Flat Projective Connections

A. Beilinson and D. Kazhdan*

1. Geometric Quantization

In this section we recall basic points of Kostant’s geometric quantization
[K]o. We consider a purely holomorphic version, so all the objects below
will be algebraic or analytic ones. The language of complex polarizations is

discussed in no. 1.7.

1.1 Recollections from Classical Mechanics

1.1.1 Definition. Letp: X — S be a smooth morphism of smooth varieties.
A connection for p, or simply, or simply, p-connection, is an Ox-linear mor-
phism Vg : p*Ts — Tx such that dp o Vg = idy-ry; such Vg is integrable if

the corresponding map Ts — p.Tx commutes with brackets. O

Let Vg be a p-connection. Then Vg(p*7s) C Tx is a subbundle trans-
verse to fibers of p; we will call it Vg-horizontal subbundle. Conversely, any
subbundle transverse to fibers of a smooth p defines a p-connection which

is integrable iff the subbundle is integrable. For any s € S an integrable
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p-connection Vg defines a trivialization of p over a formal neighborhood S
of s (i.e., the isomorphism Xgn = Xg x S2', where Xg = p~!(s), etc.).

Localizing on S we see that p-connections form a sheaf p-conn on S. If
V is a p-connection and v € Hom(7g, p.Tx/s) = Qf @ p.Tx/s, then V + v is
also a p-connection. This way p-conn is an Qf ® p. 7 x/s-torsor.

Note that an integrable p-connection Vg defines an action of 7g on rela-
tive differential forms (2x,g (by Lie derivatives along horizontal vector field
Vs(7s)); we will say that a form w € Qg(/s is Vg-horizontal if w is fixed by
the 7g-action.

Let (X,w) be a symplectic variety, i.e., X is a smooth variety and w is a
non-degenerate closed 2-form on X. Then w defines Poisson brackets { , }

on Oy in a usual manner.

1.1.2 Definition. A surjective morphism of varieties m : X — Y is called
polarization, or Lagrangian projection, if dim Y = % dim X and { , }
vanishes on 7Oy C Ox; such m is called smooth if 7 is a smooth morphism.

O

A basic example of such 7 : X — Y is a twisted cotangent bundle over

Y (see A1.8, A1.9).

1.1.3 Definition. Let S be a smooth variety. An S-Lagrangian triple con-
sists of a morphism w: X — Y of S-varieties (i.e., one has a commutivative

diagram
X 5 v
Px "\ /by
S

), a relative 2-form w € Q?X/S and a p-connection Vg such that
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(i) px, py and 7 are smooth surjective morphisms.

(ii) a form w is closed and non-degenerate, i.e., for any s € S the fiber

(Xs,ws) is a symplectic variety.

(iii) for any s € S the morphism ws : Xy — Yy is a twisted cotangent bundle

over Y.

(iv) Vg is integrable and w is V g-horizontal. 0J

Assume we have a Lagrangian triple (1.1.3). Consider the Oy-algebra A :=
m.Ox. It carries Og-linear Poisson bracket { , } and a natural filtration
A; such that Ay = Oy, A; = S°A; and gr.A = STys (see A1.8). Our
connection Vg is an Og-linear morphism Vg : 7¢ — Der A such that for
f € Os C A 17 € Tg one has Vg(7)(f) = 7(f); according to (iv) Vg
commutes with brackets and for a,b € A, 7 € Tg one has Vg(7)({a,b}) =
{Vs(r)(a), b} +{a, Vs(7)(b) }.

Let n be a minimal integer such that Vg(75)(Ag) C A,; such n is called
an order of our Lagrangian triple. For example, n = 1 means that for any f,

g € Oy, 7 € Tg one has {Vs(7)(f), g} € Oy.

1.1.4 Lemma. (i) One has Vg(7s)(A;) C Ain for anyi. Hence we have an
Og-linear map grVyg : Tg — Der(")gr.A = Der(")S’Ty/S (here Der™ means
differentiations of homogeneous degree n).

(ii) Assume that n > 1. There exists a unique Og-linear map cVg : Tg —
S"1 Ty s such that (grVs(7))(f) = {oVs(7), f} forT € Ts, f € STy)s. The

functions oV (1), 7 € Tg, Poisson commute.



Proof: Clear. ]

Sometimes it is convenient to describe S-Lagrangian triples in a different
language. Let Y be an S-variety such that py : ¥ — S is smooth and

surjective.

1.1.5 Definition. An S-Hamiltonian datum on'Y consists of

— a twisted cotangent bundle ()?,w;(), #:X =Y over Y. Put X := X
mod p}QL: this is a Ty g-torsor over Y let X 5 X 5 Y be the

projections.

— a sectionh: X — X of v (called Hamiltonian of our datum).

Put wx := h*wg: thisis a closed 2-form on X. The following integrability
axiom should hold:

for each z € X the form w, € A*T%. has rank dim X-dim S. O

Assume we have a Hamiltonian datum 1.1.5. Note that for each s € S the
map 7, : X; — Y; is the induced (from X ) twisted cotangent bundle on Yj
(see A3). The symplectic form w, coincides with wx|x,, so the integrability
axiom asserts that wy has minimal possible rank (in particular, in case dim
S = 1 this axiom holds automatically). The kernels of wx«, z € X, form
a subbundle transversal to fibers of px := py o m. Since wyx is closed, this
subbundle is integrable, hence it defines an integrable connection Vg for px.

We see that (X 5 Y,w, V) is S-Lagrangian triple.

1.1.6 Proposition. This correspondence (S-Hamiltonian data on 'Y ) —

(S-Lagrangian triples with given py : Y — S) is bijective.
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Proof: Let us define the inverse correspondence. Let (X = Y,w,Vg) be
an S-Lagrangian triple. The connection Vg extends w € Q3 /s toa 2-form
wy € Q% one has wy|y, = ws and for z € X the kernel of wy= € A*T%. coin-
cides with Vg-horizontal vectors at x. Since Vg is integrable wx is a closed
form. Let (F,,,curv,,) be the corresponding Q3'-torsor, so F,, = Qk,
curvy, (v) = dv + wx (see A1.7). The m-vertical part of zero section of F,,
is a m-descent data for F, . (see A3.1) which defines Q5'-torsor (Fy, curvy).
Recall that a section of Fy is a form v € W*Qﬁ( such that the restriction of v
to fibers of 7 vanishes and curvy (v) := dv + wx € Q% C 1.0%. Denote by
Fys the Q%//S—torsor of sections of 7 : X — Y. One has a canonical isomor-
phism 7 : Fy mod p} QY — Fyys: here for v € Fy r(v) is a unique section
of m such that 7(v)*(v) € p§ Qg C Q. Let h : Fy;s — Fy be the map that
assigns to a section a of 7 a unique form h(a) € Fy such that a*(h(a)) € Q3
vanishes (one has a = 3 — a*(3) for any 8 € Fy). Clearly r o h = idg, .
Let X 5 Y, wg, be a twisted cotangent bundle defined by (Fy, curvy), so
we have the projection 7 : X — X and the section h: X — X of . This is

the desired S-Hamiltonian datum on Y.

Remark: The map 7 : X — X xg TS, #(%) = (r(%),% — h, (%)) is iso-
morphism of symplectic manifolds: Here the symplectic form on X xg T%S

is equal to the sum of wx and a standard symplectic form on 7*S. U

Consider an S-Hamiltonian datum ()?,w;(,fr, h) on Y. Let x € X be
a point, y = w(z), s = px(z) be the projections of x. Let {t,} be a
local coordinate at s, and ¢; be functions at y such that {g;,t,} are lo-

cal coordinates at y. Choose a function h,, p; at h(x) € X such that



wg = Y. dp; Ndg; + Y dh, N dt,. Then {¢;,p;,t.} are coordinates at x

on X, and the Hamiltonian h is given by the functions h,(p, q,t).

1.1.7 Lemma. One has Vs(0,,) = O, + . 04 (ha)Op; — Op; (ha) 0y,

i

Proof: Follows from wx(dp, A Vs(0h,)) = wx(0g; A Vs(0r,)) = 0. Note that
the integrability axiom asserts that wx (9, A Vg(0.,)) = O, (ha) — O, (hs) +
> i Opi (ha)0q,(hy) — g, (ha)Op, (h) = 0. O

1.1.8 Corollary. Let m be a minimal order (with respect to y € Y) of
polynomial maps h, : X, — )N(y (note that X, )N(y are affine spaces). Then

m — 1 is equal to the order of corresponding Lagrangian triple (see 1.1.4).0

1.1.9 Remark: (i) We see that a Hamiltonian datum is just a system of
commuting Hamiltonians in a classical sense.

(ii) Let Fx be the Q%//S—torsor of sections of 7 : X — Y’; one has the
map curveg o h : Fy — QF, curvg o h(y) = (hov)*(wg). The equation

curvg o h(?) = 0 is a classical Hamilton-Jacobi equation. 0J

1.2 D-Connections

Let p: Y — S be any smooth morphism of smooth varieties, and let Dy be
a tdo on Y. Denote by Dy, the centralizer of 7 'Og in Dy. This is a flat
7 'Og-algebra. One may consider Dy,g as a family of tdo parameterized by
S. Namely, for s € S denote by my; C Og the maximal ideal of functions
equal to zero at s. Then the quotient Dy,s/m;Dy g is tdo on Yy = p~'(s)
that coincides with the inverse image of Dy on Y (see A3). If Dy = D, for



some line bundle £, then Dy g consists of differential operators on £ acting

along fibers of p.

1.2.1 Definition. (i) A Dy -connection on p is an Og-linear mapping Vp,, :
Ts — pDer(Dy/s) such that for T € Tg, f € Og one has Vp, (7)(x 1 f) =
7 7(f) € m'Og C Dyss. Such Vp, is integrable if it commutes with
brackets.

(ii) A Dy-connection Vp, is admissible if for any 7 € Tg there exists
(locally on S) an element T € p,Dy such that for any 0 € Dy;s one has
Vo, (7)(0) = [7,0]. OJ
1.2.2 Remark: One may easily define an obstruction for Vp, to be admis-

sible; it lies in H(S, Q% ® HLz(Y/S)). In particular, if the first de Rham

cohomology of fibers vanish, any Dy-connection is admissible. O

We define the order of a Dy-connection as a smallest n such that Vp,. (7)(Oy) C

Dy /gn = (Dyyg)n for each 7 € Ts.

1.2.3 Lemma. (i) One has Vp, (7)(Dy;si) C Dy/gitn for any i. Hence we
have an Og-linear map gr Vp, : Tg — Der(™gr Dys = Der(”)S'Ty/S.
(ii) If n > 1 then there is a unique Og-linear map oVp, : Tg —

pS" " Tyys such that (gr Vi, (7))(f) = {0V, (1), f} for f € STys. If

Vp, is integrable then the functions oV p, (1), T € Tg, Poisson commute.

Proof: (i): Induction by i using Dy,gi = {0 € Dyys : [0,Oy] C Dygi-1}.

(ii) follows since gr Vp, (1) is a differentiation for Poisson brackets. [J.

1.2.4. Now let Dg be a tdo on S. A p-morphism « : Dg — Dy is a

morphism of C-algebras o : Dg — p,Dy that coincides on Og C Dg with
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-1
Os 2= p,Ox C p.Dy. Clearly « is injective, so « identifies Dg with a

subalgebra in p, Dy containing Og.

1.2.5 Remark: Consider a filtration L. on Dy by “degree along S”: so
L, = Dyss, Li = {0 € Dy : adg(m'Os) C L;_1}. One has gr*Dy =
S'Ts ®og Dyss. Then for a p-morphism « one has a(Dgi) C L;, and gr a

coincides with an obvious embedding S7s — 575 ®pg Dyys.

1.2.6. Let a : Dg — p,Dy be a p-morphism. One associates with a an
admissible integrable Dy-connection on p as follows. For 7 € 7g choose
7 € Tp, such that o(7) = 7. Then a(7) € Ly, hence ad,(7) maps Dys to
itself. Put V,(7) := ada(T)|Dy/S € Der Dy/g. It is easy to see that V,(7)
does not depend on choice of 7. This morphism V, : 7g — Der Dy/g is our

Dy-connection. It is admissible and integrable.

1.2.7 Lemma. If the fibers of p are connected, then (Dg,a) — V, 1is
a bijection between the set of pairs (Dg,a) and admissible integrable Dy -

connections on p.

Proof: Here is a construction of an inverse map. For an admissible integrable
connection V = Vp, put Ty = {(7,7) € Tsxp,Dy: for any 9 € Dy /s one has
V(7)(0) = [7,0]}. One has short exact sequence 0 — Og L TS Te—0,
where i(f) = (0,p7'(f)), o(r,7) = 7, and an obvious Og-module and Lie
algebra structure on Tv make Ty an Og-extension of Tg (see A1.3, Al.4).
Let DY be the corresponding tdo. The embedding Tv — p«Dy, (T,7) — T,
extends uniquely to a morphism of rings ay : DYy — p,Dy which is a p-

morphism. This (DY, ay) is a desired pair. O
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1.2.8 Remark: For a p-morphism « : Dg — Dy consider the smallest
integer m such that a(TDS) C Dy,,. Then m — 1 is equal to the order of V,,

and oV, (1) = a(7) mod Dy, _, € S™Tyg for 7 € ’j’DS, T=o0T € Ts.

1.3 Quantization

Let (X 5 Y 2 S;w;Vy) be an S-Lagrangian triple (see 1.1.3), so we have
a filtered commutative Oy-algebra A = m,Ox with Poisson bracket { , },
and the QF'-torsor (Fy,curvy) (see 1.1.6: this torsor corresponds to the
twisted cotangent bundle of the Hamiltonian datum). Let 2 = det Q%//s be
the sheaf of volume forms along the fibers of py, and (Fq, curvg) = dlog 2 be
the corresponding Q5 '-torsor (see A1.12). Put (F{,curvy) = (Fy, curvy) +
%(FQ, curvg); let Dy = D(zp curvy) be the corresponding tdo.

