
MAT 127, MIDTERM 1
PRACTICE PROBLEMS

The midterm covers chapters 8.1 — 8.6 in the textbook. The actual exam will contain 5
problems (some multipart), so it will be shorter than this practice exam.

1. Determine whether the following sequence converges. If it converges, find the limit

an = (−1)n
n+ 4

n3 − 2n2 + 4

Solution:

lim
n→∞

(−1)n
n+ 4

n3 − 2n2 + 4
= lim

n→∞
(−1)n

n+ 4

n3 − 2n2 + 4
× 1/n3

1/n3

= lim
n→∞

(−1)n
1/n2 + 4/n3

1− 2/n+ 4/n3
=

0 + 0

1− 0 + 0
= 0

2. Determine whether the following sequence converges. If it converges, find the limit

an =
3n + 1

n!

Solution:

lim
n→∞

3n + 1

n!
= lim

n→∞

3n

n!
+

1

n!
= lim

n→∞

3n

1.2.3.4 · · ·n
+

1

n!

= lim
n→∞

3n−1

1.2.3.4 · · ·n− 1
× 3

n
+

1

n!
= lim

n→∞

32

2
× 3n−3

3.4.5 · · ·n− 1
× 3

n
+

1

n!
.

Now, 3n−3 = 3.3.3.3 · · · .3.3 ≤ 3.4.5 · · ·n− 1. Hence 3n−3

3.4.5···n−1 ≤ 1. Therefore:

0 ≤ 32

2
× 3n−3

3.4.5 · · ·n− 1
× 3

n
+

1

n!
≤ 32

2
× 3

n
+

1

n!
=

27

2n
+

1

n!
.

Because limn→∞
27
2n

+ 1
n!

= 0, we have by the squeeze theorem that

lim
n→∞

3n−3

3.4.5 · · ·n− 1
× 3

n
+

1

n!
= 0

and hence

lim
n→∞

3n + 1

n!
= 0.

3. Determine whether the following sequence converges. If it converges, find the limit

an =
(lnn)2

n

Solution:

lim
n→∞

(lnn)2

n
= lim

x→∞

(lnx)2

x
= lim

x→∞

1
x
2 ln(x)

1
= lim

x→∞

2 ln(x)

x
= lim

x→∞

(
2
x

)
1

= lim
x→∞

2

x
= 0

by applying L’Hôpitals rule twice.



4. Let the sequence an be defined by a1 = 1, an+1 =
3 + an

2
for n ≥ 1.

(a) Show that this sequence is bounded: an ≤ 3 for all n.

Solution:
First of all, a1 = 1 < 3.
Now suppose that an < 3. We wish to show that an+1 < 3 assuming that the
previous term an satisfies an < 3. We have that an+1 = 3+an

2
= 3

2
+ an

2
. Since we

have assumed that an < 3, we get that an
2
< 3

2
and hence 3

2
+ an

2
< 3

2
+ 3

2
= 3.

Hence an+1 = 3
2

+ an
2
< 3.

Therefore we have shown that an < 3 for all n.

(b) Explain why this sequence is convergent and find the limit.

Solution:
The sequence an is increasing for the following reason: We have that an+1 =
3+an

2
= 3

2
+ an

2
. Now since an < 3, we get that 3

2
> an

2
and hence 3

2
+ an

2
>

an
2

+ an
2

= an. Hence an+1 = 3
2

+ an
2
> an. Therefore an is an increasing sequence.

Hence an converges by the monotone convergence theorem.
We now need to find its limit. Suppose that limn→∞ an = L. Replacing n with
n+1 in the above limit, we get that limn+1→∞ an+1 = L and hence limn→∞ an+1 =
L. We have the equation:

an+1 =
3 + an

2
.

Taking the limits of both sides as n→∞ gives us:

lim
n→∞

an+1 = lim
n→∞

3 + an
2

and so:

L =
3 + L

2
and so L = 3 by solving the above equation. Hence limn→∞ an = 3.

5. If
∞∑
n=1

an is a convergent series with positive terms, what can you say about the

convergence of the series
∞∑
n=1

sin(an)? Does it converge? Does it converge absolutely?

Solution:
Since

∑∞
n=1 an is convergent, we get that limn→∞ an = 0. Hence limn→∞

sin an
an

=

limx→0
sinx
x

= 1. Therefore by the limit comparison test,
∑∞

n=1 sin(an) converges.
It is also absolutely convergent since 0 < an < π for all n sufficiently large and

hence sin(an) is positive for all n sufficiently large. Here we used the fact that absolute
convergence is equivalent to convergence in the case when series have positive terms
for all sufficiently large n.



6. For which values of p is the series
∞∑
n=1

pn
n!

(2n)!
convergent?

Solution:
Because this is a power series in p, we use the ratio test.

lim
n→∞

∣∣∣∣∣p
n+1 n+1!

(2(n+1))!

pn n!
(2n)!

∣∣∣∣∣ = lim
n→∞

|p| n+ 1

(2n+ 1)(2(n+ 1))
= lim

n→∞
|p| n+ 1

4n2 + 6n+ 2
= 0.

Hence the radius of convergence is ∞. Hence this power series converges for all p.

7. If the series
∞∑
n=1

cn4n is divergent, what can you say about the following series:

(a)
∞∑
n=1

cn2n, (b)
∞∑
n=1

cn(−8)n, (c)
∞∑
n=1

cn(−4)n.

Solution:

(a) The series
∑∞

n=1 cn2n may or may not converge. For instance if cn = 1 then both∑∞
n=1 cn2n and

∑∞
n=1 cn4n diverge. But, if cn = 1

4n
then

∑∞
n=1 cn2n =

∑∞
n=1

1
2n

converges as it is a geometric series, but
∑∞

n=1 cn4n =
∑∞

n=1 1 diverges.
(b) The series

∑∞
n=1 cn(−8)n must diverge.

