
Flat Projective Connections

A. Beilinson and D. Kazhdan∗

1. Geometric Quantization

In this section we recall basic points of Kostant’s geometric quantization

[K]2. We consider a purely holomorphic version, so all the objects below

will be algebraic or analytic ones. The language of complex polarizations is

discussed in no. 1.7.

1.1 Recollections from Classical Mechanics

1.1.1 Definition. Let p : X → S be a smooth morphism of smooth varieties.

A connection for p, or simply, or simply, p-connection, is an OX-linear mor-

phism ∇S : p∗TS → TX such that dp ◦ ∇S = idp∗TS
; such ∇S is integrable if

the corresponding map TS → p∗TX commutes with brackets. �

Let ∇S be a p-connection. Then ∇S(p∗TS) ⊂ TX is a subbundle trans-

verse to fibers of p; we will call it ∇S-horizontal subbundle. Conversely, any

subbundle transverse to fibers of a smooth p defines a p-connection which

is integrable iff the subbundle is integrable. For any s ∈ S an integrable

∗Partially supported by NSF Grant.
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p-connection ∇S defines a trivialization of p over a formal neighborhood S∧s

of s (i.e., the isomorphism XS∧s = XS × S∧s , where XS = p−1(s), etc.).

Localizing on S we see that p-connections form a sheaf p-conn on S. If

∇ is a p-connection and ν ∈ Hom(TS, p∗TX/S) = Ω1
S ⊗ p∗TX/S, then ∇+ ν is

also a p-connection. This way p-conn is an Ω1
S ⊗ p∗TX/S-torsor.

Note that an integrable p-connection ∇S defines an action of TS on rela-

tive differential forms ΩX/S (by Lie derivatives along horizontal vector field

∇S(TS)); we will say that a form ω ∈ Ωi
X/S is ∇S-horizontal if ω is fixed by

the TS-action.

Let (X,ω) be a symplectic variety, i.e., X is a smooth variety and ω is a

non-degenerate closed 2-form on X. Then ω defines Poisson brackets { , }

on OX in a usual manner.

1.1.2 Definition. A surjective morphism of varieties π : X → Y is called

polarization, or Lagrangian projection, if dim Y = 1
2

dim X and { , }

vanishes on π−1OY ⊂ OX ; such π is called smooth if π is a smooth morphism.

�

A basic example of such π : X → Y is a twisted cotangent bundle over

Y (see A1.8, A1.9).

1.1.3 Definition. Let S be a smooth variety. An S-Lagrangian triple con-

sists of a morphism π : X → Y of S-varieties (i.e., one has a commutivative

diagram
X

π→ Y
pX ↘ ↙ pY

S

), a relative 2-form ω ∈ Ω2
X/S and a p-connection ∇S such that
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(i) pX , pY and π are smooth surjective morphisms.

(ii) a form ω is closed and non-degenerate, i.e., for any s ∈ S the fiber

(Xs, ωs) is a symplectic variety.

(iii) for any s ∈ S the morphism πs : Xs → Ys is a twisted cotangent bundle

over Ys.

(iv) ∇S is integrable and ω is ∇S-horizontal. �

Assume we have a Lagrangian triple (1.1.3). Consider the OY -algebra A :=

π∗OX . It carries OS-linear Poisson bracket { , } and a natural filtration

Ai such that A0 = OY , Ai = SiA1 and gr.A = S·TY/S (see A1.8). Our

connection ∇S is an OS-linear morphism ∇S : TS → Der A such that for

f ∈ OS ⊂ A, τ ∈ TS one has ∇S(τ)(f) = τ(f); according to (iv) ∇S

commutes with brackets and for a, b ∈ A, τ ∈ TS one has ∇S(τ)({a, b}) =

{∇S(τ)(a), b}+ {a,∇S(τ)(b)}.

Let n be a minimal integer such that ∇S(τS)(A0) ⊂ An; such n is called

an order of our Lagrangian triple. For example, n = 1 means that for any f ,

g ∈ OY , τ ∈ TS one has {∇S(τ)(f), g} ∈ OY .

1.1.4 Lemma. (i) One has ∇S(TS)(Ai) ⊂ Ai+n for any i. Hence we have an

OS-linear map gr∇S : TS → Der(n)gr.A = Der(n)S·TY/S (here Der(n) means

differentiations of homogeneous degree n).

(ii) Assume that n ≥ 1. There exists a unique OS-linear map σ∇S : TS →

Sn+1TY/S such that (gr∇S(τ))(f) = {σ∇S(τ), f} for τ ∈ TS, f ∈ S·TY/S. The

functions σ∇S(τ), τ ∈ TS, Poisson commute.
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Proof: Clear. �

Sometimes it is convenient to describe S-Lagrangian triples in a different

language. Let Y be an S-variety such that pY : Y → S is smooth and

surjective.

1.1.5 Definition. An S-Hamiltonian datum on Y consists of

— a twisted cotangent bundle (X̃, ω eX), π̃ : X̃ → Y over Y . Put X := X̃

mod p∗Y Ω1
S: this is a T ∗Y/S-torsor over Y ; let X̃

r→ X
π→ Y be the

projections.

— a section h : X → X̃ of r (called Hamiltonian of our datum).

Put ωX := h∗ω eX : this is a closed 2-form on X. The following integrability

axiom should hold:

for each x ∈ X the form ωx ∈ Λ2T ∗Xx has rank dim X-dim S. �

Assume we have a Hamiltonian datum 1.1.5. Note that for each s ∈ S the

map πs : Xs → Ys is the induced (from X̃) twisted cotangent bundle on Ys

(see A3). The symplectic form ωs coincides with ωX|Xs , so the integrability

axiom asserts that ωX has minimal possible rank (in particular, in case dim

S = 1 this axiom holds automatically). The kernels of ωXx , x ∈ X, form

a subbundle transversal to fibers of pX := pY ◦ π. Since ωX is closed, this

subbundle is integrable, hence it defines an integrable connection ∇S for pX .

We see that (X
π→ Y, ω,∇S) is S-Lagrangian triple.

1.1.6 Proposition. This correspondence (S-Hamiltonian data on Y ) →

(S-Lagrangian triples with given pY : Y → S) is bijective.
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Proof: Let us define the inverse correspondence. Let (X
π→ Y, ω,∇S) be

an S-Lagrangian triple. The connection ∇S extends ω ∈ Ω2
X/S to a 2-form

ωX ∈ Ω2
X : one has ωX|Xs = ωs and for x ∈ X the kernel of ωXx ∈ Λ2T ∗Xx coin-

cides with ∇S-horizontal vectors at x. Since ∇S is integrable ωX is a closed

form. Let (FωX
, curvωX

) be the corresponding Ω≥1
X -torsor, so FωX

= Ω1
X ,

curvωX
(ν) = dν + ωX (see A1.7). The π-vertical part of zero section of FωX

is a π-descent data for FωX
(see A3.1) which defines Ω≥1

Y -torsor (FY , curvY ).

Recall that a section of FY is a form ν ∈ π∗Ω1
X such that the restriction of ν

to fibers of π vanishes and curvY (ν) := dν + ωX ∈ Ω2
Y ⊂ π∗Ω

2
X . Denote by

FY/S the Ω1
Y/S-torsor of sections of π : X → Y . One has a canonical isomor-

phism r : FY mod p∗Y Ω1
S →∼ FY/S: here for ν ∈ FY r(ν) is a unique section

of π such that r(ν)∗(ν) ∈ p∗Y Ω1
S ⊂ Ω1

Y . Let h : FY/S → FY be the map that

assigns to a section α of π a unique form h(α) ∈ FY such that a∗(h(α)) ∈ Ω1
Y

vanishes (one has α = β − α∗(β) for any β ∈ FY ). Clearly r ◦ h = idFY/S
.

Let X̃
π̃→ Y , ω eX , be a twisted cotangent bundle defined by (FY , curvY ), so

we have the projection r : X̃ → X and the section h : X → X̃ of r. This is

the desired S-Hamiltonian datum on Y .

Remark: The map r̃ : X̃ → X ×S T ∗S, r̃(x̃) = (r(x̃), x̃ − h, r(x̃)) is iso-

morphism of symplectic manifolds: Here the symplectic form on X ×S T
∗S

is equal to the sum of ωX and a standard symplectic form on T ∗S. �

Consider an S-Hamiltonian datum (X̃, ω eX , π̃, h) on Y . Let x ∈ X be

a point, y = π(x), s = pX(x) be the projections of x. Let {ta} be a

local coordinate at s, and qi be functions at y such that {qi, ta} are lo-

cal coordinates at y. Choose a function ha, pi at h(x) ∈ X̃ such that
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ω eX =
∑
dpi ∧ dqi +

∑
dha ∧ dta. Then {qi, pi, ta} are coordinates at x

on X, and the Hamiltonian h is given by the functions ha(p, q, t).