JFrom now on we will assume that our Lagrangian triple has order 1, i.e.,
for 7 € Tg one has Vg(7)(Oy) C A;. According to A2.5 one has a canonical

isomorphism & : 7p,, ; = Dy/s 5AfL

1.3.1 Definition. A quantization of our Lagrangian triple is an order 1

integrable Dy -connection Vp, on py such that for 7 € Tg, f € Oy = Dy/go
one has a[Vp, (7)(f)] = Vs(T)(f). O

Let Vp, be any order 1 integrable connection. The following lemma
explains how to verify whether Vp, is a quantization, and also why we took
the Q'/2-twist in the definition of Dy. Consider the following sheaves on Y

FA={(1,0),7 € py' T, L : Oy — Ai|l(fg) = fLg) + gt(f), {(f), 9} =
{(g), f} for f,g € Oy, L(t) = 7(t) for t € p;' Og C Oy }.
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FPo={(r,0),7 € py'Ts,l': Oy — A|l(fg) = fC(9)+0(f)g, [¢'(f), 9]+
[f¢(9)] =0 for f,g € Oy, £'(t) = 7(t) for t € p;,'O5 C Oy }.

One has a short exact sequence of p{,l(’)s—modules:

)

0— Ay/Ag B FA4 14 pilTy =0, 0— Dy2/Dyo B FP 18 pol7g -0,

defined by formulas i4(a) = (0,4(a)), £(a)(f) = {a, f}, ja(r,€) =T, ip(0) =
(0,0(0)), C'(0)(f) = 10, fl, jp(r,¢') = 7. Our connections Vg, Vp, de-
fine the splittings V%, V% of ja,jp, respectively, by formulas V%(7) =
(7. Vs(T)loy ), Vip(7) = (7. Vi, (7)loy)-

1.3.2 Lemma. (i) One has a canonical commutative diagram

0 — DY2/DY0 - fD - p}_’l% — 0

VLo L ooF |
0 — A4y — FA4 — pilTs — 0
where 67 is defined by formula G£(1,0') = (1,0), ((f) = &l'(f), and & :
Dy,/Dy, , — A;/A;_2 was defined in A2.5.
(ii) Vp, is a quantization iff 67V, — V% € Hom(py' Ts, As/Ag) is 0. In

particular, Vp, is always a quantization if py,(As/Ag) = 0.

Proof: (i) It suffices to verify that 6£(7,¢') actually lies in F4 by a direct
computation.
(ii) Clear. O

Let Vp, be a quantization.

1.3.3. Lemma. (i) One has 0(Vg) = 0(Vp,) € Q§ @ py, S*Tys.

(ii) Vp, is admissible Dy-connection.
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Proof: (i) Clear, (ii) follows since 7 has affine fibers, see 1.2.1. O

According to 1.2.7 a quantization Vp, defines a tdo Dg on S together

with embedding « : Dg — py« Dy, which is our primary object of interest.

1.4 Symmetries

Assume that we are in a situation 1.2, i.e., we have a smooth map py : ¥ — S
and atdo Dy onY. Let vy : g — 7y, vs : g — 7Tg be actions of a Lie algebra
gon Y and S that commute with p. Let vp, Der Dy be a weak vy-action of
g on a tdo Dy (see A4.1). Clearly the derivations vp, (), v € g, preserve
the subalgebra Dy/s C Dy.

1.4.1 Definition. (i) The action vp, preserves a Dy -connection Vp, for
p if for any v € g, 7 € T one has [vp, (7), Vb, (7)] = Vb, ([vs(7),7]) €
Der Dyys.

(ii) The action vp, preserves a p-morphism o« : Dg — Dy if the deriva-

tions vp, (7), v € g, preserve a subalgebra Dg < p,Dy-. O

It is easy to see that if vp, preserves «, then it preserves V,, (see 1.2.4);
conversely if the fibers of p are connected, then vp, preserves ay if it pre-
serves Vp, (see 1.2.5).

Assume that vp, preserves a p-morphism «. Then the restriction of
operators vp, (v), 7 € @, to Dg < p.Dy define a weak vg-action vpg of g

on Ds.

1.4.2. Let (X 5 Y;w;Vyg) be an S-Lagrangian triple, and our Lie algebra

g acts on it. This means that we have compatible g-actions vx, vy, vg on
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X,Y and S that fix w and Vg (note that, since 7 and py are surjective, vy
and vg are uniquely determined by vy ). We get a canonical weak vx-action

on D, and weak vy-action of g on Dy (since D Dy were defined in a

wx
canonical way). We will say that g preserves a quantization if vp,, preserves
Vp, . In this case we get a weak vg-action of g on corresponding Dyg.

Sometimes one needs strong actions on D, Dy rather than just weak

wx

ones. One has

1.4.3 Lemma. The strong liftings v,, : g — ”JV'DWX for v, are in 1-1

correspondence with ones vp, : g — Ip, for vp,.

Proof: Let N C %DWX be a normalizer of V,, (7x/y). One has ’fDY =
T.(N/Vuy (Tx/v)). Now assume we have 7. Clearly 7,,(g) C N, hence
Upy i= Uy, mod V, (Txy)is a strong lifting of 7p, . Conversely, assume
we have vp, . For v € g an element 7, (y) € N such that ads, (7) = vy (7)
defines it up to a constant. The condition that 7, (v) mod V,, Tx/y) = Up,

defines it uniquely. O

Note that 7, is just an wx-Hamiltonian lifting of v, (see A4.3(ii)).

1.5 Kostant D-modules

Assume we are in a situation 1.2, so we have p: Y — S, atdo Dy onY, Dg
on S and a p-morphism « : Dg — Dy. Let M be a Dy-module. The algebra
p.Dy acts on sheaf-theoretic direct images R'p,M in an obvious manner,
hence o defines the functors Rip, : Dy-modules — Dg-modules. If Rip,
transforms Oy-coherent modules to Og-coherent ones, then it transforms

lisse Dy-modules to lisse Dg-ones (see A1.14).
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1.5.1. Assume we have an action of a Lie algebra g on our data such that
vp, preserves « (see 1.4.1). Let vp, : g — 7~'Dy, Upg 1 @ — ’fDS be strong
liftings of vp,, vp,. For a Dy-module M consider a canonical vp, -action
1, of gon M (see A4.4). The induced action of g on R'p,M is obviously a
vpg-action. Hence vpg defines a canonical action [1Y,] : g — Endp,R'p. M of
g on R'p,M (see A4.5). We get a canonical action of g on the functor R'p,,
i.e., R'p, transforms Dy-modules to Dg ®c U(g)-ones.

Now let (X & Y;w;Vg) be an S-Lagrangian triple.

1.5.2 Definition. (i) Kostant line bundle is a line bundle Ly on'Y equipped
with a Dy -module structure (which is an isomorphism Dy = D.,).

(ii) An wx-line bundle is a line bundle Lx on X equipped with a D, -
module structure (which is the same as a connection V x on Lx with curv Vy =
wx).

(i) An wx-line bundle (Lx,Vx) is admissible if for any y € Y its re-

striction of (Lx,, Vx,) to the fiber X, is a trivial bundle with connection. ]

1.5.3 Remark: Since the fibers X, are affine spaces, in analytic situation
any wy-line bundle is admissible. In algebraic situation admissibility just

means that Vx, has regular singularities at infinity (see [Bol, [D]). O

Assume that there exists a line bundle Q%2 on Y together with an iso-
morphism (Q2/2)%2 = Q (for notations see 1.3); choose one. Let M be
a Dy-module. Then Mg 12 := Q-1/2 ®oy M is a D(f, curvy)-module.
Since D(Fy curvy) coincides with m-descent of D, we see that 7*Mqg-1/2 =

Ox ®o, Mq-12 is a D, -module. If M is a line bundle, then 7*Mq-1/2 is
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an admissible wx-bundle, so we obtained the functor =y, ,,: (Kostant line

bundles) — (admissible wy-bundles), 75, »(Ly) = (22 @ Ly).

1.5.4 Lemma. This functor is equivalence of categories.

Proof: The inverse functor assigns to (Lx, Vx) a line bundle Q/ 2®7T*£)V(X/ v,

where Vx/y is “vertical” part of V. O

1.5.5. Let Vp, be a quantization of our symplectic triple, and Dg be the
corresponding tdo on S. Let Ly be a Kostant line bundle. Then Ripy. Ly are
Dg-modules, we will call them Kostant Dg-modules. 1f a Kostant Dg-module
£ is lisse (which happens, e.g., when py is proper), then £ is a vector bundle

on S with a canonical integrable projective connection (see A1.14-A1.17).

1.5.6. Assume we are in a situation 1.4.2, so we have a Lie algebra g that acts
on our Lagrangian triple and preserves a quantization Vp, . Choose strong
liftings vp, , 7py By 1.5.1 these define an action of g on Kostant D-module

are g-modules.

1.5.7 Remark: vp, is the same as vp,-action of g on a Kostant line bundle.

1.6 Example: Metaplectic Representation

Let W be a symplectic C-vector space with symplectic form w. Let S be
a Grassmannian of Lagrangian planes in W, and L C Wg be a canonical
Lagrangian subbundle of a constant vector bundle Wg on S. Denote by S

the space of the line bundle det L on S with zero section removed.
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Define an S-Lagrangian triple (X = Y;w;Vy) as follows. Put X =
Wsg =W xS,Y =Wg/L, 7 = canonical projection, wy is a lifting to X of a
constant 2-form w on W, Vg = constant connection. We may also consider
an S”-Lagrangian triple (X" =, Y™ w"; Vgn) defined in the same way (this
is just a base change by S" — S of the previous triple).

Let g = W*Sp(W) be a Lie algebra of affine symplectic symmetries of W
(so W acts by translations). It acts on our Lagrangian triples in an obvious
manner (so W acts trivially on S, S™).

Let g be a central extension of g by C such that for w;, wy € W C g
one has [wy,wy] = w(w; A wy). Such g exists and unique up to a unique
isomorphism. In fact H'(g,C) = H?*(g,C) = 0. By A4.2 one has a canonical
strong lifting vp, : g — ’j:Dy. It restricts to the Lie algebra map W — %DY/S
which defines the isomorphism of associative Og-algebra Uy (W) Rc Og —
Dy/g; here Ul(W) is a quotient of a universal envelopping algebra U (W)
modulo relation 1 =1 € C C W. Let V py be a Dy-connection for py with
Uy (W) being the horizontal sections. This is a quantization of our Lagrangian
triple; let Dg be the corresponding tdo on S. The g-action preserves the
quantization and, as above, we get a canonical strong lifting p, : g — T Ds-
Certainly, in all these things we may replace the S-Lagrangian triple by the
S”-one.

It is easy to see that Q2 does not exist globally on Y. On Y” the
sheaf Q is canonically trivialized, hence we get a canonical Q2. Take an
admissible wxa-bundle (it comes from a line bundle Ly on W equipped

with a connection Vy, with curvatuer w). By 1.5.4 we get a Kostant line

bundle Ly~ on Y”, hence a Kostant Dga-module € = pys(Lyn) on S*. By
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1.5.6 it carries a canonical “metaplectic” g-action: for s € S a fiber &,
is a metaplectic representation of g on vectors “algebraic with respect to a

polarization L.”

1.7 Complex Polarizations

In this section we will relate the above purely holomorphic construction with
a complex polarization approach. We will start with a general lemma on a

4

(C*°-description of twisted cotangent bundles. Everywhere below “variety”
means “complex analytic variety.”

Let Y be a smooth variety and ¢ = (1, : Xy — Y;wy) be a twisted
cotangent bundle over Y. Let (Fy,curv) be the corresponding Q'-torsor of
holomorphic sections of 7y, and let C*F, be the Q% -torsor of C* sections
of Ty (so C®F, is the pushout of F, by Qf — Q% ). For v € C*F, put
curv(7y) := 7*(wg): this is a closed C*-class 2-form on Y with zero (0,2)-

component.

1.7.1 Lemma. The map (¢,v) — curv(y) is a 1-1 correspondence between
the set of pairs (twisted cotangent bundle ¢ on'Y, a C*>-class section of my)

and the set of closed C*-class 2-forms with zero (0,2)-component.

Proof: Here is a construction of inverse map. Let v = v + 1% be a
closed C=-form. We need to construct an Q. -trivialized Q5'-torsor. Since
Ovtt = 0 the sheaf F, := 07} (—v!t) C Q¥ is an Ql-torsor; it carries an
obvious Q% -trivialization. Define curv, : F, — Q2 formula curv,(y) =

dy + v. This (F,,cury,) is our Q5 -torsor. O.
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1.7.2 Remarks: (i) Consider the sheaf A = m4-Ox,; it carries a canonical
filtration A; (see A1.3). A C°-section vy defines the map v* : A — Ogey.
If curv(y) = w, is a nondegenerate 2-form then ~* is injective and one may
determine A; i Oc=y by induction: one has A = Oy, A; = {f € O¢=} :
{f,Oy} C Ai_1; here { } is Poisson bracket on O¢eey defined by w,.

(ii) Certainly 1.7.1 is a particular case of a general nonsense that claims,
in the notations of A1.5, that a quasi-isomorphism A" — B of length 2

complexes defines an equivalence between categories of A'- and B’-torsors.[]
Consider an S-Lagrangian triple (X = Y;w;Vg).

1.7.3 Definition. A C*°-class section v : Y — X 1is called admissible if it
satisfies the properties (i)—(iii) below:

(i) Vg is tangent to y(Y'), i.e., for y € Y the R-subspace dy(Ty,) C
Tx ., contains the Vg-horizontal subspace Vs(Tspy (y))v(y)- Clearly the Vg-
horizontal planes tangent to v(Y') form an integrable C*-class connection
Vi for py.

(ii) This V1 is globally trivial, i.e., it comes from a global C*-class triv-
ialization Y ~ Yy x S. Consider a C*®-class 2-form w7 := v*(w) along the

fibers of py.

(ili) For s € S the form w) on Yy is nondegenerate and real-valued. O,

1.7.4 Lemma. (i) The form w) is a closed form of type (1,1) on Yj.

(i) wY s Vi-horizontal, i.e., by 1.7.53(i1), it comes from a single sym-
plectic form wgy on Y.

(iii) For each yo € Yy the section S — Yy x S =Y, s — (yo,s), is

holomorphic.
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Proof: Clear. U
Let us describe the above structure from a Yj viewpoint.

Let (Yo, wp) be any C*-class (real) symplectic manifold.

