}_{n}$ be invertible: there is a class $[b] \in \mathbb{Z}_{n}$ such that $[a] \cdot[b]=[1]$. Prove that then $[a][x]=[a][y]$ if and only if $[x]=[y]$. Is it true without the assumpiton that $[a]$ is invertible?
3. Use pigeonhole principle to show that for any $[a] \in \mathbb{Z}_{n}$, there exist $k \neq l$ such that $[a]^{k}=[a]^{l}$. Deduce from this that if $[a]$ is invertible, then there exists a number $k>0$ (period) such that $[a]^{k}=[1]$.
4. Find $[2]^{2016}$ in \mathbb{Z}_{11}.
5. Textbook, p. 272, problem 16
6. Textbook, p. 273, problem 18