1.1.7 Lemma. One has ∇S(∂ta) = ∂ta +
∑

i ∂qi
(ha)∂pi

− ∂pi
(ha)∂qi

.

Proof: Follows from ωX(∂pi
∧∇S(∂ta)) = ωX(∂qi

∧∇S(∂ta)) = 0. Note that

the integrability axiom asserts that ωX(∂tb ∧ ∇S(∂ta)) = ∂tb(ha) − ∂ta(hb) +∑
i ∂pi

(ha)∂qi
(hb)− ∂qi

(ha)∂pi
(hb) = 0. �

1.1.8 Corollary. Let m be a minimal order (with respect to y ∈ Y ) of

polynomial maps hy : Xy → X̃y (note that Xy, X̃y are affine spaces). Then

m− 1 is equal to the order of corresponding Lagrangian triple (see 1.1.4).�

1.1.9 Remark: (i) We see that a Hamiltonian datum is just a system of

commuting Hamiltonians in a classical sense.

(ii) Let FX be the Ω1
Y/S-torsor of sections of π : X → Y ; one has the

map curve eX ◦ h : FX → Ω2
Y , curv eX ◦ h(γ) = (h ◦ γ)∗(ω eX). The equation

curv eX ◦ h(?) = 0 is a classical Hamilton-Jacobi equation. �

1.2 D-Connections

Let p : Y → S be any smooth morphism of smooth varieties, and let DY be

a tdo on Y . Denote by DY/S the centralizer of π−1OS in DY . This is a flat

π−1OS-algebra. One may consider DY/S as a family of tdo parameterized by

S. Namely, for s ∈ S denote by ms ⊂ OS the maximal ideal of functions

equal to zero at s. Then the quotient DY/S/msDY/S is tdo on Ys = p−1(s)

that coincides with the inverse image of DY on Ys (see A3). If DY = DL for
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some line bundle L, then DY/S consists of differential operators on L acting

along fibers of p.

1.2.1 Definition. (i) A DY -connection on p is an OS-linear mapping ∇DY
:

TS → p∗Der(DY/S) such that for τ ∈ TS, f ∈ OS one has ∇DY
(τ)(π−1f) =

π−1τ(f) ⊂ π−1OS ⊂ DY/S. Such ∇DY
is integrable if it commutes with

brackets.

(ii) A DY -connection ∇DY
is admissible if for any τ ∈ TS there exists

(locally on S) an element τ̃ ∈ p∗DY such that for any ∂ ∈ DY/S one has

∇DY
(τ)(∂) = [τ̃ , ∂]. �

1.2.2 Remark: One may easily define an obstruction for ∇DY
to be admis-

sible; it lies in H0(S,Ω1
S ⊗ H1

DR(Y/S)). In particular, if the first de Rham

cohomology of fibers vanish, any DY -connection is admissible. �

We define the order of aDY -connection as a smallest n such that∇DY
(τ)(OY ) ⊂

DY/Sn = (DY/S)n for each τ ∈ TS.

1.2.3 Lemma. (i) One has ∇DY
(τ)(DY/Si) ⊂ DY/Si+n for any i. Hence we

have an OS-linear map gr ∇DY
: TS → Der(n)gr DY/S = Der(n)S·TY/S.

(ii) If n ≥ 1 then there is a unique OS-linear map σ∇DY
: TS →

p∗S
n+1TY/S such that (gr ∇DY

(τ))(f) = {σ∇DY
(τ), f} for f ∈ S·TY/S. If

∇DY
is integrable then the functions σ∇DY

(τ), τ ∈ TS, Poisson commute.

Proof: (i): Induction by i using DY/Si = {∂ ∈ DY/S : [∂,OY ] ⊂ DY/Si−1}.

(ii) follows since gr ∇DY
(τ) is a differentiation for Poisson brackets. �.

1.2.4. Now let DS be a tdo on S. A p-morphism α : DS → DY is a

morphism of C-algebras α : DS → p∗DY that coincides on OS ⊂ DS with
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OS
p−1

−→ p∗OX ⊂ p∗DY . Clearly α is injective, so α identifies DS with a

subalgebra in p∗DY containing OS.

1.2.5 Remark: Consider a filtration L. on DY by “degree along S”: so

Lo = DY/S, Li = {∂ ∈ DY : ad∂(π
−1OS) ⊂ Li−1}. One has grL.DY =

S·TS ⊗OS
DY/S. Then for a p-morphism α one has α(DSi) ⊂ Li, and gr α

coincides with an obvious embedding S·TS ↪→ S·TS ⊗OS
DY/S.

1.2.6. Let α : DS → p∗DY be a p-morphism. One associates with α an

admissible integrable DY -connection on p as follows. For τ ∈ TS choose

τ̃ ∈ T̃DS
such that σ(τ̃) = τ . Then α(τ̃) ∈ L1, hence adα(τ̃) maps DY/S to

itself. Put ∇α(τ) := adα(τ)|DY/S
∈ Der DY/S. It is easy to see that ∇α(τ)

does not depend on choice of τ̃ . This morphism ∇α : TS → Der DY/S is our

DY -connection. It is admissible and integrable.

1.2.7 Lemma. If the fibers of p are connected, then (DS, α) 7→ ∇α is

a bijection between the set of pairs (DS, α) and admissible integrable DY -

connections on p.

Proof: Here is a construction of an inverse map. For an admissible integrable

connection∇ = ∇DY
put T̃∇ = {(τ, τ̃) ∈ TS×p∗DY : for any ∂ ∈ DY/S one has

∇(τ)(∂) = [τ̃ , ∂]}. One has short exact sequence 0→ OS
i→ T̃∇

σ→ TS → 0,

where i(f) = (0, p−1(f)), σ(τ, τ̃) = τ , and an obvious OS-module and Lie

algebra structure on T̃∇ make T̃∇ an OS-extension of TS (see A1.3, A1.4).

Let D∇
S be the corresponding tdo. The embedding T̃∇ → p∗DY , (τ, τ̃) 7→ τ̃ ,

extends uniquely to a morphism of rings α∇ : D∇
S → p∗DY which is a p-

morphism. This (D∇
S , α∇) is a desired pair. �
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1.2.8 Remark: For a p-morphism α : DS → DY consider the smallest

integer m such that α(T̃DS
) ⊂ DYm . Then m− 1 is equal to the order of ∇α,

and σ∇α(τ) = α(τ̃) mod DYm−1 ∈ SmTY/S for τ̃ ∈ T̃DS
, τ = στ̃ ∈ TS.

1.3 Quantization

Let (X
π→ Y

pY→ S;ω;∇S) be an S-Lagrangian triple (see 1.1.3), so we have

a filtered commutative OY -algebra A = π∗OX with Poisson bracket { , },

and the Ω≥1
Y -torsor (FY , curvY ) (see 1.1.6: this torsor corresponds to the

twisted cotangent bundle of the Hamiltonian datum). Let Ω = det Ω1
Y/S be

the sheaf of volume forms along the fibers of pY , and (FΩ, curvΩ) = d log Ω be

the corresponding Ω≥1
Y -torsor (see A1.12). Put (F∧Y , curv∧Y ) = (FY , curvY ) +

1
2
(FΩ, curvΩ); let DY = D(F∧Y ,curv∧Y ) be the corresponding tdo.

¿From now on we will assume that our Lagrangian triple has order 1, i.e.,

for τ ∈ TS one has ∇S(τ)(OY ) ⊂ A1. According to A2.5 one has a canonical

isomorphism σ̃ : T̃DY/S
= DY/S

∼→ A1.

1.3.1 Definition. A quantization of our Lagrangian triple is an order 1

integrable DY -connection ∇DY
on pY such that for τ ∈ TS, f ∈ OY = DY/S0

one has σ̃[∇DY
(τ)(f)] = ∇S(τ)(f). �

Let ∇DY
be any order 1 integrable connection. The following lemma

explains how to verify whether ∇DY
is a quantization, and also why we took

the Ω1/2-twist in the definition of DY . Consider the following sheaves on Y :

FA := {(τ, `), τ ∈ p−1
Y TS, ` : OY → A1|`(fg) = f`(g) + g`(f), {`(f), g} =

{`(g), f} for f, g ∈ OY , `(t) = τ(t) for t ∈ p−1
Y OS ⊂ OY }.
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FD := {(τ, `′), τ ∈ p−1
Y TS, `

′ : OY → A1|`′(fg) = f`′(g)+`′(f)g, [`′(f), g]+

[f`′(g)] = 0 for f, g ∈ OY , `′(t) = τ(t) for t ∈ p−1
Y OS ⊂ OY }.