1.7.5 Definition. A complex polarization of (Yo, wq) is a complex structure

on Yy such that wy has type (1,1). O

According to integrability theorem of Newlander-Nirenberg, a complex
structure s on Yj is the same as an integrable C-subbundle T9' C Ty, ® C
such that T @ T ~ Ty, ® C (here “integrable” means [T, 79! C T°1).

Such s is a complex polarization iff TO! is an wy-Lagrangian subbundle.

1.7.6. Note that 1-jet of a deformation of a C-subbundle 7' C Ty, ® C
is an element ¢ € Hom (T, T%) = Q% @ T1° whereT!? := Ty, @ C/T™,
QO = (TPY)*. Tf T2 is a complex structure, then ¢ is a 1-jet of a deformation
of complex structure iff dp € Q%% ® T is equal to zero (here 0 is taken with
respect to the holomorphic structure on T20). If T is Lagrangian, then wy
identifies Q%' with T!° and ¢ is a 1-jet of a deformation of a Lagrangian
subbundle iff ¢ € S?T1 Cc T1° @ T10. If T°! is a complex polarization and
both above-mentioned conditions hold, then ¢ is a 1-jet of a deformation of
a polarization.

Let S be a C° manifold, and T%!, s € C, be a C*-class family of complex
polarizations of (Yp,wp). Put ¥ := ¥y x S. Our T form a subbundle Ty
of Ty;s ® C, same for TQ}S, etc. The 1-jets of deformation form a section
C € Qbug ® ST,

Assume now that S is a C-analytic manifold.
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1.7.7 Definition. A S family of polarizations is holomorphic if C' € Q0§ ®oy
ST, — QMg © ST

1.7.8. Proposition. One has a canonical 1-1 correspondence between S-
Lagrangian triples (X = Y;w;Vs) equipped with an admissible O section
v:Y — X, and a C*-class (real) symplectic manifolds (Yo, wo) equipped
with a holomorphic S family of polarizations.

Proof: As was explained in 1.7.3, 1.7.4 an admissible section defines (Yp, wy)
and a holomorphic S-family of polarizations. Conversely, consider a holo-
morphic family of polarizations of (Yp, wp). Put Y =Y, x S. The subbundle
V' C Ty ® C with fiber at (y,s) € Y equal to T{ (y) @ T9'(s) defines the
complex structure on Y such that the projection py : Y — S is holomorphic.
Let wy be the inverse image of wy via the projection Y — Y. This is a
closed (1,1)-form on Y. Let ()?,w;(), 7: X — Y be the twisted cotangent
bundle over Y with the C*-section 7 : Y — X defined by wy according to
1.7.1. Put X = X mod peQL 5 Y this is a twisted cotangent bundle along
the fibers of py. By 1.7.1 a holomorphic section of X is a C*°-class 1-form
v along the fibers of 7 (which is the same as a family v of 1-forms on Y
parameterized by s € S) such that v is a 10-form on Yy (i.e., vs|z0 = 0),
oV = wy € Q%} and v, depends on s € S in a holomorphic way. Denote by
H(v) the 1,0-form on Y which coincides with v in fiberwise directions and
vanishes on horizontal ones (i.e., H(v)|,,xs = 0 for each yo € Yp). One has
Ov = wy, hence we have defined a holomorphic section H : X — X. This
()?, H) is an S-Hamiltonian datum on Y, so, by 1.1.6, we have S-Lagrangian
triple (X = Y,w;Vyg). It is easy to see that v = 4 mod Py Q% is an ad-

missible section. This construction is clearly inverse to one of 1.7.3, 1.7.4.
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1.7.9 Lemma. Consider a holomorphic S-family of polarizations of (Yo, wo).
The corresponding S-Lagrangian triple has order < n (see 1.1) iff for any
s € S and a tangent vector dy at s the tensor C(s) € S*TO (see 1.7.7) lies
in A,y - S*Ty,. Here A, 1 = Ay C Oceoy, is the sheaf of functions on
Yo defined in 1.7.2(i) for the complex structure Yy and the form wy. For

example, our triple has order 1 iff C(s) is a holomorphic tensor on Y.

Proof: Clear. [l
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2. D-Rational Varieties and Canonical
Quantization

In some situations a quantization is uniquely defined by a Lagrangian triple.

In this section we desribe some sufficient conditions for this.
2.1 D-Rationality

Let Y be a smooth variety and D be a tdo on Y.

2.1.1 Definition. Y is D-rational if H(Y,D) = C and H(Y,D) = 0 for
1> 0. n

For arbitrary D consider the class ¢} (D) := ¢1(D)—1c(det Q) € H'(Y, Qsh).
For ¢ € H'(Y,Q3") let & denote the image of ¢ in H'(Y,QL). Let 6p :
HI(Y,S"Ty) — H7TY(Y, S""'Ty) be the convolution with & (D).

2.1.2 Lemma. Assume that H*(Y,Oy) = C and for eachi > 0 the sequence
0— H'Y,S'Ty) 2 H'(Y, S ') 22 - 2B Hi(Y,0y) — 0
s exact. Then'Y 1is D-rational.

Proof: By A2.6 ép is the boundary map for the short exact sequence
0 — S™'Ty — D;/D;_ 5y — STy — 0, ie., dp is the first differential in
the spectral sequence EP9 that computes H (Y, D) using filtration D;. Our
conditions mean that E5° = C, E?* = 0 for p,q # (0,0). O

2.1.3 Remark: One may interpret dp microlocally as follows. Let 7 :

T*Y — Y be cotangent bundle to Y. The symplectic form on T*Y defines
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the isomorphism Q... — Tr-y (which coincides with translation action along
the fibers on 7*Q3, C QL.,). Hence we get the class ¢j(D)¥ = 7*¢,(D) €
HY(T*Y,Tr+y). One has H/(T*Y,Or-y) = ® HI(Y,S5"Ty), so we have 0§ :
HI(T*Y, Op+y) — HITYT*Y, Op-y). Clearlylé coincides with the product
with & (D)"Y via the map T7®c O — O, 9 x f — I(f). O

2.1.4 Example: Let Y be a compact complex torus, or an abelian vari-
ety. Then det}, ~ Oy, hence ¢|(D) = ¢;(D). One has H'(Y,Q3) =
H(Y, Q) ® HY(Y,0) = Hom(H*(Y,Ty), H' (Y, Oy)) We will say that a
class ¢ € H'(Y,.) is non-degenerate if the map ¢ : H(Y, Ty) — H' (Y, Oy)
is isomorphism; a class ¢ € F'H} (V') is non-degenerate if such is an element

¢=cmod F*H% of H'(Y,Q3).
2.1.5 Lemma. Y is D-rational iff ¢,(D) is non-degenerate.

Proof: Note that H/(Y,S'Ty) = S'"H(Y,Ty) ® AV H'(Y, Oy). This isomor-

phism identifies the complex from 2.1.2 with i-th symmetric power of the

2-term complex H°(Y, 7y) ad) H'(Y,Oy). Hence if ¢;(D) is non-degenerate

then the conditions of 2.1.2 hold (the Koszul complex is acrylic, and Y is D-

rational. If ¢(D) is degenerate, the exact sequence 0 — C — H(Y, ’?D) —
&1 (D)

HO(Y,Ty) &5 HY(Y,Oy) shows that C € H(Y,Tp) € H(Y, D), so Y is
not D-rational. O

2.1.6 Remark. Let £ be a line bundle on a compact complex torus Y.
If ¢;(£) is non-degenerate, then all the cohomologies H7 (Y, £) vanish but a
single one. We do not know whether one has a similar statement for a line

bundle £ on arbitrary D, -rational variety.
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2.2 Canonical D-Connections

Assume we are in a situation 1.2, so we have a smooth morphism p:Y — S

of smooth varieties, and Dy is a tdo on Y.

2.2.1 Definition. We will say that p is Dy-rigid if one has p,Dy;s = Og
and for any T € Tg there exists (locally along S) an element T € p,Dy such

that for f € Og one has p*r(f) = [T, p*f]. O

2.2.2 Lemma. Consider the short exact sequence 0 — ’]N'Dy/s — I]NVDY —
p*Ts — 0. It defines the morphism KS : Tg — Rlp*’j'py/s (the Kodaira-
Spencer class). Then p is D-rigid iff p,Dy;s = Os and the composition
Ts K Rlﬂ*’ZN'Dy/S — Rlp*Dy/S equal to 0.

Proof. Clear. O]

Assume that p is D-rigid. Let T be the sheaf of all pairs (7, 7) from 2.2.1.
We have a short exact sequence 0 — Og N Ts 5 Tg — 0, i(f) = (o, f),
o(r,7=17). Also T carries an obvious Lie algebra and Og-module structure,
SO ’ifg is an O-extension of 7g. Let Dg = D7~—S be the corresponnding tdo (see
A1.4). The map Ts — p.Dy, (1,7) — T, extends (uniquely) to p-morphism
a: Dg — Dy. We will call a a canonical p-morphism, and the corresponding

Dy-connection Vp, a canonical Dy-connection.

2.2.3 Lemma. (i) A canonical Dy-connection is actually a unique Dy -
connection for p.

(ii) A degree of V4 is equal to minimal degree of T for (1,7) € Ts minus

23



(iii) Let L. be the filtration by degree along S on Dy (see 1.2.5). One has
7,5 = piL.

(iv) Any (compatible) Lie algebra action on'Y, S, Dy preserves Dg and
Vo (see 1.4.1).

Proof: Clear. O

2.2.4 Proposition. Let p: Y — S be any smooth surjective morphism and
Dy be a tdo on'Y such that for each s € S the fiber Yy is Dy,-rational. Then
p is Dy-rigid, and one has p,Dy = Dg, R'p,Dy =0 fori > 0. If, moreover,

Dy satisfies conditions 2.1.2, then a canonical Dy -connection has order 1.

Proof. One has Og — p«Dyys, Rip*Dy/S = 0 since Dyyg is flat Og-module
and we have fiberwise rationality. Consider the filtration L. on Dy. Since
Li/Li-y = Dy;g ® STs one has Rp,L;/L; 1 = S"Ts. This implies that
Rip.Dy = 0 for Ki > 0 and p,Dy is a tdo with a canonical filtration equal
to p«L;. By 2.2.3 we see that p is Dy-rigid and p,Dy = DsK. O

2.3 Canonical Quantization

Let (X © Y;w;Vs) be an S-Lagrangian triple of order 1, Dy be a corre-
sponding tdo on Y.

2.3.1 Definition. We will say that our Lagrangian triple is canonically
quantizable if py 1Y — S is Dy-rigid and a canonical Dy -connection Vp,

is a quantization (see 1.3). O

In this case Vp, (which is a unique Dy-connection for py) is called a canon-

ical quantization of our triple. By 2.2.3(iv) Vp,. is preserved by any symme-
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tries of the triple. In some cases the compatibility 1.3 holds automatically,

e.g., one has

2.3.2 Lemma. Assume that for each s € S one has H°(Y,,Oy, = C,
H°(Y;, Ty,) = 0 and the maps ép, ; : H'(Ys, S'Ty,) — H'(Y,, S 'Ty,) are
injective for i > 1. Then our Lagrangian triple is canonically quantizable iff

the composition Tg ™3 Rlﬂy*”fpy/s = R'py.Dpjs1 — R'py, Dy;s2 vanishes.

Proof: Our conditions obviously imply that py, Dy,s = Os, py.(Dy;s/Oy) =
0. By 2.2.2, the above map Tg — R'py, Dy s vanishes iff py is Dy-rigid and
a canonical Dy-connection Vp, has order 1. By 1.3.2(ii) Vp, is a quantiza-

tion. O

2.3.3 Remark. Let 7 : X — Y be a morphism of S-varieties and w €
Q%{/s- Assume that these data satisfy conditions 1.1.3(i)—(ii). Note that
the sheaf p,-conn® of those px-connections Vg that w is Vg-horizontal is an
QL ® pX*T)‘;’/S-torsor (where ’Z}("/ ¢ C Tx/g is a subsheaf of vector fields that
preserve w). Therefore in case px, 7y s = 0 there exists at most one such Vg
which is automatically integrable (since the curvature lies in Q% ® py, T;{/ g =
0). Hence (7 : X — Y,w, Vg) is an S-Lagrangian triple. We will call such

triples canonical Lagrangian triples.

2.4 Example: Heat Equation for /-Functions

Let Y be a complex torus or an abelian variety. Denote by (—1) the involution

yr— —yof Y. Let Dy beatdoonY.
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2.4.1 Definition. A symmetric structure on Dy is an isomorphism Dy N

(=1)*Dy. A symmetric tdo is a tdo equipped with a symmetric structure..]

A symmetric tdo forms a category TDOS(Y') in an obvious manner.
Certainly, we may repeat the above definition of symmetric structure for

Q7 '-torsors or twisted cotangent bundles.

2.4.2 Lemma. Any tdo admits a symmetric structure. A symmetric tdo
(Dy, ) has no automorphisms. One has (—1)*(«) o a = idp,., so Dy is a
7./ 2-equivariant tdo. Two symmetric tdo’s are isomorphic iff they are iso-

morphic as usual tdo’s.

Proof: Follows from A1.6, A1.13 since (—1) acts on H'(Y,Q7') = F'H?) C
H2,,(Y) as identity map, and on H(Y,Q5") = F'HL(Y) C Hp5(Y) as mi-

nus identity. O

2.4.3. We see that ¢; defines equivalence between TDOS(Y') and a discrete
category with the set of objects F'H%,(Y). For ¢ € FIH%,(Y) we will
denote by D, the corresponding symmetric tdo, and by (7. : X, — Y;w.),
the symmetric twisted cotangent bundle. Note that if ¢ lies in F2H?,(Y) =
HO(Y,Q2) then the tdo D, carries a unique symmetric (in an obvious sense)

connection V. with curvature ¢ (cf. A1.7).

