MAT 200: HOMEWORK 11 DUE WED, MAY 4, 2016

Notation \mathbb{Z}_n used in the book is the same thing as $\mathbb{Z}/n\mathbb{Z}$ we used in class.

You are allowed to use without proof the fact that if n is prime, then any non-zero class in \mathbb{Z}_n has a multiplicative inverse.

- Consider the equivalence relation on R given by a ~ b if a − b is an integer multiple of 360. Construct a bijection between the set of equivalence classes R/~ and the unit circle in R².
- **2.** Let $[a] \in \mathbb{Z}_n$ be invertible: there is a class $[b] \in \mathbb{Z}_n$ such that $[a] \cdot [b] = [1]$. Prove that then [a][x] = [a][y] if and only if [x] = [y]. Is it true without the assumption that [a] is invertible?
- **3.** Use pigeonhole principle to show that for any $[a] \in \mathbb{Z}_n$, there exist $k \neq l$ such that $[a]^k = [a]^l$. Deduce from this that if [a] is invertible, then there exists a number k > 0 (period) such that $[a]^k = [1]$.
- **4.** Find $[2]^{2016}$ in \mathbb{Z}_{11} .
- 5. Textbook, p. 272, problem 16
- **6.** Textbook, p. 273, problem 18