One has a short exact sequence of p−1
Y OS-modules:

0→ A2/A0
iA→ FA jA→ p−1

Y TS → 0, 0→ DY 2/DY 0
iD→ FD jD→ p−1

Y TS → 0,

defined by formulas iA(a) = (0, `(a)), `(a)(f) = {a, f}, jA(τ, `) = τ , iD(∂) =

(0, `′(∂)), `′(∂)(f) = [∂, f ], jD(τ, `′) = τ . Our connections ∇S, ∇DY
de-

fine the splittings ∇0
S, ∇0

D of jA, jD, respectively, by formulas ∇0
S(τ) =

(τ,∇S(τ)|OY
), ∇0

D(τ) = (τ,∇DY
(τ)|OY

).

1.3.2 Lemma. (i) One has a canonical commutative diagram

0 → DY2/DY0 → FD → p−1
Y TS → 0

o ↓ σ̃ o ↓ σ̃F ||

0 → A2/A0 → FA → p−1
Y TS → 0

where σ̃F is defined by formula σ̃F(τ, `′) = (τ, `), `(f) = σ̃`′(f), and σ̃ :

DYi
/DYi−2

→
∼

Ai/Ai−2 was defined in A2.5.

(ii) ∇DY
is a quantization iff σ̃F∇0

D −∇0
S ∈ Hom(p−1

Y TS, A2/A0) is 0. In

particular, ∇DY
is always a quantization if pY∗(A2/A0) = 0.

Proof: (i) It suffices to verify that σ̃F(τ, `′) actually lies in FA by a direct

computation.

(ii) Clear. �

Let ∇DY
be a quantization.

1.3.3. Lemma. (i) One has σ(∇S) = σ(∇DY
) ∈ Ω1

S ⊗ pY∗S
2TY/S.

(ii) ∇DY
is admissible DY -connection.
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Proof: (i) Clear, (ii) follows since π has affine fibers, see 1.2.1. �

According to 1.2.7 a quantization ∇DY
defines a tdo DS on S together

with embedding α : DS ↪→ pY ∗DY , which is our primary object of interest.

1.4 Symmetries

Assume that we are in a situation 1.2, i.e., we have a smooth map pY : Y → S

and a tdo DY on Y . Let νY : g→ TY , νS : g→ TS be actions of a Lie algebra

g on Y and S that commute with p. Let νDY
Der DY be a weak νY -action of

g on a tdo DY (see A4.1). Clearly the derivations νDY
(γ), γ ∈ g, preserve

the subalgebra DY/S ⊂ DY .

1.4.1 Definition. (i) The action νDY
preserves a DY -connection ∇DY

for

p if for any γ ∈ g, τ ∈ TS one has [νDY
(γ),∇DY

(τ)] = ∇DY
([νS(γ), τ ]) ∈

Der DY/S.

(ii) The action νDY
preserves a p-morphism α : DS → DY if the deriva-

tions νDY
(γ), γ ∈ g, preserve a subalgebra DS

α
↪→ p∗DY . �

It is easy to see that if νDY
preserves α, then it preserves ∇α (see 1.2.4);

conversely if the fibers of p are connected, then νDY
preserves α∇ if it pre-

serves ∇DY
(see 1.2.5).

Assume that νDY
preserves a p-morphism α. Then the restriction of

operators νDY
(γ), γ ∈ g, to DS

α
↪→ p∗DY define a weak νS-action νDS

of g

on DS.

1.4.2. Let (X
π→ Y ;ω;∇S) be an S-Lagrangian triple, and our Lie algebra

g acts on it. This means that we have compatible g-actions νX , νY , νS on
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X, Y and S that fix ω and ∇S (note that, since π and pY are surjective, νY

and νS are uniquely determined by νX). We get a canonical weak νX-action

on DωX
and weak νY -action of g on DY (since DωX

, DY were defined in a

canonical way). We will say that g preserves a quantization if νDY
preserves

∇DY
. In this case we get a weak νS-action of g on corresponding DS.

Sometimes one needs strong actions on DωX
, DY rather than just weak

ones. One has

1.4.3 Lemma. The strong liftings ν̃ωX
: g → T̃DωX

for νωX
are in 1–1

correspondence with ones ν̃DY
: g→ T̃DY

for νDY
.

Proof: Let N ⊂ T̃DωX
be a normalizer of ∇ωX

(TX/Y ). One has T̃DY
=

π∗(N/∇ωX
(TX/Y )). Now assume we have ν̃ωX

. Clearly ν̃ωX
(g) ⊂ N , hence

ν̃DY
:= ν̃ωX

mod ∇ωX
(TX/Y ) is a strong lifting of ν̃DY

. Conversely, assume

we have ν̃DY
. For γ ∈ g an element ν̃ωX

(γ) ∈ N such that adν̃ωX
(γ) = νωX

(γ)

defines it up to a constant. The condition that ν̃ωX
(γ) mod ∇ωX

TX/Y ) = ν̃DY

defines it uniquely. �

Note that ν̃ωX
is just an ωX-Hamiltonian lifting of νωX

(see A4.3(ii)).

1.5 Kostant D-modules

Assume we are in a situation 1.2, so we have p : Y → S, a tdo DY on Y , DS

on S and a p-morphism α : DS → DY . Let M be a DY -module. The algebra

p∗DY acts on sheaf-theoretic direct images Rip∗M in an obvious manner,

hence α defines the functors Rip∗ : DY -modules → DS-modules. If Rip∗

transforms OY -coherent modules to OS-coherent ones, then it transforms

lisse DY -modules to lisse DS-ones (see A1.14).
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1.5.1. Assume we have an action of a Lie algebra g on our data such that

νDY
preserves α (see 1.4.1). Let ν̃DY

: g → T̃DY
, ν̃DS

: g → T̃DS
be strong

liftings of νDY
, νDS

. For a DY -module M consider a canonical νDY
-action

ν0
M of g on M (see A4.4). The induced action of g on Rip∗M is obviously a

νDS
-action. Hence ν̃DS

defines a canonical action [ν0
M ] : g→ EndDS

Rip∗M of

g on Rip∗M (see A4.5). We get a canonical action of g on the functor Rip∗,

i.e., Rip∗ transforms DY -modules to DS ⊗C U(g)-ones.

Now let (X
π→ Y ;ω;∇S) be an S-Lagrangian triple.

1.5.2 Definition. (i) Kostant line bundle is a line bundle LY on Y equipped

with a DY -module structure (which is an isomorphism DY
∼→ DLY

).

(ii) An ωX-line bundle is a line bundle LX on X equipped with a DωX
-

module structure (which is the same as a connection ∇X on LX with curv ∇X =

ωX).

(iii) An ωX-line bundle (LX ,∇X) is admissible if for any y ∈ Y its re-

striction of (LXy ,∇Xy) to the fiber Xy is a trivial bundle with connection. �

1.5.3 Remark: Since the fibers Xy are affine spaces, in analytic situation

any ωX-line bundle is admissible. In algebraic situation admissibility just

means that ∇Xy has regular singularities at infinity (see [Bo], [D]). �

Assume that there exists a line bundle Ω1/2 on Y together with an iso-

morphism (Ω1/2)⊗2 ∼→ Ω (for notations see 1.3); choose one. Let M be

a DY -module. Then MΩ−1/2 := Ω−1/2 ⊗OY
M is a D(FY ,curvY )-module.

Since D(FY ,curvY ) coincides with π-descent of DωX
, we see that π∗MΩ−1/2 =

OX ⊗OY
MΩ−1/2 is a DωX

-module. If M is a line bundle, then π∗MΩ−1/2 is

13



an admissible ωX-bundle, so we obtained the functor π∗
Ω1/2 : (Kostant line

bundles) → (admissible ωX-bundles), π∗
Ω1/2(LY ) = π∗(Ω−1/2 ⊗ LY ).

1.5.4 Lemma. This functor is equivalence of categories.

Proof: The inverse functor assigns to (LX ,∇X) a line bundle Ω1/2⊗π∗L
∇X/Y

X ,

where ∇X/Y is “vertical” part of ∇X . �

1.5.5. Let ∇DY
be a quantization of our symplectic triple, and DS be the

corresponding tdo on S. Let LY be a Kostant line bundle. Then RipY∗LY are

DS-modules, we will call them Kostant DS-modules. If a Kostant DS-module

E is lisse (which happens, e.g., when pY is proper), then E is a vector bundle

on S with a canonical integrable projective connection (see A1.14–A1.17).