2.4.4. Here is an explicit construction of the twisted cotangent bundle X,
for a non-degenerate ¢ € F*H2,(Y). Let 0 — H(Y,0y) — X 5 Y — 0
be a universal extension of Y (see, e.g. [MM]); we consider here the vector
space H'(Y,Oy)" as an algebraic group). So X is a commutative algebraic

group with Lie algebra Lie X canonically identified with H},(Y). One
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may describe points of X as line bundles with connection on a dual abelian
variety Y?; in the analytic case one identifies X with H;(Y,C/Z). Our class
c€ F'H3,(Y) C H3n(Y) = A2H},»(Y) defines an invariant 2-form w, on X;
this form is closed, non-degenerate (since such was c), and 7 is a polarization
for w. (since c € F'H3 ), so X, ={(7: X — Y;w.)} is a twisted cotangent
bundle on Y. The involution (—1), :  — —z is a symmetric structure on
Xe. Since 7 @ H{p(Y) — H3?,(X) is isomorphism, and 7*X, carries a

section with curvature w,, we see that ¢;(X,) = c.

2.4.5. Now let py : Y — S be an abelien scheme over S, i.e., a family Y,
s € S, of abelian varieties (so we are in an algebraic situation). Let ¢ be a
horizontal section of H% ,(Y/S) (with respect to Gauss-Manin connection)
that lies in F'H%,(Y/S). For any s € S the element ¢, € F'H?,(Y;)
defines a symmetric twisted cotangent bundle (7.5 : X.s — Yi, wes), in a
canonical way. These spaces form a relative symmetric twisted cotangent
bundle 7. : X — Y, w. € H'(X,Q%/5), (—1)x : Xc — X.. We will say that
¢ is non-degenerate if for some (or any) s € S the class ¢, € FYH%L(Y;) is

non-degenerate.

2.4.6 Proposition. Assume that c is non-degenerate. Then

(i) px = pyom. : X. — S admits a unique symmetric connection Vg
(i.e., the one such that (—1)xVs = Vg).

(ii)(m. : X — Y;we; V) is an S-Lagrangian triple which is canonically

quantizable.

Proof: (i) One has H°(X,,Ox,) = C,H(X,,0x,) = 0 for i > 0 (to see
this note that H (X, Ox,) = H (Hs, m+Ox,) since 7 is affine; the standard

27



filtration A; on A = 75,Ox gives a spectral sequence with first term equal
to Koszul complex, cf. 2.1.5). The connections for px form a p% Q% @ 7 X/S-
torsor on X. Since Tx, = H}(Y;) ® Ox, (see 2.4.3) we see that connections
for px (global along the fibers of px) exist and form an H},(Y/S) ® Q-
torsor. Since (—1)x acts on HhLz(Y/S) as multiplication by —1, we see that
there exists a unique symmetric connection Vg.

(ii) Note that X is naturally a group scheme over S. It follows easily
by unicity that Vg is actually a unique connection for px compatible with
group structure on X, and the induced connection on Lie X/S = HL,(Y/S)
is (dual to) Gauss-Manin connection (see [MM]). Also Vg is flat. Since w,
is invariant 2-form on X-horizontal with respect to Gauss-Manin connection
(see 2.4.3) we see that it is Vg-horizontal, so (7 : X — Y;w.; Vg) is an S-
Lagrangian triple. By 2.1.5, 2.2.4, py is Dy-rigid and a canonical connection
Vp, has order 1. Since Vp, is symmetric (being unique) the section V§ —
VY, € Q5 ® py,(Az/Ag) = Qg ® py, (A1/A) is symmetric (see 1.3.2), hence

vanishes. By 1.3.2(ii) this means that Vp, is a quantization. O

2.4.7 Remark: (i) If we are in an analytic situation, i.e., py : Y — S is
a family of compact complex tori, then 2.4.5 remains valid with the only
correction: in (i) one should also demand that Vg has finite order (i.e., for
f € Oy, t € T the function Vg(7)(f) € Ox should be polynomial along
the fibers of 7). The connection Vg defines an obvious “topological” local
trivialization of the fibration X = H,(Y/S,C/Z) — Y. O

(ii) In the language of 2.3.4 the above Proposition 2.4.6(i) says that

(X/+£1 — Y/+1,w,Vy) is a canonical S-Lagrangian triple. Here / £+ 1

means quotient modulo the involution (—1) which is an S-family of smooth
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“orbifolds” or “stack.”

2.4.8. Assume that our class ¢ is integral, i.e., ¢, € H*(Y;,Z(1)). Localizing
S, if necessary, one finds a symmetric line bundle £. on Y together with
a trivialization e¢*L. ~ Og of its restriction to zero section e of Y. Put
A = e*Q = py.Q, and choose a square-root of ), i.e., a line bundle A/ on S
together with isomorphism A'/2®2 = X\, Then £, ® pi-A/? is a Kostant line
bundle, and a corresponding integrable projective connection on R'py, is a

classicial heat equation for #-functions.
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5. Centralizers of Regular Elements

Let G be a connected reductive group, g its Lie algebra, G := G/ center G
be the adjoint group, and B the variety of Borel subalgebras of g. We can
also interpret B as the variety of Borel subgroups of G. Recall the definition
of the Cartan group of GG, the Cartan Lie algebra and the Weyl group. The
action of G on B is transitive, so for each pair By, B, of Borel subgroups we
may choose g € G such that Ad(g)B; = B, which induces the isomorphism
Ad(g) : B1/[Bs, Bi] — By/[Bs, By]. In fact, this isomorphism does not
depend on a choice of g, hence we may identify canonically all the toruses
B/[B, B]. This torus H is called the Cartan group of G. Its Lie algebra b is
called Cartan Lie algebra of g; one has a canonical isomorphism h = b/[b, b]
for b € B. Put I' := Hom(G,,, H). One defines similarly the Weyl group
W = W(G); it acts on H and h in a canonical way. We also have the root
data; denote by A the set of roots, and by S C A the subset of simple roots.

Denote by p : h — h/W :=Y the projection, and by R C Y the ramifi-
cation locus of p. We have a canonical AdG-invariant projection f:g — Y
such that f/b coincides with the composition b — b/[b,b] = § 2 Y for

any b € B.

5.1. Let gy C g be the open subset of regular (not necessarily semi-simple)
elements of g. Put greg 1= {(a,b) : @ € b} C greg X B. Then g,y is a smooth

variety, and the projection p’ : §req — @reg is finite. The group G acts on
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these objects in an obvious manner. Consider the commutative diagram

~ fre

Gre = b

I Ip
Oreg T Y

where frog = f
that

grog> A freg(@,b) = a mod [b, b] = h. One knows (see [K2])

(i) this diagram is Cartesian, hence W acts along the fibers of p’, and
Oreg = W\greg-

(ii) freg is @ smooth projection. The adjoint action of G is transitive along
the fibers of freg. Hence Y = G\greg, h = Y =: G\ Greg-

(ili) freg admits a global section s :Y — gyeg.

5.2 Let a € g,z be a regular element. Denote by H, the centralizer of a, and
by i, : He <— G the embedding. One knows that H, is a commutative group
of dimension dim §. For any Borel subgroup B C G such that a € b = Lie B
one has H, C B, hence the projection B — B/[B,B| = H defines the
morphism ¢p : H, — H. For @ = (a,b) € gy we put ¢z == pp: H, — H.
If a is a regular semi-simple, then ¢z is an isomorphism.

One may describe H, as follows. Let M, C G be the centralizer of a,
(:= semi-simple part of a). This is a Levi subgroup of G. Since a € Lie M,
one has Center M, C H,. In fact, Center M, coincides with the reductive
part of H, : if Hau, denotes the unipoint radical of H, then one has H, =
Center M, X Haun. Note that Hg., = ker ¢z, hence Center M, — va(Ha)-

We will need a bit of information on the structure of the group H, /H? = Cen-

ter M,/Center’ M, of connected components of H,. For a root y let vV € T
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be the corresponding co-root, and o, € W be the reflection a — a — y(a)v";
let xy + H — Gy, i, : G, — H be the corresponding character and 1-
parameter subgroup. We will say that 7 is a type 1 root if I' = ' @ Z~",
that v is of type 2 if ' =177 @ %Zvv, and that v is of type 3 in other cases
(in other words, v is of type 3 if the projection I'’" — I, from o,-invariants
to o,-coinvariants is isomorphism). Therefore 7 is of type 2 if the rank 1 sub-
group that corresponds to v equal to PGLy. Denote by S; C S, i =1,2,3,
the subset of simple roots of type i.

If M, is our Levi subgroup and B is a Borel subgroup such that ay, €
b = Lie B, then B, := BN M, is a Borel subgroup of M, and B,/[B,, B,] =
B/[B, B]. Hence a choice of B defines the isomorphism between the Cartan
groups of M, and G, and identifies the root system of M, with the subsystem
of the one of G. In particular, S, (:= simple roots of M,) C S, and Wg, C W

is the Weyl group of M,.

5.2.1 Lemma. (i) One has Center M, = (), cg, ker x,, H"Se = g ker(i,x),

(i) One has H"sa /Center M, — 7./2%2, where Ay = Sq N Sy.

(iii) In each orbit of Sg, in the roots of M, there is at most one simple
root.

(iv) If a € Lie B = b, then W, equals the stabilizer of a = (a,b) € gy
with respect to W-action (see 5.1(i)).

(v) If So = {7}, then the group Hq/Hg equals 7.2 if v is of type 1 and is

trivial otherwise.

Proof: Easy, e.g., morphism (x,) : H — [] G, is surjective and keri,

YESa

is {£1} if v is of type 2 and trivial otherwise. Therefore the map (X)yes,,
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defines the isomorphism (g, ker(iyx-)/MN,eg, ker(x,) — (£1)%2, hence
(ii) follows from (i). The morphism . : H" — {£1} depends only on the
W-orbit of ~y, hence (iii) follows from (ii). O

5.3. When a € g, varies the groups H, form a flat commutative group

scheme Hg, , on g., equipped with the embedding 7 : H — (., to

ETEg Jre g Gre g

the constant group scheme G on g,;. The morphisms ¢ form a canonical

morphism @, : Mg, = P Hge, — Hae- The W-action on ey lifts to

our group schemes: namely, W acts on Hg_ in an obvious manner, and

on Hj;

Jreg

freg
= H X gy in a diagonal one. The morphism ¢ commutes with
W-action.

All the picture is equivariant with respect to (adjoint) action of G on
all our schemes. Note that the stabilizer of a point a € g, equal to the
image of H, in G, acts on the fiber H, trivially (since H, is commutative).
Therefore, according to 5.1(ii), the scheme Hj descents to Y: we have a
canonical group scheme Hy on Y such that Hg,, = f*Hy. For any section s

of fieg One has a canonical isomorphism s*Hy ., = Hy, hence the embedding

is:=5"(1) : Hy = s"Hg,., — $*Gg,.. = Gy.

Oreg

greg greg

The morphism g, descents to a canonical morphism ¢y : Hy := p*Hy —
Hg equivariant with respect to W-action. By adjointness we have the mor-
phism ¢y : Hy — (p*Hf,)W. This is an embedding which is isomorphism off
R. As follows from 5.2.1, the cokernel of ¢y is a constructible sheaf with a
stalk at y € R equal to Z/stz, where 5,2 C S5 is the set of type 2 simple roots
“vanishing at y.” In particular, I'(Y, Coker py) = (Coker ¢y)y = Z/2%.
Clearly H'(Y, Coker ¢y ) = 0.

Note that Center G C H, for any a € g,ee, hence Center G C I'(Y, Hy ).
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Precisely, one has
5.3.1 Lemma. I'(Y, Hy) = Center G, H'(Y, Hy) = 0.

Proof: Note that all the global (algebraic) H-valued functions on Y = b
are constant. Hence I'(Y, Hy) = ker(D(Y, (p.Hy)") — Z/2%) = ker(HY —
7./252) = Center G by 6.3. Now let F be any Hy-torsor, and F := oy (p*F)
be the corresponding W-equivariant H-torsor on Y. Since any H-torsor
on Y is trivial, the value at 0 map defines the isomorphism F(}A},]? ) —
JE(O). Therefore for the (p.Hy)"-torsor oy (F) = (p.F)W D F one has
LY,y (F) = T(Y,F)V = A, and T(Y, F) = Im(pg, : Fo — Flg) # 0,
q.e.d. (]

5.4. Consider the canonical embedding i : H,. — G We would like

Jreg Greg*

to descent it down to Y. We assume that G acts on Gy, = G X greg by a
diagonal adjoint action. Then i is G-equivariant. Note that the stabilizer of
a point a € gy acts on a fiber GG, in a nontrivial way; hence we need for
G

a bit more clever descent then the obvious one used for ‘H in 5.3.

Oreg Jreg

Namely, IT denotes the set of global sections s : Y — g, of fg.,; accord-

ing to 5.1(iii) II is a nonempty G(Y)-set.
5.4.1 Lemma. II is a G(Y)-torsor.

Proof: For s;,s, € II consider the sheaf ¢,,,, on Y, defined by formula
Gs0s, (U) == {g € G(U) : Ad(9)s1y = sou}. This is an Hy-torsor with
respect to right multiplication by i, : Hy — Gy. By 5.3.1 the global sections
[(Y, ¢s,s,) form a torsor with respect to the action of Center G = I'(y, Hy ).
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Hence for any s;,s, € II there exists a unique element g,,,, € G(Y) =

G(Y)/Center G such that Ad(g)s; = s2.We are done. O

Denote by Gy the group scheme on Y obtained from Gy by Il-twist
(with respect to adjoint action of G(Y)). Hence for any s € Il we have a
canonical isomorphism js : Gy — Gy such that ki, Gt = Ad(gsys, ). There is
a canonical embedding i : Hy — Gy such that jsi = i5. Note that we have

no canonical isomorphism between f£, Gy and G

reg Oreg *

5.5. The variation considered in 5.1 also carry a natural Gm-action that
commutes with G- and W-actions. Namely, Gm acts on O, and bh by
homotheties, and this determines the Gm-actions on Y = W\h — G\ gree and
Ores = Oreg Xy . Explicitly, if p; are homogeneous generators of S(h*)" of
degree d;, so (p;) : Y — CYmbY then Gm acts on Y in coordinates p; by
formula A\(p;) = (\p;).

This Gm-action lifts to our group schemes Hy, Gy and Hy. Namely,
the Gm-action on Hy = H X Y is the trivial one. For a € Oreg and A € C*

one has H, = Hx,, which defines the Gm-action on H,__ which descents

Gres
down to Hy. The group Gm acts on the set II of global sections of fi.s by
formula (As)(y) = As(A"1y); for g = g(y) € G(Y) we have \(gs) = (Ag)(\s),
where (Ag)(y) = g(A\'y). This defines the Gm-action on GY. such that
jso)\:jAS:G¥?Gyf0rs€H,)\E(C*.