This is true for the following reason: Since 8n = 2n4n,

lim
n→∞

|cn|8n = lim
n→∞

|cn4n|2n = lim
n→∞

|cn4n|
1
2n

.

Now limn→∞
|cn4n|

1
2n

cannot be 0 since this would imply that
∑∞

n=1 cn4n is con-

vergent by the limit comparison test. Hence limn→∞ |cn|8n is non-zero or non-
convergent and so

∑∞
n=1 cn(−8)n must diverge by the alternating series test.

(c)
∑∞

n=1 cn(−4)n may or may not converge.
For instance if cn = 1, then

∑∞
n=1 cn4n =

∑∞
n=1 4n diverges and also

∑∞
n=1 cn(−4)n

diverges by the alternating series test since limn→∞ 4n 6= 0.
On the other hand, if cn = 1

n4n
then

∑∞
n=1 cn4n =

∑∞
n=1

1
n

diverges and
∑∞

n=1 cn(−4)n

converges by the alternating series test since limn→∞ cn4n = limn→∞
1
n4n

4n =

limn→∞
1
n

= 0.

8. Find the sum of the series
∞∑
n=0

1 + (−2)n

3n

Solution:



∞∑
n=0

1 + (−2)n

3n
=
∞∑
n=0

1

3n
+

(−2)n

3n
=
∞∑
n=0

1

3n
+
∞∑
n=0

(
−2

3

)n
=

1

1− 1
3

+
1

1−
(
−2

3

) =
21

10
.

9. Find the sum of the series
∞∑
n=0

1

(n+ 1)(n+ 3)

Solution:

1

(n+ 1)(n+ 3)
=

A

n+ 1
+

B

n+ 3

So:

1 = A(n+ 3) +B(n+ 1) = (A+B)n+ 3A+B.

Hence, 3A+B = 1 and A+B = 0. Therefore 2A = 1, and so A = 1
2

and B = −1
2
.

Hence:
∞∑
n=0

1

(n+ 1)(n+ 3)
=
∞∑
n=0

1

2(n+ 1)
− 1

2(n+ 3)

Now:

sm =
m∑
n=0

1

2(n+ 1)
−

m∑
n=0

1

2(n+ 3)
=

1

2
+

1

4
− 1

2((m− 1) + 3)
− 1

2(m+ 3)
=

=
m∑
n=0

3

4
− 1

2m+ 4
− 1

2m+ 6
.

So:
∞∑
n=0

1

(n+ 1)(n+ 3)
= lim

m→∞
sm =

3

4
.

10. Write the number 1.1009 = 1.1009009009 . . . as a fraction

Solution:
We will first write 0.009 as a fraction:

0.009 =
∞∑
n=1

9

1000n
=

9
1000

1− 1
1000

=
9

999
=

1

111
.

Hence:

1.1009 = 1.1 +
1

10
× 0.009 =

11

10
+

1

1110
=

1222

1110
=

611

555
.



11. Determine whether the following series converges or diverges

∞∑
n=0

sin(3πn/7)

n2 + 1

Solution:
Since sin(x) ≤ 1 for all x,∣∣∣∣sin(3πn/7)

n2 + 1

∣∣∣∣ ≤ 1

n2 + 1
≤ 1

n2

Because
∑∞

n=0
1
n2 converges, we get that

∑∞
n=0

∣∣∣ sin(3πn/7)n2+1

∣∣∣ converges by the comparison

test. Hence
∑∞

n=0
sin(3πn/7)
n2+1

is absolutely convergent and therefore convergent.

12. Consider the power series
∞∑
n=1

(2x− 1)n

n · 3n

Find the radius of convergence and the interval of convergence.

Solution:
To find the radius of convergence we use the ratio test:

lim
n→∞

(
(2x−1)n+1

(n+1)·3n+1

)
(

(2x−1)n
n·3n

) = lim
n→∞

(2x− 1)
n3n

(n+ 1)3n+1
= lim

n→∞
(2x− 1)

n

3(n+ 1)
=

(2x− 1)

3
.

The ratio test tells us that this converges when
∣∣∣ (2x−1)3

∣∣∣ < 1 and so −1 < 2x−1
3

< 1

and so −1 < x < 2. Hence the radius of convergence is 3
2
.

To find the interval of convergence we only need to check the endpoints −1 and 2.
If x = −1 then our sum is:

∞∑
n=1

(−2− 1)n

n · 3n
=
∞∑
n=1

(−1)n

n

which converges by the alternating series test. Hence −1 is in our interval of conver-
gence.

If x = 2 then our sum is:
∞∑
n=1

(4− 1)n

n · 3n
=
∞∑
n=1

1

n

which diverges and hence 2 is not in our interval of convergence.
Therefore the interval of convergence is [−1, 2).



13. Write the function f(x) = ln(1 + 2x)/x as a power series in x. Find the radius of
convergence of this series.

Solution:
We will first compute the power series for ln(1 + x). We have:

ln(1 + x) =

∫ x

0

1

1 + t
dt =

∫ x

0

1

1− (−t)
dt =

∫ x

0

∞∑
n=0

(−t)ndt =
∞∑
n=0

∫ x

0

(−t)ndt =

∞∑
n=0

∫ x

0

(−1)ntndt =
∞∑
n=0

(−1)n
1

n+ 1
xn+1

Hence

ln(1 + 2x)/x =
1

x

∞∑
n=0

(−1)n
1

n+ 1
(2x)n+1 =

∞∑
n=0

(−1)n
1

x

2n+1

n+ 1
xn+1 =

∞∑
n=0

(−1)n
2n+1

n+ 1
xn.