1.5.6. Assume we are in a situation 1.4.2, so we have a Lie algebra g that acts

on our Lagrangian triple and preserves a quantization ∇DY
. Choose strong

liftings ν̃DY
, ν̃DS

By 1.5.1 these define an action of g on Kostant D-module

are g-modules.

1.5.7 Remark: ν̃DY
is the same as νDY

-action of g on a Kostant line bundle.

1.6 Example: Metaplectic Representation

Let W be a symplectic C-vector space with symplectic form ω. Let S be

a Grassmannian of Lagrangian planes in W , and L ⊂ WS be a canonical

Lagrangian subbundle of a constant vector bundle WS on S. Denote by S∧

the space of the line bundle det L on S with zero section removed.
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Define an S-Lagrangian triple (X
π→ Y ;ω;∇S) as follows. Put X =

WS = W ×S, Y = WS/L, π = canonical projection, ωX is a lifting to X of a

constant 2-form ω on W , ∇S = constant connection. We may also consider

an S∧-Lagrangian triple (X∧ π∧→ Y ∧;ω∧;∇S∧) defined in the same way (this

is just a base change by S∧ → S of the previous triple).

Let g = WoSp(W ) be a Lie algebra of affine symplectic symmetries of W

(so W acts by translations). It acts on our Lagrangian triples in an obvious

manner (so W acts trivially on S, S∧).

Let g̃ be a central extension of g by C such that for w̃1, w̃2 ∈ W̃ ⊂ g̃

one has [w̃1, w̃2] = ω(w1 ∧ w2). Such g̃ exists and unique up to a unique

isomorphism. In fact H1(g̃,C) = H2(g̃,C) = 0. By A4.2 one has a canonical

strong lifting ν̃DY
: g̃→ T̃DY

. It restricts to the Lie algebra map W̃ → T̃DY/S

which defines the isomorphism of associative OS-algebra U1(W̃ ) ⊗C OS →∼
DY/S; here U1(W̃ ) is a quotient of a universal envelopping algebra U(W̃ )

modulo relation 1 = 1 ∈ C ⊂ W̃ . Let ∇DY
be a DY -connection for pY with

U1(W̃ ) being the horizontal sections. This is a quantization of our Lagrangian

triple; let DS be the corresponding tdo on S. The g-action preserves the

quantization and, as above, we get a canonical strong lifting ν̃DS
: g̃→ T̃DS

.

Certainly, in all these things we may replace the S-Lagrangian triple by the

S∧-one.

It is easy to see that Ω1/2 does not exist globally on Y . On Y ∧ the

sheaf Ω is canonically trivialized, hence we get a canonical Ω1/2. Take an

admissible ωX∧-bundle (it comes from a line bundle LW on W equipped

with a connection ∇W with curvatuer ω). By 1.5.4 we get a Kostant line

bundle LY ∧ on Y ∧, hence a Kostant DS∧-module E = pY ∧
∗ (LY ∧) on S∧. By
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1.5.6 it carries a canonical “metaplectic” g̃-action: for s ∈ S∧ a fiber Es

is a metaplectic representation of g̃ on vectors “algebraic with respect to a

polarization Ls.”

1.7 Complex Polarizations

In this section we will relate the above purely holomorphic construction with

a complex polarization approach. We will start with a general lemma on a

C∞-description of twisted cotangent bundles. Everywhere below “variety”

means “complex analytic variety.”

Let Y be a smooth variety and φ = (πφ : Xφ → Y ;ωφ) be a twisted

cotangent bundle over Y . Let (Fφ, curv) be the corresponding Ω≥1
γ -torsor of

holomorphic sections of πφ, and let C∞Fφ be the Ω10
C∞Y -torsor of C∞ sections

of πφ (so C∞Fφ is the pushout of Fφ by Ω1
Y → Ω10

C∞Y ). For γ ∈ C∞Fφ put

curv(γ) := γ∗(ωφ): this is a closed C∞-class 2-form on Y with zero (0,2)-

component.

1.7.1 Lemma. The map (φ, γ) 7→ curv(γ) is a 1-1 correspondence between

the set of pairs (twisted cotangent bundle φ on Y , a C∞-class section of πφ)

and the set of closed C∞-class 2-forms with zero (0,2)-component.

Proof: Here is a construction of inverse map. Let ν = ν11 + ν20 be a

closed C∞-form. We need to construct an Ω10
C∞Y -trivialized Ω≥1

Y -torsor. Since

∂̄ν11 = 0 the sheaf Fν := ∂̄−1(−ν11) ⊂ Ω10
C∞Y is an Ω1

Y -torsor; it carries an

obvious Ω10
C∞Y -trivialization. Define curvν : Fν → Ω2

Y formula curvν(γ) =

dγ + ν. This (Fν , curvν) is our Ω≥1
Y -torsor. �.
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1.7.2 Remarks: (i) Consider the sheaf A = πφ∗OXφ
; it carries a canonical

filtration Ai (see A1.3). A C∞-section γ defines the map γ∗ : A → OC∞Y .

If curv(γ) = ωγ is a nondegenerate 2-form then γ∗ is injective and one may

determine Ai

γ∗

↪→ OC∞Y by induction: one has A = OY , Ai = {f ∈ OC∞} :

{f,OY } ⊂ Ai−1; here { } is Poisson bracket on OC∞Y defined by ωγ.

(ii) Certainly 1.7.1 is a particular case of a general nonsense that claims,

in the notations of A1.5, that a quasi-isomorphism A· → B· of length 2

complexes defines an equivalence between categories of A·- and B·-torsors.�

Consider an S-Lagrangian triple (X
π→ Y ;ω;∇S).

1.7.3 Definition. A C∞-class section γ : Y → X is called admissible if it

satisfies the properties (i)–(iii) below:

(i) ∇S is tangent to γ(Y ), i.e., for y ∈ Y the R-subspace dγ(TY,y) ⊂

TXγ(y)
contains the ∇S-horizontal subspace ∇S(TSpY (y))γ(y). Clearly the ∇S-

horizontal planes tangent to γ(Y ) form an integrable C∞-class connection

∇γ
S for pY .

(ii) This ∇γ
S is globally trivial, i.e., it comes from a global C∞-class triv-

ialization Y ' Y0 × S. Consider a C∞-class 2-form ωγ := γ∗(ω) along the

fibers of pY .

(iii) For s ∈ S the form ωγ
s on Ys is nondegenerate and real-valued. �.

1.7.4 Lemma. (i) The form ωγ
s is a closed form of type (1,1) on Ys.

(ii) ωγ is ∇γ
S-horizontal, i.e., by 1.7.3(ii), it comes from a single sym-

plectic form ω0 on Y0.

(iii) For each y0 ∈ Y0 the section S → Y0 × S = Y , s 7→ (y0, s), is

holomorphic.
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Proof: Clear. �

Let us describe the above structure from a Y0 viewpoint.

Let (Y0, ω0) be any C∞-class (real) symplectic manifold.

1.7.5 Definition. A complex polarization of (Y0, ω0) is a complex structure

on Y0 such that ω0 has type (1,1). �

According to integrability theorem of Newlander-Nirenberg, a complex

structure s on Y0 is the same as an integrable C-subbundle T 01
s ⊂ TY0 ⊗ C

such that T 01
s ⊕ T̄ 01 ' TY0 ⊗ C (here “integrable” means [T 01

s , T 01
s ] ⊂ T 01

s ).

Such s is a complex polarization iff T 01
s is an ω0-Lagrangian subbundle.

1.7.6. Note that 1-jet of a deformation of a C-subbundle T 01
s ⊂ TY0 ⊗ C

is an element ϕ ∈ Hom(T 01
s , T 01

s ) = Ω01
s ⊗ T 10

s , whereT 10
s := TY0 ⊗ C/T 01

s ,

Ω01
S := (T 01

s )∗. If T 01
s is a complex structure, then ϕ is a 1-jet of a deformation

of complex structure iff ∂̄ϕ ∈ Ω02
s ⊗T 10

s is equal to zero (here ∂̄ is taken with

respect to the holomorphic structure on T 10
s ). If T 01

s is Lagrangian, then ω0

identifies Ω01
s with T 10

s , and ϕ is a 1-jet of a deformation of a Lagrangian

subbundle iff ϕ ∈ S2T 10
s ⊂ T 10

s ⊗ T 10
s . If T 01

s is a complex polarization and

both above-mentioned conditions hold, then ϕ is a 1-jet of a deformation of

a polarization.