The morphisms ¢y : Hy — Gy, i : Hy < Hy commute with Gm-action.
We will need to know whether there exists a Gm-equivariant G-torsor 7 such

that the group Gy with Gme-action is isomorphic to Aut 7. Or, eqeuiva-
lently, whether the Gm-equivariant G(Y)-torsor II lifts to a Gm-equivariant
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G(Y)-torsor. Since G(Y) is a central extension of G(Y) by Center G, the
obstruction « for lifting an element ¢/ I € H(Gm,G(Y)) to HY(Gm, G(Y))
lies in a finite group H?(Gm, Center G) = H*(Gm, A) = A(—1), where A
denotes the group of connected components of Center G (and (-1) is Tate
twist).

The obstruction a could be easily computed. Namely, let o be a reg-
ular nilpotent element, and 7 : SLy — G be a morphism such that Lie
v =1((3¢)) = a (so v is a Kostant principal TDS). Let v : Gm — G,
v(A) = v ((8 9 )) be the corresponding one-parameter subgroup, so one

A
has Ad v(\)(a) = Ma and v(—1) € Center G.

5.5.1 Lemma. The obstruction « equals the image of v(—1) in A. In

particular 2a = 0.

Proof: Put ¢ = {Aa, A # 0} C ey, I, == {s : s(0) € ¢} C II,
G, = v(Gm) - Center G, G(Y), := {9 € G(Y) : g(0) € G,} C G(Y),
G, = G,/Center G C G, G(Y), == {g € G(Y) : g(0) € G,} C G(Y).
Clearly, G(Y),, G, are central extensions of the corresponding ~ -groups
by Center G. We have canonical morphisms G(Y) < G(Y), & G,
m(g) = ¢(0), identical on Center GG, and the corresponding morphisms of ~
-groups. Now Il,, 1 are G(Y),- and G-torsors, respectively, and the obvious
maps [1 L I1, =, Y, 7'(s) = s(0), are - and m-compatible. Note that all our
groups and torsors carry an obvious Gm-action. Hence, by functoriality, the
obstructions for lifting II, TI, and 1 to, respectively Gm-equivariant G(Y)-,
G(Y ).~ and G,-torsors. The obstruction for ¢ coincides with the image of

v(—1) in A, and we are done. O
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Example: In case G = SL,, the obstruction « vanishes iff n is odd.

5.6. Consider a pair (7,0) where 7 is a Gm-equivariant G-torsor on Y,
and o : T — gyeg is @ morphism of Y-schemes that commutes with Gm x G-
action. Such (7,0)’s form a groupoid II (the morphisms between (7, 0)’s

are morphisms of Gm-equivariant G-torsors that commute with ¢’s).

5.6.1. For (T,0) € II the set II; := I'(Y,7T) is nonempty (since the ob-
struction for lifting a section of g,eg to a one of 7 lies in H*(Y, Hy) = 0),
hence it is a Gm-equivariant G(Y )-torsor. Therefore o : I — I is a lifting
of a Gm-equivariant G(Y)-torsor II to a Gm-equivariant G(Y')-torsor. Such
liftings form a groupoid II" in an obvious manner. Clearly, the above functor
I — I, (T,0) — (II7,0), is equivalence of categories (the inverse functor
assigns to (ﬁ, o) the induced Gy-torsor 75 := Gy X¢(v) f[)

We see that II is nonempty iff the obstruction a from 5.5.1 vanishes;

assume for a while that this is the case.

5.6.2. Let P denote the category of Gm-equivariant Center G-torsors. This
is a strictly commutative Picard category with automorphism group of an
object equal to Center G, and the group of isomorphism classes of objects
equal to H*(Gm, Center G) = T'". We have an obvious “multiplication of
torsors” functor  : P x IT — IL. Tt is clear (look at II'-version) that * makes
Il a “P-torsor’: for any (7,0) € 11 the corresponding functor P — 11,
P — Px(T,0), is the equivalence of categories. Equivalently, II is a P-gerb.

The following lemma follows from the definitions:
5.6.3 Lemma. For (7,0) € 11 we have a canonical Gm-equivariant iso-
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morphism GY- = Aut T (:= automorphisms of T as Gy -torsor). It identifies
Hy C GY with the subgroup {¢R, amAut T : op = ¢}.

5.6.4. If the obstruction a from 5.5.1 does not vanish, let us consider the
“squared” action of Gm on our spaces (the new action of A € Gm is the
old one of A\?). We may repeat the above constructions for this action. The
corresponding category I of pairs (T, o), where T® is a Gm-equivariant
(for a new action!) G-torsor on Y, and o : 7®? — Oreg 15 @ Gm X G-map, is

nonempty by 5.5.1. We may repeat 5.6.1-5.6.3 word-by-word.

5.7. For a quantum analog of the above constructions, see [KL].
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6. A Construction of G-Bundles

Let C' be a smooth projective curve, and £ be a line bundle on C.
Denote by £ := L\{zero section} the corresponding Gm-torsor. If X is
any variety with a G'm-action, then X, denotes X twisted by £. There-
fore X, is a C-scheme equal to the quotient of £ x X modulo Gm-action
Al x) = (M, \"'z). In particular, if X = V is a vector space with Gm-
action by homotheties, then V, = L& V. An L-twisted map 6 : C - X is,
by definition, a section of X. Equivalently, this is a Gm-equivariant map

HH:E‘l — X.

6.1. From now on assume that £ is positive. Let 0 : C' - Y be a L-twisted
map (here Y carries the Gm-action defined in 5.5). We will say that 6 is
regular, if for any ¢ € C such that 6(c) € R one has 0,.(Tc(c)) C Tr(0(c)).
Equivalently, this means that the image of 6 intersects R transversally at
regular points of R.

Assume that 6 is regular. Put CN’G = C Xy, }75. This is a C-scheme
with respect to projection p : Cy — C equipped with a W-action along the
fibers of p. The projection Cp — }75 is a W-equivariant Lg -twisted map

6:Cy o Y = b which is the same as W-invariant section 6 of Le, @
Co

Lemma. (i) Cy is a smooth irreducible projective curve.
(ii) The W-action on Cy is free at generic point of Cy, and C = W\C.
(iii) The non-trivial stabilizers of points of Cy are precisely all the order

two subgroups W, :={1,0,} C W, v is a root.
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Proof: Let us prove that for any root v one has é;’” # (). Let b7 C b be
the corresponding hyperplane. Since £ is positive, a section  mod §o of
L, @ h/h% must have a zero = € Cy. Clearly, z € C’g”.

Let us prove that Cy is connected. Let q’) be a connected component of
Cy. The same reason as above shows that for any root  one has C’;)U” # 0,
hence 0,Cy = Cy. So WC) = C). Since WC} obviously equals Cy, we are
done.

The other statements of the lemma are obvious. |

6.2. Consider the pull-back of the group schemes Hy, Gy by the projection
L' xY — Y. According to 5.5 they carry a canonical Gm-action, hence by
descent we get the group scheme Hy,, G)\éﬁ on Y, together with a canonical

embedding i : Hy, — GY,, v, : p"Hy, — Hy,, ¢y, : Hy, — (p.G3,)".

6.2.1. Remark. GY, is a twisted form of a constant group scheme Gvy,.
If the obstruction a from 5.5.1 vanishes, then a choice of (7,0) € I (see
5.6) defines, by G'm-descent, a Gy, -torsor Ty, with Gy, = Aut 7y,. If a is
arbitrary, let us assume that deg £ is even. Choose L£Y? (:= a Gm-torsor
st. (£Y%)?2 = L£). Then Y, = YS?Q), where Y® is Y with “squared” Gm-
action. Now a choice of 7® in I1® (see 5.6.4) defines, by Gm-descent from
L2 x Y@ a Gy, -torsor Tg) with Gy, = Aut ’T)Ef).

Let 6 : C - Y be a regular L-twisted map. Put Hy = 0"Hy,,
Gy = 6*Gy,; one has a canonical embedding (p.Hg, )" & Hy 5 @Y. The
group scheme G is a twisted form of G¢; if deg L is even, or « vanishes,
then following 6.2.1, we get a G¢-torsor ’79(2) = 9*’2’3&2), or Ty = 07y, with

G identified with its automorphism sheaf.

40



Denote by Ry C C' the ramification set for p : Cy — C. To each point
x € Ry there corresponds a conjugacy class of roots «,, so that W, are
stabilizers of points in p~!(x). We will say that x € Ry is a typei (1 = 1,2,3)
point if 7, is a type ¢ root (see 5.2.1); let Ry, C Ry be a subset of type i

points.

6.2.2 Lemma. (i) (p.Heg,)" /9(Hy) is a skyscraper sheaf ®x€7292 7/)2zx.
(ii) The embedding i identifies global sections T'(C,Hg) with Center G.

Proof: (i) follows from 5.3. One has I'(C, (p.Hg,)") = H(Cy)V = HV

(since Cy is connected and proper), hence (ii) follows from (i) and 5.2.1. O

6.3. We are going to relate G-bundles on C' and W-equivariant H-bundles

on Cy using Hy-torsors as mediators.

6.3.1 Remark. Let G, be any twisted form of G¢. Then the categories
of G-torsors in Zariski, étale and classical topology on C' are canonically
equivalent. For Zariski = étale see [ | (for G # GL,, one really needs here
that C' is a curve), and étale = classical is GAGA-type statement. Similarly,
‘Hy-torsors are the same in Zariski, étale and classical versions.

Let 'yt € ' be the sublattice generated by coroots; note that W acts
trivially on T'/T' 0. Consider the i-induction functor between the stacks of

; . Vv
torsors iyoys 1 Hy — tors — Gy — tors.

6.3.2. Lemma. The functor iy induces the bijection between the sets of
connected components of stacks Hp-tors and Gy -tors. These sets are in a

natural 1-1 correspondence with T' /T o01-
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Proof: In the proof we willuse the analytic version of torsors.

1. Note that I'(1) coincides with the fundamental group m;(H). An em-
bedding of a maximal torus H — G induces a canonical isomorphism
['/T00t(1) = m1(G). Consider the universal covering G of the topo-
logical groups Gicp, therefore G is a central extension of Ghop by m1(G).
The adjoint action of G lifts to é, hence we have the corresponding
central extension 1 — m(G)¢ — Gy — Gy 1op — 1 of twisted topologi-
cal groups. An easy topological consideration show that the boundary
map (first Chern class) H'(C, Gy ,,) — H*(C,m1(G)) = T'/T1o0t is bi-
jection. Since the space of holomorphic structures (= O-connections)
on a given topological G’-bundle is nonempty and connected, we get
the desired identification of the set of connected components of the

stack Gy-tors with T"/T' 0.

2. Let Lie Hy be the Lie algebra of Hy (which is a vector bundle on C)
and exp : Lie Hy — Hy be the exponential map. On the open set
U = C\Ry the map exp is surjective, and ker exp is a local system
T5(1), which is T'(1) twisted by W-torsor U := p~'(U) — U (here
W acts on I' in a standard way). Let jy.I'5(1) be the direct image
extension of I';(1) to C' (here jy : U — C'). Then ker exp = jy, I'5(1),

and cokerexp = P Z/2z by 5.2.1 (v).

mGRgl

Since H'(C,Lie Hy) are C-vector spaces and H?*(C,Lie Hy) = 0 the
group of connected components of the stack of Hy-torsors is equal to
hyper-cohomology group H?(c, F'), where F~ is a constructible complex

FO:=Lie Hy 2% F!:=H,. Therefore H*(C,F') = coker(Z/2Rn %
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H?*(C, ju.T5(1)). But H*(C, ju.T'5(1)) = 'y, and an easy local com-
putation shows that for z € Ry the morphism 0 : Z/2, — Ty is given
by formula 0(1) = ,. Since obviously both type 2 and type 3 roots

~ have zero classes in 'y, and any type 1 root occurs as some 7, by

6.1(iii), we see that H?(C,F") = T'/Tye0t-

3. We identified canonically the set of connected components of both Hg-
tors and G-tors with I'/T'o0. It is easy to see that the map induced
by p-induction iy is the identical map of I'/T',o;. We are done.

6.4. The functor ¢ defines the induction functors Hy-tors — (p.Hg,)"'-
tors — Hg, -tors. Here Hg, y-tors denotes the category of W-equivariant
H-torsors on C’g. Let us compare these categories.

Take F € H &, - tors. For a point z € C’g the fiber F, is a W -equivariant
H-torsor; let cloF := clF, € H' (W,, H) be its class. If W, # {1} then W, =
{1,0,} and H'(W,,H) = H'~/H"°, where H'~ :={h € H : 0,h = h™'},
H" Y :={he€ H:h=o0,(()- '} = connected component of H"~.

We will say that F is pointwise trivial if ¢/, F = 0 or, equivalently, FV= #
) for any x € Cy. Denote by He, y-torsg the full subcategory of such F’s. It
is easy to see that for any 7 € (p*Hg;—tors the corresponding Hg, y-torsor
is pointwise trivial.

For F € Hg, y-torsg and a type 2 point z the fiber FW= has 2 connected
components. A--structure on F is a choice for any type 2 point z of a
component F,;7 C F¥= such that for any w € W one has w(F,) = F,..
Denote by F* C F a subsheaf of sections that take value in F, for any type

2 point x. The pointwise trivial torsors with +-structure form a category
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I—Ié@’W-tors(J)r . If 7 is an Hy-torsor, then the corresponding Hg, -torsor F
carries a natural +-structure F, := (7)), hence the functor Hy-tors —

- +
HCG 7W-tOI‘SO .

6.4.1 Lemma. The functors Hp-tors — Hg, y-torsy, p.(Hg,)" -tors —

He, w-torsg are equivalence of categories.

Proof: Easy. The inverse functors are respectively F +— (p,F )W, F

(). O

Denote by |?—tors|the group of isomorphism classes of corresponding torsors.

Consider the forgetting of W-action functor 0 : Hg, y~torsg — He, -tors.

6.4.2 Lemma. The corresponding morphism of groups 0 : |Hg, iy -tors| —

|He,-tors| = Pic(Cy) @ T is injective.