Let S be a C∞ manifold, and T 01
s , s ∈ C, be a C∞-class family of complex

polarizations of (Y0, ω0). Put Y := Y0 × S. Our T 01
s form a subbundle T 01

Y/S

of TY/S ⊗ C, same for T 01
Y/S, etc. The 1-jets of deformation form a section

C ∈ Ω1
C∞S ⊗ S2T 10

Y/S.

Assume now that S is a C-analytic manifold.
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1.7.7 Definition. A S family of polarizations is holomorphic if C ∈ Ω1
S ⊗OS

S2T 10
Y/S = Ω10

C∞S ⊗ S2T 10
Y/S.

1.7.8. Proposition. One has a canonical 1–1 correspondence between S-

Lagrangian triples (X
π→ Y ;ω;∇S) equipped with an admissible C∞ section

γ : Y → X, and a C∞-class (real) symplectic manifolds (Y0, ω0) equipped

with a holomorphic S family of polarizations.

Proof: As was explained in 1.7.3, 1.7.4 an admissible section defines (Y0, ω0)

and a holomorphic S-family of polarizations. Conversely, consider a holo-

morphic family of polarizations of (Y0, ω0). Put Y = Y0 × S. The subbundle

T 01
Y ⊂ TY ⊗ C with fiber at (y, s) ∈ Y equal to T 01

Ys
(y) ⊕ T 01

S (s) defines the

complex structure on Y such that the projection pY : Y → S is holomorphic.

Let ωY be the inverse image of ω0 via the projection Y → Y0. This is a

closed (1,1)-form on Y . Let (X̃, ω eX), π̃ : X̃ → Y be the twisted cotangent

bundle over Y with the C∞-section γ̃ : Y → X̃ defined by ωY according to

1.7.1. Put X = X̃ mod p∗Y Ω1
S

π→ Y : this is a twisted cotangent bundle along

the fibers of pY . By 1.7.1 a holomorphic section of X is a C∞-class 1-form

ν along the fibers of π (which is the same as a family νs of 1-forms on Y0

parameterized by s ∈ S) such that νs is a 10-form on YS (i.e., νs|T 01
s

= 0),

∂̄νs = ω0 ∈ Ω11
Ys

and νs depends on s ∈ S in a holomorphic way. Denote by

H(ν) the 1,0-form on Y which coincides with ν in fiberwise directions and

vanishes on horizontal ones (i.e., H(ν)|yo×S = 0 for each y0 ∈ Y0). One has

∂̄ν = ωY , hence we have defined a holomorphic section H : X → X̃. This

(X̃,H) is an S-Hamiltonian datum on Y , so, by 1.1.6, we have S-Lagrangian

triple (X
π→ Y, ω;∇S). It is easy to see that γ = γ̃ mod p∗Y Ω1

S is an ad-

missible section. This construction is clearly inverse to one of 1.7.3, 1.7.4.
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�

1.7.9 Lemma. Consider a holomorphic S-family of polarizations of (Y0, ω0).

The corresponding S-Lagrangian triple has order ≤ n (see 1.1) iff for any

s ∈ S and a tangent vector ∂s at s the tensor C(s) ∈ S2T 10
s (see 1.7.7) lies

in An−1 · S2TYs. Here An−1 = Asn−1 ⊂ OC∞Y0 is the sheaf of functions on

Y0 defined in 1.7.2(i) for the complex structure Ys and the form ω0. For

example, our triple has order 1 iff C(s) is a holomorphic tensor on Ys.

Proof: Clear. �
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2. D-Rational Varieties and Canonical

Quantization

In some situations a quantization is uniquely defined by a Lagrangian triple.

In this section we desribe some sufficient conditions for this.

2.1 D-Rationality

Let Y be a smooth variety and D be a tdo on Y .

2.1.1 Definition. Y is D-rational if H0(Y,D) = C and H i(Y,D) = 0 for

i > 0. �

For arbitraryD consider the class c′1(D) := c1(D)−1
2
c1(det Ω1

Y ) ∈ H1(Y,Ω≥1
Y ).

For c ∈ H1(Y,Ω≥1
Y ) let c̄ denote the image of c in H1(Y,Ω1

Y ). Let δD :

Hj(Y, SiTY )→ Hj+1(Y, Si−1TY ) be the convolution with c̄′1(D).

2.1.2 Lemma. Assume that H0(Y,OY ) = C and for each i > 0 the sequence

0→ H0(Y, SiTY )
δD→ H1(Y, Si−1TY )

δD→ · · · δD→ H i(Y,OY )→ 0

is exact. Then Y is D-rational.

Proof: By A2.6 δD is the boundary map for the short exact sequence

0 → Si−1TY → Di/Di−2 → SiTY → 0, i.e., δD is the first differential in

the spectral sequence Ep,q that computes H ·(Y,D) using filtration Di. Our

conditions mean that E0,0
2 = C, Ep,q

2 = 0 for p, q 6= (0, 0). �

2.1.3 Remark: One may interpret δD microlocally as follows. Let π :

T ∗Y → Y be cotangent bundle to Y . The symplectic form on T ∗Y defines
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the isomorphism Ω1
T ∗Y →∼ TT ∗Y (which coincides with translation action along

the fibers on π∗Ω1
Y ⊂ Ω1

T ∗Y ). Hence we get the class c′1(D)∨ = π∗c̄′1(D) ∈

H1(T ∗Y, TT ∗Y ). One has Hj(T ∗Y,OT ∗Y ) = ⊕
i
Hj(Y, SiTY ), so we have δ :

Hj(T ∗Y,OT ∗Y ) → Hj+1(T ∗Y,OT ∗Y ). Clearly δ coincides with the product

with c̄′1(D)∨ via the map T ⊗C O → O, ∂ × f 7→ ∂(f). �

2.1.4 Example: Let Y be a compact complex torus, or an abelian vari-

ety. Then det Ω1
Y ' OY , hence c′1(D) = c1(D). One has H1(Y,Ω1

Y ) =

H0(Y,Ω1
Y ) ⊗ H1(Y,O) = Hom(H0(Y, TY ), H1(Y,OY )) We will say that a

class c̄ ∈ H1(Y,Ω1
Y ) is non-degenerate if the map c̄ : H0(Y, TY )→ H1(Y,OY )

is isomorphism; a class c ∈ F 1H1
DR(Y ) is non-degenerate if such is an element

c̄ = c mod F 2H2
DR of H1(Y,Ω1

Y ).

2.1.5 Lemma. Y is D-rational iff c1(D) is non-degenerate.

Proof: Note that Hj(Y, SiTY ) = SiH0(Y, TY )⊗ ΛjH1(Y,OY ). This isomor-

phism identifies the complex from 2.1.2 with i-th symmetric power of the

2-term complex H0(Y, TY )
c̄1(D)−→ H1(Y,OY ). Hence if c1(D) is non-degenerate

then the conditions of 2.1.2 hold (the Koszul complex is acrylic, and Y is D-

rational. If c(D) is degenerate, the exact sequence 0 → C → H0(Y, T̃D) →

H0(Y, TY )
c̄1(D)−→ H1(Y,OY ) shows that C " H0(Y, T̃D) ⊂ H0(Y,D), so Y is

not D-rational. �

2.1.6 Remark. Let L be a line bundle on a compact complex torus Y .

If c1(L) is non-degenerate, then all the cohomologies Hj(Y,L) vanish but a

single one. We do not know whether one has a similar statement for a line

bundle L on arbitrary DL-rational variety.
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2.2 Canonical D-Connections

Assume we are in a situation 1.2, so we have a smooth morphism p : Y → S

of smooth varieties, and DY is a tdo on Y .

2.2.1 Definition. We will say that p is DY -rigid if one has p∗DY/S = OS

and for any τ ∈ TS there exists (locally along S) an element τ̃ ∈ p∗DY such

that for f ∈ OS one has p∗τ(f) = [τ̃ , p∗f ]. �

2.2.2 Lemma. Consider the short exact sequence 0 → T̃DY/S
→ T̃DY

→

p∗TS → 0. It defines the morphism KS : TS → R1p∗T̃DY/S
(the Kodaira-

Spencer class). Then p is D-rigid iff p∗DY/S = OS and the composition

TS
KS→ R1π∗T̃DY/S

→ R1p∗DY/S equal to 0.

Proof. Clear. �

Assume that p is D-rigid. Let T̃S be the sheaf of all pairs (τ, τ̃) from 2.2.1.