Proof: The isomorphism classes of Hg, -torsors trivial as Hg -torsors form
a group H'(W, H). The pointwise trivial ones form a subgroup
H'(W,H)y:= () ker(H'(W, H) — H"(W,, H))
Z‘Gég

= ﬂ ker(H'(W,H) — H'(W,, H))

veS

(see 6.1(iii). To see that H'(W, H)y = 0 consider the short exact sequence

1—>HW—>H1)HH770—>1,
veS

v(h) = (04(h) - h™")ses = (i3x,(h)res
(see 5.2.1). If a € ZY(W, H) is a cocycle with a class in H'(W, H),, then
a(o,) € H'0 (since HY(W,, H) = H'~/H"°). Hence (a(0,))yes € v(H),
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ie., for some h € H one has a(o,) = o,(h) - h™! for any v € S. Since
0., 7 € S, generate W we see that a(w) = w(h) - h~! for any w, ie., a is

holologous to 0. OJ
Let indices 0 denote the connected component of an algebraic group.

6.4.3 Corollary. One has the isomorphism |Hg, v, -tors|” — (Pic(Cy) ®
T)YWo. The corresponding map |Hg-tors|® — |Pic(Cy) @ T|W is an isogenic

with kernel a 2-group.

Proof: The second statement follows from the fact that the group of +-
es Z)2% /§(Z/)2), where
R, ={r €Rp:v. =7}, and § : Z/2 — Z /2% is diagonal embedding. O

structures on a trivial Hg, yp-torsor coincides with [
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Appendix A
Rings of Twisted Differential Operators

A1l. Basic Definitions and Equivalences

In this section we will give several descriptions of category of twisted differ-

ential operator rings. Below X is a smooth algebraic or analytic variety over

C.

Definition. Let D be a sheaf of rings on X equipped with a ring filtration
Dy C Dy C Dy C --- (we have D; - D; C D;y;) and a ring isomorphism
Dy = Ox. We call D a ring of twisted differential operators (or simply a
tdo) if

(i) The graded ring is a commutative Ox-algebra (with respect to Ox =
Dy < gr.D) such that the corresponding morphism S (D1/Dy) — gr.D is
isomorphism.

(ii) ThePoisson bracket { , } : gr,D xgr,D — gr,.,D (defined by formula
{f.9} == fg—gf mod Dup_o where f € Dy, § € D, are representatives
of f,q) defines the isomorphism o : D1/Dy — Tx, o(t)(f) =47, [} O

Note that for a tdo D the filtration D. is completely determined by Ox =
Dy — D: one has D; = {90 € D: [9,Dy| C Do}, D; = D:.

A1.2 Example: If £ is a line bundle on X, then D, := ring of differential
operators acting on L is a tdo (with d, := operators of order < 7).
Clearly tdo’s on X form a category (a groupoid) TDO(X). Below we will

give several descriptions of this groupoid.
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A1.3. Let 7 be a sheaf of Ox-modules equipped with a Lie algebra structure
[ ], a section 1 of the center of 7, and an Ox-linear map o : 7 — Tx such
that the sequence 0 — Oy - T % Ty — 0, where i(f) == f-11is exact
and one has [0y, f0s] = a(01)(f)02+ f[01, O] for Oy, 0 € ’]~‘, f € Ox. Clearly
0 is a Lie algebra map, ¢ identifies Ox with an abelian ideal of T and adjoint
action of 7 on Ox with o.

We will call such 7 an O-extension of Tx. These form a groupoid
TDO'(X). Note that TDO'(X) is a “C-vector space in categories”: We

can form C-linear combinations of O-extensions (Baer sum construction).

A1.4 Lemma. The groupoids TDO(X) and T DO'(X) are canonically equiv-

alent.

Proof: The corresponding mutually inverse function 7DO(X) = 7T DO'(X)
are the following ones. If D is a tdo, then Tp := D is an O-extension
of Ty (the Ox-module structure on ’]~'D comes from left multiplication by
functions. Conversely, if 7 is an O-extension, then let D5 be an associative
algebra generated by T with the only relations 0y - 0y — 0y - 0y = [01, Do,
fi-fo=fifo, 1=1 E%, f-0=fo, for 0; G’f fi € Ox C’j:(here~denotes
the product in D). This D5 is the tdo that corresponds to T. O

A1.5. Let d : A" — A"™! be a morphism of sheaves of abelian groups on
X, considered as length 2 complex A" supported in degrees n and n+ 1. An
A-torsor is a pair (F,c), where F is an A™-torsor and ¢ : F — A" is a
map such that c¢(a + ¢) = d(a) + c(p) for a € A", ¢ € F (in other words,
curv is a trivialization of the induced A™*'-torsor d(F)). These A-torsors

form a groupoid A-tors. One has Aut F = I'(X,ker d) = H"(X,A’), and
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isomorphism classes of A'-torsors are in a natural 1-1 correspondence with

H™ (X, A).

Remark. A-tors is a stack in Picard categories on X; if A" is a complex of
C-vector spaces, thern A'-tors is a C-vector space in categories (one forms
C-linear combinations of torsors in an obvious way). If d is surjective, then

Ators = (ker d)-tors.

Consider the truncated de Rham complex Q%' := (Q% — Q%¢), where Q2

are closed 2-forms.

A1.6 Lemma. One has a canonical equivalence of C-vector space in cate-

gories C : TDO'(X) — Q3'-tors.

Proof: Let 7 be an O-extension of Tx. Connections V on 7 form an Q-
torsor C(7) (for a connection V and a 1-form v one has (v+V)(7) = v(7) +
V(1),7 € Tx). A curvature of V is a closed 2-form curv(V) defined by
formula curv(V) (1 A7) := [V(71), V(72)]—V([71, 72]); one has curv(vr+V) =
dv + curv(V). So our functor C' is T — (C(7T),curv). Obviously this is a

C-linear equivalence of categories. O

By A1.6 we may identify the set of isomorphism classes of tdo’s with
H?*(X,Q%"). For a tdo D we will denote by ¢;(D) € H*(X,Q%') the corre-

sponding class.

A1.7. For a tdo D a connection V on D is a connection on a corresponding
O-extension of Tx. Note that pairs (D, V), V is a connection on a tdo D, are

rigid: the only automorphism of D that preserves V is identity. The pairs
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(D, V) are in 1-1 correspondence with closed 2-forms; for w € Q*¢(X) we
will denote by (D,, V) a unique vp to a canonical isomorphism) tdo with
curve (V) = w. A corresponding Q%'-torsor (F,, curv,) is given by formula

F.,curv,; ) is given by formula F, = Q%, curv,(v) = dv + w. O

Now consider a cotangent bundle 7% = T*(X) = X. This is a vector
bundle over X; also T™ carries a canonical symplectic 2-form w such that 7
is a polarization. If v is a 1-form on X, and ¢, : T* — 1™, t,(a) = a + v, ,),

is translated by v, then t*(w) = 7*(dv) + w.

A1.8 Definition. A twisted cotangent bundle is a T™*-torsor ¢ ' (i.e.,
Ty 15 a fibration equipped with a simple transitive action of T* along the
fibers) together with a symplectic form wy on ¢ such that w4 is a polarization

for wy, and for any 1-form v one has t;(wg) = midv + w. O

For a twisted cotangent bundle ¢ we will denote by A, the Ox-algebra my«O,.
Then A, carries Poisson bracket { , } (defined by wy) and a filtration Ay, =
functions of degree < i along the fibers of 7,. Clearly one has A, = {¢ €
A)p : {p,Ox} C Ay,_,} = S'A,,, and the graded algebra of gr.A, coincides
with Ap« = S 7x.

A1.9 Remarks: (i) The T*-torsor structure on ¢ is uniquely determined by
the symplectic structure wy and the polarization 7, (since the infinitesimal
action of a 1-form v € Q'(X) is given by a vector field &, §,wg = 7, (v)).
(ii) Twisted cotangent bundles over X for a groupoid 7CB(X). According
to (i), 7CB(X) is a full subcategory of the category of triples (Y, wy,my)

where (Y,wy) is a symplectic manifold and 7wy : Y — X is a polarization
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(for the symplectic structure).

A1.10 Lemma. One has a canonical equivalence of categories I' : TCB(X) —

~

>1
Q5 -torsor.

Proof: Put I'(¢p) = Q'-torsor of section of ¢; the map curv: I'(¢p) — Q%*
is curv(7y) := 7*(wy). Note that the corresponding O x-extension iﬁ of Ty is
Ay equipped with the bracket {, }.

The inverse functor I'"! maps Q%l—torsor (F,curv) to (¢, mp,wy), where 7, :
¢ — X is the space of torsor F, and the symplectic form wy is a unique
form such that for a section v € F of m, the corresponding isomorphism

T*X — ¢, 0+ v, identifies wy with w + 7 curv(y).

A1.11. Let D be a tdo, and ¢ be the corresponding twisted cotangent
bundle. Then D is a “canonical quantization” of ¢ in a sense that D is a
deformation of a commutative algebra, Ay. Precisely, one has a canonical
family D = {D;} of sheaves of filtered rings on X parameterized by ¢t € P
(i.e., D is a flat Opi-algebra) such that

(i) for t # oo one has D, = D,z (here T = Tp; for a product of an
Ox-extension by t € C; see 2.2). In particular, Dy = D, Dy = Do, .

(i) Do = Ay, and the wy-Poisson bracket on A, is given by usual formula
{1,020} = [t(@1, P2 — P2p1)] mod t~1 (here ¢; € Dy, and @; are any sections
of D round t = oo such that @;(00) = ;).

(i) gr,D) = (S°Tx)(~a).

Here is a construction of . Define first the restriction D|p1\ (o). The ring

D(P'\{oo}) of sections is a Cl[t]-algebra generated by subalgebra Ox and a
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subsheaf 7 with the only relations 0y - 0y — 0y - 01 = [01,D], f -0 = fO,
tf = [f]; here 0;, 0 € T, f € Ox and [f] € T is f considered as element of
Ox C T. Let j : P'\{oo} < P! be embedding. Our I is a subalgebra of
J«Dp1\ (o} generated by Ox and Op1(—00) .T. The identification A, — Do
assigns to & € T C A, the element (£719)o € Do = D/t7'DD.

A1.12. Let us see what the above constructions mean in case D = D,
L is a line bundle. The corresponding O x-extension ’ZNZ = ’ZN’D . consists of
pairs (7,7), where 7 is a vector field and 7 is an action of 7 on £. The Q)Z(l—
torsor (Fz,curvy) := C(7) is the sheaf of connection on £, curvy is a usual
curvature. Note that this functor O%-tors — Q)Zfl—tors is precisely the push-
out functor for the morphism dlog : O% — Q(C Q%'[1]). In particular it
transforms ® to the sum of torsors. For any A € C we put D,x := AD,. One

has ¢;(Dz) = e1(L) € H*(X, Q5.

A1.13. A tdo D is called locally trivial if locally it is isomorphic to Dy =
Do, ; according to A1.6 the locally trivial tdo’s are the same as Q%‘-torsors.
Note that in analytic situation each tdo is locally trivial. In algebraic situa-
tion this is not true in general. For example, let X be a compact algebraic
variety. The space of isomorphism classes of tdo’s H*(X, Q;l) coincides with
Hodge filtration space F'H%p, and it is easy to see that the locally trivial
ones correspond precisely to a C-linear combinations of an algebraic cycles

classes.

A1.14 Definition. Let D be a tdo. A D-module M is lisse if M is coherent

as Ox-module. O
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A1.15 Lemma. Let D be a tdo, and M be a non-zero lisse D-module then
(i) M is a vector bundle of dimension, say, d.
(ii) One has a canonical isomorphism of tdo’s D — Dy, ayr/a- In partic-

ular, D 1is locally trivial.

Proof. (i) is well known (see, e.g., [Bo]). The isomorphism D —
D(det M)1/d COMES from the isomorphism of O-extensions dM’j'D = ﬁet M
an element 7 € 7p acts on det M = AYM by Leibnitz rule 7(my A...Amg) =
Tm) Ao Amg+ ... +mi A AT(myg) O

One has a following relation between twisted D-module structures and
integrable projective connections. Let £ be a quasicoherent Ox-module. An
action of a vector field 7 € 7x on & is an endomorphism 7 € End¢€ such
that for f € Ox, e € £ one has 7fe = fTe+ 7(f)e. Let T¢ be the sheaf
of all such pairs (7,7): this is an Ox-module and Lie algebra in an obvious
manner; we have an exact sequence 0 — End,,& — ’]Nfg 2 Tx of Lie algebras.
Clearly Ox -idg C Endp,& C ;]V:g‘ are ideals; put End & := End E/Ox - Idg,
Te == T¢/Ox -idg 2 Ts.

A1.16 Definition. (i) A projective connection & is an Ox-linear section
V :Tx — Te of 3. Such ¥V is integrable if it commutes with brackets.
(ii) Let D be a tdo. A D-structure on £ is an action of D on & that

extends the given Ox-action.

Clearly a D-structure on & is the same as an Ox-linear morphism of Lie
algebras o : 7 — 7¢ such that oo = o and a(1) = ide. Such o defines

an integrable projective connection V,, on £ by formula V,(7) = a(F) mod
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Oxidg, where 7 € T, (T = 7).

A1.17 Lemma. Assume that the map Ox — End &€, f — f idg, is injective.
Then the above map o+ V, from the set of pairs (D, a), D is a tdo, o is
a D-structure on £, to the set of projective integrable connections on & is

bijective.

Proof: One constructs the inverse map as follows. Let V : Tx — T ¢ be an
integrable projective connection. Then ’j% =Tx Xz 7¢ is an O-extension

of Tx, and the projection o : ’j% — ’i:g‘ defines the Dj%-structure on &. U

A2 Subprincipal Symbols

Let Q = det Q% be the sheaf of volume forms on X, and 75, be the corre-
sponding O-extension of 7x. One has a canonical section ¢ : 7y — ’ZNZ, which

assigns to 0 € Ty its Lie derivative £(0). Clearly ¢ commutes with bracket
and for f € Ox one has fl(9) = £(f0) — I(f).