We have a short exact sequence 0 → OS
i→ T̃S

σ→ TS → 0, i(f) = (o, f),

σ(τ, τ̃ = τ). Also T̃S carries an obvious Lie algebra and OS-module structure,

so T̃S is an O-extension of TS. Let DS = DeTS
be the corresponnding tdo (see

A1.4). The map T̃S → p∗DY , (τ, τ̃) 7→ τ̃ , extends (uniquely) to p-morphism

α : DS → DY . We will call α a canonical p-morphism, and the corresponding

DY -connection ∇DY
a canonical DY -connection.

2.2.3 Lemma. (i) A canonical DY -connection is actually a unique DY -

connection for p.

(ii) A degree of ∇α is equal to minimal degree of τ̃ for (τ, τ̃) ∈ T̃S minus

1.
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(iii) Let L. be the filtration by degree along S on DY (see 1.2.5). One has

T̃S = p∗L1.

(iv) Any (compatible) Lie algebra action on Y , S, DY preserves DS and

∇α (see 1.4.1).

Proof: Clear. �

2.2.4 Proposition. Let p : Y → S be any smooth surjective morphism and

DY be a tdo on Y such that for each s ∈ S the fiber Ys is DYs-rational. Then

p is DY -rigid, and one has p∗DY = DS, Rip∗DY = 0 for i > 0. If, moreover,

DY satisfies conditions 2.1.2, then a canonical DY -connection has order 1.

Proof. One has OS →∼ p∗DY/S, Rip∗DY/S = 0 since DY/S is flat OS-module

and we have fiberwise rationality. Consider the filtration L. on DY . Since

Li/Li−1 = DY/S′ ⊗ SiTS one has Rp∗Li/Li−1 = SiTS. This implies that

Rip∗DY = 0 for Ki > 0 and p∗DY is a tdo with a canonical filtration equal

to p∗Li. By 2.2.3 we see that p is DY -rigid and p∗DY = DSK. �

2.3 Canonical Quantization

Let (X
π→ Y ;ω;∇S) be an S-Lagrangian triple of order 1, DY be a corre-

sponding tdo on Y .

2.3.1 Definition. We will say that our Lagrangian triple is canonically

quantizable if pY : Y → S is DY -rigid and a canonical DY -connection ∇DY

is a quantization (see 1.3). �

In this case ∇DY
(which is a unique DY -connection for pY ) is called a canon-

ical quantization of our triple. By 2.2.3(iv) ∇DY
is preserved by any symme-
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tries of the triple. In some cases the compatibility 1.3 holds automatically,

e.g., one has

2.3.2 Lemma. Assume that for each s ∈ S one has H0(Ys,OYs = C,

H0(Ys, TYs) = 0 and the maps δDY/S
: H0(Ys, S

iTYs) → H1(Ys, S
i−1TYs) are

injective for i > 1. Then our Lagrangian triple is canonically quantizable iff

the composition TS
KS→ R1πY∗ T̃DY/S

= R1pY∗DD/S1 → R1pY∗DY/S2 vanishes.

Proof: Our conditions obviously imply that pY∗DY/S = OS, pY∗(DY/S/OY ) =

0. By 2.2.2, the above map TS → R1pY∗DY/S2 vanishes iff pY is DY -rigid and

a canonical DY -connection ∇DY
has order 1. By 1.3.2(ii) ∇DY

is a quantiza-

tion. �

2.3.3 Remark. Let π : X → Y be a morphism of S-varieties and ω ∈

Ω2
X/S. Assume that these data satisfy conditions 1.1.3(i)–(ii). Note that

the sheaf p∗-connω of those pX-connections ∇S that ω is ∇S-horizontal is an

Ω1
S ⊗ pX∗T ω

X/S-torsor (where T ω
X/S ⊂ TX/S is a subsheaf of vector fields that

preserve ω). Therefore in case pX∗T ω
X/S = 0 there exists at most one such ∇S

which is automatically integrable (since the curvature lies in Ω2
S⊗pX∗T ω

X/S =

0). Hence (π : X → Y, ω,∇S) is an S-Lagrangian triple. We will call such

triples canonical Lagrangian triples.

2.4 Example: Heat Equation for θ-Functions

Let Y be a complex torus or an abelian variety. Denote by (−1) the involution

y 7→ −y of Y . Let DY be a tdo on Y .
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2.4.1 Definition. A symmetric structure on DY is an isomorphism DY
α→

(−1)∗DY . A symmetric tdo is a tdo equipped with a symmetric structure.�

A symmetric tdo forms a category TDOS(Y ) in an obvious manner.

Certainly, we may repeat the above definition of symmetric structure for

Ω≥1
Y -torsors or twisted cotangent bundles.

2.4.2 Lemma. Any tdo admits a symmetric structure. A symmetric tdo

(DY , α) has no automorphisms. One has (−1)∗(α) ◦ α = idDY
, so DY is a

Z/2-equivariant tdo. Two symmetric tdo’s are isomorphic iff they are iso-

morphic as usual tdo’s.

Proof: Follows from A1.6, A1.13 since (−1) acts onH1(Y,Ω≥1
Y ) = F 1H2

DR) ⊂

H2
DR(Y ) as identity map, and on H0(Y,Ω≥1

Y ) = F 1H1
DR(Y ) ⊂ H1

DR(Y ) as mi-

nus identity. �

2.4.3. We see that c1 defines equivalence between TDOS(Y ) and a discrete

category with the set of objects F 1H2
DR(Y ). For c ∈ F 1H2

DR(Y ) we will

denote by Dc the corresponding symmetric tdo, and by (πc : Xc → Y ;ωc),

the symmetric twisted cotangent bundle. Note that if c lies in F 2H2
DR(Y ) =

H0(Y,Ω2
Y ) then the tdo Dc carries a unique symmetric (in an obvious sense)

connection ∇c with curvature c (cf. A1.7).

2.4.4. Here is an explicit construction of the twisted cotangent bundle Xc

for a non-degenerate c ∈ F 1H2
DR(Y ). Let 0 → H1(Y,OY )′ → X

π→ Y → 0

be a universal extension of Y (see, e.g. [MM]); we consider here the vector

space H1(Y,OY )′ as an algebraic group). So X is a commutative algebraic

group with Lie algebra Lie X canonically identified with H1
DR(Y )′. One
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may describe points of X as line bundles with connection on a dual abelian

variety Y 0; in the analytic case one identifies X with H1(Y,C/Z). Our class

c ∈ F 1H2
DR(Y ) ⊂ H2

DR(Y ) = Λ2H1
DR(Y ) defines an invariant 2-form ωc on X;

this form is closed, non-degenerate (since such was c), and π is a polarization

for ωc (since c ∈ F 1H2
DR), so Xc = {(π : X → Y ;ωc)} is a twisted cotangent

bundle on Y . The involution (−1)x : x 7→ −x is a symmetric structure on

Xc. Since π∗ : H2
DR(Y ) →

∼
H2

DR(X) is isomorphism, and π∗Xc carries a

section with curvature ωc, we see that c1(Xc) = c.

2.4.5. Now let pY : Y → S be an abelien scheme over S, i.e., a family Ys,

s ∈ S, of abelian varieties (so we are in an algebraic situation). Let c be a

horizontal section of H2
DR(Y/S) (with respect to Gauss-Manin connection)

that lies in F 1H2
DR(Y/S). For any s ∈ S the element cs ∈ F 1H2

DR(Ys)

defines a symmetric twisted cotangent bundle (πcs : Xcs → Ys, ωcs), in a

canonical way. These spaces form a relative symmetric twisted cotangent

bundle πc : X → Y , ωc ∈ H0(X,Ω2c`
X/S), (−1)X : Xc → Xc. We will say that

c is non-degenerate if for some (or any) s ∈ S the class cs ∈ F 1H2
DR(Ys) is

non-degenerate.

2.4.6 Proposition. Assume that c is non-degenerate. Then

(i) pX = pY ◦ πc : Xc → S admits a unique symmetric connection ∇S

(i.e., the one such that (−1)X∇S = ∇S).

(ii)(πc : Xc → Y ;ωc;∇S) is an S-Lagrangian triple which is canonically

quantizable.

Proof: (i) One has H0(Xs,OXs) = C, H i(Xs,OXs) = 0 for i > 0 (to see

this note that H ·(Xs,OXs) = H ·(Hs, πs∗OXs) since πs is affine; the standard
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filtration Ai on A = πS∗OX gives a spectral sequence with first term equal

to Koszul complex, cf. 2.1.5). The connections for pX form a p∗XΩ1
S ⊗ TX/S-

torsor on X. Since TXs = H1
DR(Ys)⊗OXs (see 2.4.3) we see that connections

for pX (global along the fibers of pX) exist and form an H1
DR(Y/S) ⊗ Ω1

S-

torsor. Since (−1)X acts on H1
DR(Y/S) as multiplication by −1, we see that

there exists a unique symmetric connection ∇S.

(ii) Note that X is naturally a group scheme over S. It follows easily

by unicity that ∇S is actually a unique connection for pX compatible with

group structure on X, and the induced connection on Lie X/S = H1
DR(Y/S)′

is (dual to) Gauss-Manin connection (see [MM]). Also ∇S is flat. Since ωc

is invariant 2-form on X-horizontal with respect to Gauss-Manin connection

(see 2.4.3) we see that it is ∇S-horizontal, so (π : X → Y ;ωc;∇S) is an S-

Lagrangian triple. By 2.1.5, 2.2.4, pY is DY -rigid and a canonical connection

∇DY
has order 1. Since ∇DY

is symmetric (being unique) the section ∇0
S −

σ̃∇0
DY
∈ Ω1

S ⊗ pY∗(A2/A0) = Ω1
S ⊗ pY∗(A1/A) is symmetric (see 1.3.2), hence

vanishes. By 1.3.2(ii) this means that ∇DY
is a quantization. �

2.4.7 Remark: (i) If we are in an analytic situation, i.e., pY : Y → S is

a family of compact complex tori, then 2.4.5 remains valid with the only

correction: in (i) one should also demand that ∇S has finite order (i.e., for

f ∈ OY , t ∈ TS the function ∇S(τ)(f) ∈ OX should be polynomial along

the fibers of π). The connection ∇S defines an obvious “topological” local

trivialization of the fibration X = H1(Y/S,C/Z)→ Y . �

(ii) In the language of 2.3.4 the above Proposition 2.4.6(i) says that

(X/ ± 1
π→ Y/ ± 1, ω,∇S) is a canonical S-Lagrangian triple. Here / ± 1

means quotient modulo the involution (−1) which is an S-family of smooth
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“orbifolds” or “stack.”

2.4.8. Assume that our class c is integral, i.e., cs ∈ H2(Ys,Z(1)). Localizing

S, if necessary, one finds a symmetric line bundle Lc on Y together with

a trivialization e∗Lc ' OS of its restriction to zero section e of Y . Put

λ = e∗Ω = pY∗Ω, and choose a square-root of λ, i.e., a line bundle λ1/2 on S

together with isomorphism λ1/2⊗2 = λ. Then Lc ⊗ p∗Y λ1/2 is a Kostant line

bundle, and a corresponding integrable projective connection on RipY∗ is a

classicial heat equation for θ-functions.
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5. Centralizers of Regular Elements

Let G be a connected reductive group, g its Lie algebra, Ḡ := G/ center G

be the adjoint group, and B the variety of Borel subalgebras of g. We can

also interpret B as the variety of Borel subgroups of G. Recall the definition

of the Cartan group of G, the Cartan Lie algebra and the Weyl group. The

action of Ḡ on B is transitive, so for each pair B1, B2 of Borel subgroups we

may choose g ∈ Ḡ such that Ad(g)B1 = B2 which induces the isomorphism

Ad(g) : B1/[B2, B1] →∼ B2/[B2, B2]. In fact, this isomorphism does not

depend on a choice of g, hence we may identify canonically all the toruses

B/[B,B]. This torus H is called the Cartan group of G. Its Lie algebra h is

called Cartan Lie algebra of g; one has a canonical isomorphism h = b/[b, b]

for b ∈ B. Put Γ := Hom(Gm, H). One defines similarly the Weyl group

W = W (G); it acts on H and h in a canonical way. We also have the root

data; denote by ∆ the set of roots, and by S ⊂ ∆ the subset of simple roots.

Denote by p : h → h/W := Y the projection, and by R ⊂ Y the ramifi-

cation locus of p. We have a canonical AdG-invariant projection f : g → Y

such that f/b coincides with the composition b → b/[b, b] = h
p→ Y for

any b ∈ B.

5.1. Let greg ⊂ g be the open subset of regular (not necessarily semi-simple)

elements of g. Put g̃reg := {(a, b) : a ∈ b} ⊂ greg × B. Then g̃reg is a smooth

variety, and the projection p′ : g̃reg → greg is finite. The group Ḡ acts on
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these objects in an obvious manner. Consider the commutative diagram

g̃reg
f̃reg→ h

↓ p′ ↓ p

greg
freg→ Y

where freg := f |greg , and freg(a, b) = a mod [b, b] = h. One knows (see [K2])

that

(i) this diagram is Cartesian, hence W acts along the fibers of p′, and

greg = W\g̃reg.

(ii) freg is a smooth projection. The adjoint action of Ḡ is transitive along

the fibers of freg. Hence Y = Ḡ\greg, h = Ỹ =: Ḡ\g̃reg.

(iii) freg admits a global section s : Y → greg.

5.2 Let a ∈ greg be a regular element. Denote by Ha the centralizer of a, and

by ia : Ha ↪→ G the embedding. One knows that Ha is a commutative group

of dimension dim h. For any Borel subgroup B ⊂ G such that a ∈ b = Lie B

one has Ha ⊂ B, hence the projection B → B/[B,B] = H defines the

morphism ϕB : Ha → H. For ã = (a, b) ∈ g̃reg we put ϕã := ϕB : Ha → H.

If a is a regular semi-simple, then ϕã is an isomorphism.

One may describe Ha as follows. Let Ma ⊂ G be the centralizer of ass

(:= semi-simple part of a). This is a Levi subgroup of G. Since a ∈ Lie Ma,

one has Center Ma ⊂ Ha. In fact, Center Ma coincides with the reductive

part of Ha : if Haun denotes the unipoint radical of Ha then one has Ha =

Center Ma ×Haun. Note that Haun = kerϕã, hence Center Ma →∼ ϕã(Ha).

We will need a bit of information on the structure of the groupHa/H0
a = Cen-

ter Ma/Center0Ma of connected components of Ha. For a root γ let γ∨ ∈ Γ
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be the corresponding co-root, and σγ ∈ W be the reflection a 7→ a− γ(a)γ∨;

let χγ : H → Gm, iγ : Gm → H be the corresponding character and 1-

parameter subgroup. We will say that γ is a type 1 root if Γ = Γσγ ⊕ Zγ∨,

that γ is of type 2 if Γ = Γσγ ⊕ 1
2
Zγ∨, and that γ is of type 3 in other cases

(in other words, γ is of type 3 if the projection Γσγ → Γσγ from σγ-invariants

to σγ-coinvariants is isomorphism). Therefore γ is of type 2 if the rank 1 sub-

group that corresponds to γ equal to PGL2. Denote by Si ⊂ S, i = 1, 2, 3,

the subset of simple roots of type i.

If Ma is our Levi subgroup and B is a Borel subgroup such that ass ∈

b = Lie B, then Ba := B ∩Ma is a Borel subgroup of Ma and Ba/[Ba, Ba] =

B/[B,B]. Hence a choice of B defines the isomorphism between the Cartan

groups of Ma and G, and identifies the root system of Ma with the subsystem

of the one of G. In particular, Sa (:= simple roots of Ma) ⊂ S, and WSa ⊂ W

is the Weyl group of Ma.

5.2.1 Lemma. (i) One has Center Ma =
⋂

γ∈Sa
kerχγ, H

WSa =
⋂

γ∈Sa
ker(iγχγ),

(ii) One has HWSa/Center Ma
∼→ Z/2Sa2, where Aa2 := Sa ∩ S2.

(iii) In each orbit of SSa in the roots of Ma there is at most one simple

root.

(iv) If a ∈ Lie B = b, then WSa equals the stabilizer of ã = (a, b) ∈ g̃reg

with respect to W -action (see 5.1(i)).

(v) If Sa = {γ}, then the group Hq/H0
q equals Z/2 if γ is of type 1 and is

trivial otherwise.

Proof: Easy, e.g., morphism (χγ) : H →
∏

γ∈Sa
Gm is surjective and ker iγ

is {±1} if γ is of type 2 and trivial otherwise. Therefore the map (χγ)γ∈Sa2
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defines the isomorphism
⋂

γ∈Sa
ker(iγχγ)/

⋂
γ∈Sa

ker(χγ) →∼ (±1)Sa2 , hence

(ii) follows from (i). The morphism χγ : HW → {±1} depends only on the

W -orbit of γ, hence (iii) follows from (ii). �

5.3. When a ∈ greg varies the groups Ha form a flat commutative group

scheme Hgreg on greg equipped with the embedding i : Hgreg ↪→ Ggreg to

the constant group scheme G on greg. The morphisms ϕã form a canonical

morphism ϕg̃reg : Hgreg := p
′∗Hgreg → Hg̃reg . The W -action on g̃reg lifts to

our group schemes: namely, W acts on Hg̃reg in an obvious manner, and

on Hg̃reg = H × g̃reg in a diagonal one. The morphism ϕ commutes with

W -action.