A2.1. Now let T be any O-extension of 7x. Denote by 70 and O-extension
of 7Tx together with isomorphism of sheaves % : 7 — 79 such that *[T1, To) =
—[x71, %70, *(f7) = fxr4+7(f), o(x7) = —o(7),x(1) = Lfor7; € T, f € Ox.
Clearly * extends to isomorphism of tdo’s  : D% — Dz,, where Dz, means
the ring Dz with reversed multiplication. Note that (’j'o)o and xx = id.
Denote by 7° the Baer difference 7, — T of O-extensions (see A1.3), so an
element of 7% is a pair (a,b) a € T, b € T, such that o(a) = o(b), modulo

relations (a,b) = (a+ f,b+ f), f € Ox. One has a canonical isomorphism
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T° = T defined by formula *7 — (—fo(7),—7), 7 € T, hence we have

* 0 Dg: — D%O — D%Ol'

A2.2. Consider the O-extension %91/2 and the corresponding tdo Dgi/.
Since ’]N'gg)ll/z = ’ZN'Ql/z we have * : Dgl/2 — Dq2, 1.e., * is automorphism of the
sheaf D2 such that *(9;0y) = *(02) * (01). ** = id and * induces multipli-

cation by £ on Dqi2;/Dgi2;_1 = S'Tx. Denote by DE, , the +1-eigenspaces

Ol/2
of * on Dqij2, so Dz = Dgl/z ® Dy, Note that gr Ds—;l/z = ®S* Ty,
gr Do, = ®S* Ty, and the £-grading is compatible with bracket: for

a +-homogeneous elements a,b € Dqi/2 the elements [ab] = ab — ba is also

homogeneous.

A2.3. Let D be a tdo. Put gr,D := D,/D,_5. We will consider gr.D =
@ gr,D as a Lie algebra with bracket { , } : gr,D x gr,D — gr,,, ;D that
comes from the bracket [, | on D. So S7x = gr.D equipped with a usual

Poisson bracket is a quotient of gr.D modulo the abelian ideal.

A2.4 Example: The +-grading on Dg:1/2 induces a canonical isomorphism
groDaie = S%Tx @ S* 1Ty which identifies { } with the usual Poisson
bracket.

This example could be generalized as follows. For any tdo D consider an
O-extension 7V := %D—%Ql/z. Let (¢, s, wg) be its twisted cotangent bundle,
and A. = 74Oy, be the corresponding filtered commutative algebra with
Poisson bracket { }, so A, — S™(T") (see A1.8, A1.10). Put gr.A = A./A._y:
this is a commutative algebra, and { , } induces the Lie algebra structure on

gr.A.
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A2.5 One has a canonical isomorphism ¢ : gr.D — gr.A, compatible with

brackets, that lifts the isomorphism o.: gr.D — gr.A = S5"7x.

Proof: Let us construct the inverse isomorphism « : gr.A usr gr.D. Cer-
tainly ag = ido,. One has Tp = TV + Tue = {(a,b) € TY X T
o(a) = o(b)}/{relations(a,b) = (a + f,b — f) for f € Ox}. Define a; :
griA = A =TV — gD = Tp by formula ay(a) = (a,0(a)”), where
o(a)” is a unique element of ’ZN'Q_U2 with o(o(a)”) = o(a). Note that for
f € Ox one has ai(fa) = fou(a)so(a)(f). For arbitrary n we define
an, @ gryA = S"A;/S"2A; — gryD by formula a,(a; - - - ap) =
(% ZSEEn a1 (Agqay - a1(ase)) - - ~a1(a5(n))) mod D,_,. Here in right
bracket - means product of differential operators. To see that this formula is
correct it suffices to verify that for f € Ox one has o, (fa; -as- -+ - a,) =

ay(ay - fag- -++ - a,) (since the formula is obviously symmetric). One has
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[fantan) + jola)(9)] -+ aufasen)

= | Fantar a2 S0 S olasy)(f)

1<i<n c€X,
1<5<1 s(2)=1

—_ —

ar(as)) - arlasg)) - ar(asm))

1

#3o@)(Danifoa )| mod D,

= | fan(ay---ay) + % Z o (@) (f)an_1(ay---a;--- an)]

mod D,,_»

This implies correctness; since the diagram

0 — S"'7x — ¢gr,D — S"7Tx — 0

| Lan |

0 — S"'"7Ty — gr,A — S"7Tx — 0

obviously commutes, our a,, is isomorphism. Put 6. = a. 1.

Note that for D = Dgqi2 one has A = Age = ®S"Tx. The above
o obviously coincides in this case with the isomorphism from A2.4, hence
it commutes with brackets. Since any tdo locally (in algebraic situation,
actually, on formal neighborhood of points) is isomorphic to Dgi/2 and our

o is natural, we see that & commutes with brackets for arbitrary D. 0
A2.6 Corollary. A boundary op : H'(S,S"Tx) — H"YX,S771T,) for the
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short exact sequence 0 — S7™1Tx) — 0 coincides with convolution with class
Cl(D)—%Cl(Q) EHI(X,Q}() O

A.3 Descent for tdo’s

Let 7 : X — Y be a morphism of smooth varieties. The corresponding
morphism Qy — Q defines a functor 7 : QF'-tors — Q5 '-tors, hence,
by Al.4, A1.6, A1.10 the functors 7* : TDO(Y) — TDO(Y), TCB(Y) —
TCB(X).

Assume 7 is smooth and surjective. We would like to understand how to
go backwards from tdo’s on X to ones on Y, i.e., how to make a descent for
tdo’s.

Let (F,curv) be an Q3'-torsor. It defines by push-out the “fiberwise”
Q;}Y—torsor (F/Y,curv/Y), so F/Y = F mod 7*Q5.. If Dz is a tdo on X
that corresponds to F, then sections on F/Y are vertical connections on Dg;
a vertical connection « is called integrable if curv/Y (a) € Q% - vanishes.

For a section a of F/Y such that curv/Y(a) = 0 consider the sheaf
Fo :={y € F:vmod 70 = a and curv(y)7*Q% C Q%}. We will
say that a is good if F® is nonempty: in this case F< is a 7 'Q-torsor
(here 771Q, C Q% is sheaf-theoretic inverse image of Q3), and curv(F®) C
0% C Q%. It is easy to find an obstruction for « to be good; it lies

in H(Y, Q3 ® Hpr(X/Y)). In particular, if fiberwise first the de Rham
cohomology H'(X/Y) vanishes, then « is good.

A3.1 Definition. We will call a good section o a w-descent data for (F,curv),

(or for a corresponding tdo, a twisted cotangent bundle. . .). O
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An Q;l—torsor equipped with a m-descent data form a category Q)Z(I-tors
m; in an obvious manner; one has a similar category 7DO(X)™ for tdo’s.
If (Fy,curvy) is an Q3'-torsor, then the Qx'-torsor 7*(F,curvy) carries
an obvious descent data o with (7*Fy)* = 7~ 'F. This defines a functor

* . >1 >1 ™
m : Qy -tors — 5 -tors™.

A3.2 Lemma. If the fibers of m are connected, then 7* : Q%l—tors — Q)Z(I—

tors™ s equivalence of categories.

Proof: The inverse functor m, is given by formula 7, (Fx,curvy;a) =
T.(F%).
Certainly, we may replace in A3.2 the torsors by tdo’s or twisted cotangent

bundles.

A3.3 Example: Let Dy be a tdoon Y and 7 : X — Y,w be the twisted
cotangent bundle that corresponds to Dy. Then 7*Dy carries a canoni-
cal connection V with curvature w, ie., 7*Dy = D, (see Al.7, A18).

The descent data coincides with vertical part Vx,y of V, hence Dy =

W*(DWX,V)(/y). D

A4 Symmetries

Let g be a Lie algebra action on a smooth variety X, so we have a Lie algebra

map v : g — 7y, and let D be a tdo on X.

A4.1 Definition (i) A weak v-action of g on D is a Lie algebra map vp :
gDer(D) such that for f € Ox C D, a € g one has v(D)(a)(f) = v(a)(f) €
Ox C D.
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(ii) A strong v-action of g on D is a Lie algebra map vp : g — ’j'D such
that ovy = v. OJ
Any strong v-action p defines a weak one vp := ad;,. We will say that

ﬂD lifts Up.

A4.2 Lemma. Let vp be a weak v-action. If either Hhp(X) = 0 or
H?(g,C) = 0, then there exists a strong v-action vp that lifts vp. If H'(g,C) =

0 (i-e., if g = [g,9]) then such vp is unique.
Proof: Clear. 0

A4.3 Examples: (i) Let L be an invertible sheaf on X. A strong v-action
of g on Dy is the same as a g-action vp of g on L that lifts v.

(i) Let w be a closed 2-form on X, and D, be the tdo with connection
V. such that carvV, = w (see A1.7). Let v, : g — ’j; = %DW be a strong
v-action, so for a € g one has v,(a) = Vyv(a) + ¢(a), where p(a) € Ox.
This action preserves V, (which means that [0,(«), V(7)] = V([v(a),7])
for a € g, T € Tx) precisely if p(a) is an w-Hamiltonian for v(a), i.e., if
dp(a) = v(a) —w. We will call such 0, (or a pair (v,¢) : g — Tx x Ox) an

w-Hamiltonian action of g, or w-Hamiltonian lifting of v. U

A4.4. Assume we have a weak v-action vp, and M is a D-module. A vp-
action of g on M is a Lie algebra map vy, : g — EndcM such that for 9 € D,
a € g, m € M one has vy ()0 — dvy(a))m = vp(a)(9)m.

Assume now that we have a strong lifting vp : g — Tp of vp. Then

one has a canonical vp-action v, on any D-module M defined by formula

W, (a)m = vp(a)m. More generally, for aany vp-action vy of g on M
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consider the map [vy/] : g — EndcM, [v](a) := vy(a) — v ().

A4.5 Lemma. The operators [vy](a) commute with D-action and [vy] :
g — EndpM is a Lie algebra map, i.e., [vy] is an action of g on D-module
M. The map vy — [vy] is a 1-1 correspondence between the set of vp-

actions of g on M and the one of actions of g on M as on D-module.

Proof: Clear. |
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Appendix B

Chern Classes

In this Appendix we recall an explicit Weil algebra construction of Chern
classes for de Rham and Deligne-type cohomology. Below “variety” means
either a smooth algebraic or analytic variety. Starting from B4 we assume

that we are in an analytic situation.

B1 Weil Algebra

We will start with some notations.

B1.1. For a variety X denoted by P(X) a category whose objects are Q-
extensions. These are short exact sequences P = (0 — QL (P) — Q! —
M(P) — 0) of coherent locally free Ox-modules; morphsms are obvious.
The categories P(X) form a fibered category over category of varieties: for
a morphism 7 : X — Y of varieties we have a pullback functor 7* : P(Y') —
P(X). Namely, for P = (0 — QL — QYP) — M(P) — 0) one has
™(P) = (0 — Q% — QYx*P) — 7 M(P) — 0), where Q'(7*P) comese
from co-Cartesian square

)1 dm 1
™y  — Q%

R o
Qi (P) — QY (m*P).

B1.2. For P € P(X) let Q(P) be a sheaf of commutative differential graded
(cdg for short) algebras generated by a subalgebra Ox in degree 0 and an
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Ox-module ﬁl(P) in degree 1 subject to only relation: for F' € Ox its
differential coincides with usual differential df € Q% C Q(P). Denote by F*
the dg-ideal Q=1(P) C ' (P); its powers form a filtration F on €' (P). The

filtered cdg algebra Q(P) depends on P in a functorial way.

B1.3 Examples: (i) Let P, be a trivial Q% extension, Q'(Py) = Q. One
has '(Py) = Qy, FIQ(P) = Q%' Since Py is a universal object in P(X)
we see that ' (P)’s are Q2 -algebras.

(ii) If X is a point, then Q% = 0 and P € 7 (X) reduces to a vector space
M = M(P). The algebra (NZ(M ) is a commutative graded algebra freely
generated by two copies of M: M® in degree one and M® in degree two.
The differential is determined by rule: for m € M(® one has dm = m € M®.
Hence Q/(M) = @arapiNIM @ SPM, d(my A Amg@mh - - -m)) =
S(=1)Ymy Ao A My Ao A Mg @mgs,mb - -my. O

B1.4 Lemma. (i) For a morphism m : X — Y and P € P(Y) one has
Q (7 P) = 7Q(P) = Qx ®r-10;, 71 (P), where 7= is sheaf-theoretic
1VeErse 1mage.

(ii) For P € T(X) the complex F*/F? = F'Qr(P)/F2Q (P), coincides
with complez QY (P) — M(P) supported in degrees 1,2.

(ili) A natural morphism S*(F*/F2) — grX0(P) is isomorphism. Here
S*(F'/F?) is a free commutative graded dg algebra generated by F**/F?. Note
that, according to (ii), S‘(F'/F?) is the complex A{(QY(P)) — A™H(QY(P))®
M(P) — -+ — QYP)®S™M(P) — SiM(P) supported in degrees i, . . ., 2i.

(iv) A canonical morphism Xy — Q (P) is a filtered quasi-isomorphism.
Proof: (i) follows from definition, (ii), (iii) follows from (i) and B1.3(ii) since
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locally any P comes from a point, (iv) follows from (iii) since the sequence

O_)ﬁg(_)A@l(p)_>..._>Si]\/[(P)—>Oisexact. O

B1.5. Let G be an algebraic group, g =Lie G, and p : £ — X be a G-torsor
on our variety X. Consider the sheaf Q}( e = (pL)Y of G-invariant 1-forms.
This is an Ox-module; we have a short exact sequence Pe = (0 — Q% L4
ﬁ}){’g — g; — 0), where g& = (p.Q/)< is E-twist of g* ® Ox with respect
to coadjoint action of G. Put 62')(75 — (V'(Pg). This is a filtered commutative

differential graded (2y-algebra such that a canonical map 2, — Q'Xﬁ is a

filtered quasi-isomorphism.
B1.6 Definition. QX,S is called Weil algebra of . H

B1.7 Lemma. 62')(78 depends on £ in a functorial way. If m : X — Y
s a morphism of varieties, Ey is a G-torsor on Y, and Ex = w*Ey, then

QngX — W*Q.Y'ng.
Proof: Follows from B1.4(i) since Pg, = 7*Ps,. O

The Weil algebra carries a canonical bigrading. To define it consider the

cdg algebra (p.Q2z)¢ of all G-invariant differential forms. Clearly (p.Q%)% =
A@}(,g- Denote by d’ the differential on A'Q}QS that comes from this iso-
morphism. For v € ng put d’(v) = d(v) — d'(v) € (2%(75; here d'(v) €
A2(~2§(’5 = F25~2§(75 C (Z%M Clearly d"v = 0 for v € Q%, and the isomorphism
ﬁg(yg/Fzﬁ'X’g ~ gt = ﬁ}w/Q}( (see B1.4(ii)) identifies d"v mod F? with v
mod Q4. Hence d” defines a canonical Ox-linear embedding « : g§ — ?2%( .
d"(v) = a(v mod Q) suchthat Q% ; = A2Q} c@a(gs). Let AQY @ 5% g%

be a free commutative graded algebra with generators Qﬁw in degree 1 and
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ge in degree 2, and & : A.Q‘lxﬂg ®S*ge — ﬁx,g be a morphism of commutative

graded algebras which is equal to Zdﬁk . on @&5 and to o on gg.
B1.8 Lemma. This & is isomorphism.

Proof: Consider filtration I on A" ® S* by powers of augmentation ideal.
By B1.4 (iii) & induces isomorphism between gr’s. O

Put Q%% = &(A9"20% . ® S'gs) C Q%L

B1.9 Lemma. This is a canonical bigrading on @y’g compatible with filtra-
tion F". In other words, one has (NZ}g = @a+b:n§~2§(’f’g, FifNZ’Xf = @azﬁ?{f’g,

d=d"+d": Q5 — Q"+ QP
Proof: Clear. ]

ab

B1.10 Example: Assume that X is a point, so £ is trivial. One has Qx’,g =
Abg* @ Sbg*. The differential d = A%g* ® Sg* — A*tlg* @ Sbg* is the
differential in the cochain complex of g with values in symmetric power of
coadjoint representation. The differential d” : A®g*® Sbg* — A lg*®Slg*
is Koszul differential. We see that ) is a classical Weil algebra (see, e.g., [ ]).
[l

Since and Adg-invariant polynomial on g defines a polynomial on any
ad-twisted form of g, we have a canonical map w' : S'(g*)¢ — S%(gs)¢ =

(NZ'XZE CF ’(NZ‘Xf called Weil homomorphism.

B1.11 Lemma. The image of w consists of cycles, i.e., w : S (g*[-2])¢ =

®; SH(g")9[-2i] — ﬁ'xf is a morphism of cdg algebras.
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Proof: The fact is local, hence we may assume that £ is trivial, i.e., £ is
a pullback of a G-torsor £ on a point. By functoriality it suffices to prove

B1.11 for &', which follows from B1.10.

B2 De Rham Chern Classes

Let € be a G-torsor on X. By B1.4 (iv) one has a canonical isomorphism
H (X, FiQy) — H'(X,F'Qy.). By BL11 one has a canonical ring ho-
momorphism w® : S%(g*)% — H%(X, Fiﬁxjg). Let we be the composition
Si(g")¢ — H*(X,F'Qy). This is Weil homomorphism in de Rham coho-
mology.

Let us consider the universal situation. Let BG. be simplicial classifying
space of G, and p : &,, = AG. — BG. be universal torsor. So one has
AG, = G"', BG, is a quotient of AG,, modulo diagonal action of G, and

the simplicial arrows are the obvious ones. The Chern character of £,,, defines

the ring homomorphism

wg 2 SY(g")% — H*(BG, F'Qpq) — H(BG., Q).
B2.1 Lemma. Assume that G is reductive. Then the map wg, s isomor-
phism and HY(BG,Q5,) =0 for j # 1.

Proof: Consider first the algebraic situation. One has the exact sequence
0 - QZBG - Alﬁl(Pgun) - Ai_lﬁl(‘Pgun) ® g::un s Slgz‘un - O
(which is i-th symmetric power of the short acyclic complex 0 — QL. —

ONPg,.) — gz — 0, see BL4(iii)). Note that BG, is affine and
HO(BGy, AT (Pe,,,) @ 8" f3z,,) = [H(AGy, Q4q,) © 5]
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Since AG. is “contractible simplex with set of vertices G,” one has H(AG., Qx5 ) =
0 unless i = 0, a = 0, and H°(AG.,Oxg.) = C. Since our group is reductive,

this implies H'(BG., A*Q'(Pg,,) ® S’z ) = 0 unless i = 0, a = 0, and
H°(BG, S'g;,,) = [S"g"]°.

The above exact sequence shows that
H (BG.,Q% ) = H(BG., S'g;. ),

and the lemma is proven. In analytic situation one should use the averaging
along a maximal compact subgroup of G to see that acyclicity of the complex

H(AG., Q) implies the acyclicity of complex of G-invariants. O
B2.2 Corollary. The maps
Si(g")Y =% H¥(BG.,F'Qpg) — HY(BG.,Qyg) = Hiip(BG.)

are isomorphisms. The odd-dimensional de Rham cohomology of BG. van-
ishes. The map H/(BG., F'Qg ) — H),(BG.) is isomorphism for j > 2i
for j < 2i, H(BG., F'Qys) = 0. O

B3 Connections

Let £ be a G-torsor on a variety X. A connection V on £ is an Ox-
linear splitting of P¢ (see B1.5), ie., V is an O-linear map Q}(g — Q%
such that V(df) = df € Q% for f € Ox. One may consider V as a mor-
phism P: — By (see B1.3(i)), hence it extends to a morphism of dg algebras

AVA Q'Xg — Uy left inverse to a canonical embedding Q'X — ?2')(75. The

. — — ~1.1 — .
morphism V! = Vig « Qe = g8 — Q%, VI e ge ® O%, is curvature
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form of our connection. We see that V o w sends an invariant polynomial

p € 5'(g")¢ to p(V) € Q3.

B4 “Universal” Chern Classes

In this section we give a universal construction that matches integral topo-
logical Chern classes with de Rham ones. From now on we assume that our
varieties are analytic ones (so we will consider classical topology, not a Zariski

one). Our group G is reductive.

B4.1 Let X be a variety, and £ be a G-torsor on X. Consider the embeddings

of constant sheaves

%
£

Z(i) — Oe <> §(g")[-2i];
here Z(i) := (2r/—1)'Z C C C Ox. Put
(

Us (i) := Cone(Z(i) @ S'(g")%[—2i] = 0% )[—1];

the arrow is difference of the embeddings. Omne has canonical triangles
in derived category of sheaves on X (recall that one has canonical quasi-
isomorphisms

C— Q% — Q%C/Z3E) =2 C* (i — 1) = C* R Z(i — 1)).
B4.2.

= C[-1] = Ue(i) <22 2(i) @ $'(5")°[-2i] — -

* . (Ez,Ep) 3 * .
o O[] o Ue(i) 22 57 -21) — -

67



The groups H (X, Ug (7)) are clearly functorial with respect to (X, E). The

long exact sequences that correspond to B4.2 imply

B4.3 Lemma. (i) A canonical morphism HI='(X,C*)(i—1) — H7(X,Us (7))

15 isomorphism for j < 2i. One has a short exact sequence
0— H*N(X,C")(i— 1) = H*(X,Ue(i)) = S*(g")F e — 0,

where S*(g*)7 ¢subset.S*(g*) consists of those polynomials ¢ that [ ch'(€)(p) €
Z(i) = (2m/=1)"Z C C for any v € Hyi (X, Z).

(i) Ifm: X — Y is a morphism of varieties (or simplicial varieties) such
that m* : H(Y,Z) — H (X, Z) is an isomorphism, then for any G-torsor Ey
onY, Ex = &y, a canonical map 7™ 1 H (Y, Ue, (1)) — H (X, Ue, (7)) is

1somorphism. O

B4.4 Remark: The same formulas that define product in Deligne cohomol-
ogy (see [B], [EV]) define a canonical homotopy associative and commutative
product Ug (1) @Ug (j) — Ug(i+ j) such that the projection ez : Us(-) — Z(-),
€g: Us(-) — S (g%)¢[2:] commute with multiplication. O

Consider a universal G-torsor &,,, on BG.

B4.5 Lemma. A canonical morphism ez : H*(BG.,Ug, (1)) — H*(BG,Z(1))

18 1somorphism.

Proof: By B4.2 we have a long exact sequence H*~*(BG.,C) — H*(BG,Ug,, (i) —
H*(BG,Z(3)) ® SY(g")¥ — H*(BG,C). Since H*}(BG.,C) = 0 and
Si(g*)¢ — H*(BG, C) is isomorphism (see B2.2), we get the lemma. [
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B4.6. Let us construct a “universal” Weil homomorphism. Let £ be a G-
torsor on X. Put XY := G\E X &, here G acts on € x &, in a diagonal
way. One has two projections X <X XY 29, BG. and an obvious iso-
morphism 7%€ ~ 754 Eun. Note that mx is a fibration with “contractible”
fibers isomorphic to &,, = DeltaG., hence 7% : H(X,Z) — H(XY,E,7Z)
is isomorphism; by B4.3(ii) 7% : H (X, U (i) — H (XY, E,Ur-(i)) are also

isomorphisms. Denote by
Weuy - HzZ(BGa Z(Z)) - HQZ(XJ/{E(Z))

the composition

H*(BG., Z(i)) <% H*(BG.Ug(i)) <2% H* (XY, Uy e, (i)
= HY(XY Unse (i) <2 H* (X, Us(0))

This is “universal” Weil homomorphism. Clearly wgz = €7 o wgy
H?*(BG,Z(i)) — H*(X,Z(i)) coincides with usual topological characteristic
class map. By B4.5 and the above construction our we; is the only functo-
rial “lifting” of wez to U-cohomology. Also wey is ring homomorphism (see
B4.4).

The classes wgy take values in Ug-groups that depend on £ themselves.

We will use them to produce classes in Deligne-type cohomology.

B.5 Deligne Cohomology Chern Classes

We will use a naive version of Deligne cohomology, see [B], [EV].
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B5.1 Let X be an analytic variety. The Deligne complex D(i)x is Cone
(Z(i) ® FiQy ) Oy )[—1], where the arrow is difference of an obvious em-
beddings; the Deligne cohomology groups are H} (X, Z(i)) = HI(X,D(i)x).
So we have a canonical map €z : D(i)x — Z(i), er : D(i)x — F'Qy and the

long exact sequences
C— HITY(X,C) — HL(X,Z(i) 25 HI (X, Z(i))dH (X, FiQYy) — -+ -

s HITHX, FYQy) — HH(X,C) (i - 1) — Hp (X, Z(i) — -+

Let € be a G-torsor on X. The embedding

Qy — ?2')(75 := Cone(Z(i) & Fiﬁx,g ) QX,E)[_H-

Since w(S*(g*)“) C F'Qx ¢ we have a canonical embedding Us (i) — D(i)x
which is identity on Z(i) and Q x,e-components and coincides with w on
Si(g*)¢. This embedding commutes with multiplication on D- and U-complexes
(see B4.4, [B],[EV]). Denote by wep the composition H*(BG,7Z(i)) &%
H*(X,Uery) — H*(X,D(i)xe) = HE(X,Z(i)). This is Weil homomor-

phism in naive Deligne cohomology.

B.6 Cheeger-Simons Cohomology

Let X be an analytic variety. Consider a complex CS(i)x := Cone(Z(i) ®
F2Q e Qy)[—1] (so CS(i)x coincides with D(2i)x(—i)). We will call
CS(i) x a Cheeger-Simons complex and the corresponding groups Hpg(X, Z(1)) :=
H (X,CS8(i)x) Cheeger-Simons cohomology. We have a canonical morphism

€7 : CS(i1)x — Z(1), er : CS(i) — F* and a long exact sequence.
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B6.1.
D — HIY (X, C) — Hi(X,Z(i)) S HI (X, Z(i))eH (X, F¥Qy) — - -

oo HITHX, FYQy) — HI7Y (X, CY) (i — 1) — HLg(X,Z(i)) - - -

In particular, the map H/~'(X,C*)(i — 1) — H}(X,7Z(i)) is isomorphism

for 7 < 2¢ and for j = 2¢ one has a short exact sequence.
B6.2
0— H* 1(X,C*) (i — 1) — HZ(X,Z(i)) — H(X, Q%) 20 — 0

where HO(X, Q%)5; is the space of all closed holomorphic 2i-forms v on X

such that [ v € Z(i) C C for any v € Hy (X, Z).

B6.3. Let V be a connection on a G-torsor £. By B3 we have a commutative

diagram
Z(i) = Z(i)
\ N
Q. — O
/ /
Si(gel-2]  — FEOy

where the lowest horizontal arrow maps an invariant polynomial ¢ to its
value (V) on curvature form of V. This diagram defines a morphism
YV : Ug(i) — CS(i)x, hence the map we v)cs = YVowsy : H*(BG., Z(i)) —
HZ,(X,Z(1)). This is the Cheeger-Simons class of a torsor with connection.
Clearly ez oches(E,V) = chz(€) and epches(E, V) sends ¢ € H*(BG., Z(i))
to the value of the corresponding polynomial oc € H*(BG.,C) = S*(g*)“ on

curvature form of V. For example, if V is flat, the Cheeger-Simons classes live
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in H*71(X,C*)(i—1) C HZ5(X,Z(i)). A canonical morphism CS(i) — D(3),

that comes from the embedding F?'Qy — F'Qy, sends we vics 10 Weapp -

B6.4 Remark. The same formula as defines the product on Deligne and -
complexes defines a product on Cheeger-Simons ones, so the canonical maps
Us(-) — CS(-) — D(-) commute with products. In particular, w v)cs :

H?*(BG,Z(")) — HZ5(X,Z(-)) is morphism of rings.

B7 C*°-Version

| The above constructions, as well as proofs, give a construction of Chern
classes in C*°-situation. In B.1 one should consider the R-valued C*°-forms,
and take for G any Lie group. In B2.1, B2.2. one should assume that G
is compact. In B4.1 one replaced C by R; we will get, e.g., the long exact
sequence --- — HI"Y X, R/Z)(i) — H/(X,Ue)(i) — HI (X, F'Qy(i)) —
.-+, Same happens in B5, B6. The groups H3%(H,Z(i)), or HL(X,7)(5)),
are Cheeger-Simons groups of differential characters [CS], which explains

their name.
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