All the picture is equivariant with respect to (adjoint) action of G on

all our schemes. Note that the stabilizer of a point a ∈ greg, equal to the

image of Ha in Ḡ, acts on the fiber Ha trivially (since Ha is commutative).

Therefore, according to 5.1(ii), the scheme Hg̃ descents to Y : we have a

canonical group scheme HY on Y such that Hg̃reg = f ∗HY . For any section s

of freg one has a canonical isomorphism s∗Hgreg = HY , hence the embedding

is := s∗(i) : HY = s∗Hgreg → s∗Ggreg = GY .

The morphism ϕgreg descents to a canonical morphism ϕeY : HeY := p∗HY →

HeY equivariant with respect to W -action. By adjointness we have the mor-

phism ϕY : HY → (p∗HeY )W . This is an embedding which is isomorphism off

R. As follows from 5.2.1, the cokernel of ϕY is a constructible sheaf with a

stalk at y ∈ R equal to Z/2Sy2 , where Sy2 ⊂ S2 is the set of type 2 simple roots

“vanishing at y.” In particular, Γ(Y,Coker ϕY ) = (Coker ϕY )0 = Z/2S2 .

Clearly H1(Y,Coker ϕY ) = 0.

Note that Center G ⊂ Ha for any a ∈ greg, hence Center G ⊂ Γ(Y,HY ).
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Precisely, one has

5.3.1 Lemma. Γ(Y,HY ) = Center G, H1(Y,HY ) = 0.

Proof: Note that all the global (algebraic) H-valued functions on Ỹ = h

are constant. Hence Γ(Y,HY ) = ker(Γ(Y, (p∗HeY )W )→ Z/2S2) = ker(HW →

Z/2S2) = Center G by 6.3. Now let F be any HY -torsor, and F̃ := ϕeY (p∗F)

be the corresponding W -equivariant H-torsor on Ỹ . Since any H-torsor

on Ỹ is trivial, the value at 0 map defines the isomorphism Γ(Ỹ , F̃) →
∼

F̃(0). Therefore for the (p∗HeY )W -torsor ϕY (F) = (p∗F̃)W ⊃ F one has

Γ(Y, ϕY ·(F)) = Γ(Ỹ , F̃)W = F̃W
(0), and Γ(Y,F) = Im(ϕeY0

: F0 → F̃W
(0) 6= ∅,

q.e.d. �

5.4. Consider the canonical embedding i : Hgreg ↪→ Ggreg . We would like

to descent it down to Y . We assume that Ḡ acts on Ggreg = G × greg by a

diagonal adjoint action. Then i is Ḡ-equivariant. Note that the stabilizer of

a point a ∈ greg acts on a fiber Ga in a nontrivial way; hence we need for

Ggreg a bit more clever descent then the obvious one used for Hgreg in 5.3.

Namely, Π denotes the set of global sections s : Y → greg of fgreg ; accord-

ing to 5.1(iii) Π is a nonempty Ḡ(Y )-set.

5.4.1 Lemma. Π is a Ḡ(Y )-torsor.

Proof: For s1, s2 ∈ Π consider the sheaf φs2s1 on Y , defined by formula

φs2s1(U) := {g ∈ G(U) : Ad(g)s1|U = s2|U}. This is an HY -torsor with

respect to right multiplication by is1 : HY ↪→ GY . By 5.3.1 the global sections

Γ(Y, φs2s1) form a torsor with respect to the action of Center G = Γ(y,HY ).
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Hence for any s1, s2 ∈ Π there exists a unique element gs2s1 ∈ Ḡ(Y ) =

G(Y )/Center G such that Ad(g)s1 = s2.We are done. �

Denote by G∨
Y the group scheme on Y obtained from GY by Π-twist

(with respect to adjoint action of Ḡ(Y )). Hence for any s ∈ Π we have a

canonical isomorphism js : G∨
Y →∼ GY such that ks2j

−1
s1

= Ad(gs2s1). There is

a canonical embedding i : HY ↪→ G∨
Y such that jsi = is. Note that we have

no canonical isomorphism between f ∗regG
∨
Y and Ggreg .

5.5. The variation considered in 5.1 also carry a natural Gm-action that

commutes with Ḡ- and W -actions. Namely, Gm acts on Greg and h by

homotheties, and this determines the Gm-actions on Y = W\h− Ḡ\greg and

g̃reg = greg×Y h. Explicitly, if pi are homogeneous generators of S(h∗)W of

degree di, so (pi) : Y →
∼

Cdim h, then Gm acts on Y in coordinates pi by

formula λ(pi) = (λdipi).

This Gm-action lifts to our group schemes HY , G∨
Y and HeY . Namely,

the Gm-action on HeY = H × Ỹ is the trivial one. For a ∈ greg and λ ∈ C∗

one has Ha = Hλa, which defines the Gm-action on Hgreg which descents

down to HY . The group Gm acts on the set Π of global sections of freg by

formula (λs)(y) = λs(λ−1y); for g = g(y) ∈ Ḡ(Y ) we have λ(gs) = (λg)(λs),

where (λg)(y) = g(λ−1y). This defines the Gm-action on G∨
Y such that

js ◦ λ = jλs : G∨
Y →∼ GY for s ∈ Π, λ ∈ C∗.

The morphisms ϕeY : HeY ↪→ GeY , i : HY ↪→ H∨
Y commute with Gm-action.

We will need to know whether there exists a Gm-equivariant G-torsor T such

that the group G∨
Y with Gm-action is isomorphic to Aut T . Or, eqeuiva-

lently, whether the Gm-equivariant Ḡ(Y )-torsor Π lifts to a Gm-equivariant
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G(Y )-torsor. Since G(Y ) is a central extension of Ḡ(Y ) by Center G, the

obstruction α for lifting an element c` Π ∈ H1(Gm, Ḡ(Y )) to H1(Gm,G(Y ))

lies in a finite group H2(Gm,Center G) = H2(Gm,A) = A(−1), where A

denotes the group of connected components of Center G (and (-1) is Tate

twist).

The obstruction α could be easily computed. Namely, let α be a reg-

ular nilpotent element, and ν̃ : SL2 → G be a morphism such that Lie

ν̃ = (( 0 1
0 0 )) = a (so ν̃ is a Kostant principal TDS). Let ν : Gm → G,

ν(λ) = ν̃
((

λ 0
0 λ−1

))
be the corresponding one-parameter subgroup, so one

has Ad ν(λ)(a) = λ2a and ν(−1) ∈ Center G.

5.5.1 Lemma. The obstruction α equals the image of ν(−1) in A. In

particular 2α = 0.

Proof: Put ψ := {λa, λ 6= 0} ⊂ greg, Πa := {s : s(0) ∈ ψ} ⊂ Π,

Ga := ν(Gm) · Center G, G(Y )a := {g ∈ G(Y ) : g(0) ∈ Ga} ⊂ G(Y ),

Ḡa = Ga/Center G ⊂ Ḡ, Ḡ(Y )a := {ḡ ∈ Ḡ(Y ) : ḡ(0) ∈ Ḡa} ⊂ Ḡ(Y ).

Clearly, G(Y )a, Ga are central extensions of the corresponding ¯ -groups

by Center G. We have canonical morphisms G(Y )
µ
←↩ G(Y )a

π→ Ga,

π(g) = g(0), identical on Center G, and the corresponding morphisms of ¯

-groups. Now Πa, ψ are Ḡ(Y )a- and Ḡ-torsors, respectively, and the obvious

maps Π
µ′

←↩ Πa
π′→ ψ, π′(s) = s(0), are µ- and π-compatible. Note that all our

groups and torsors carry an obvious Gm-action. Hence, by functoriality, the

obstructions for lifting Π, Πa and ψ to, respectively Gm-equivariant G(Y )-,

G(Y )a- and Ga-torsors. The obstruction for ψ coincides with the image of

ν(−1) in A, and we are done. �
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Example: In case G = SLn the obstruction α vanishes iff n is odd.

5.6. Consider a pair (T , σ) where T is a Gm-equivariant G-torsor on Y ,

and σ : T → greg is a morphism of Y -schemes that commutes with Gm×G-

action. Such (T , σ)’s form a groupoid Π̂ (the morphisms between (T , σ)’s

are morphisms of Gm-equivariant G-torsors that commute with σ’s).

5.6.1. For (T , σ) ∈ Π̂ the set Π̂T := Γ(Y, T ) is nonempty (since the ob-

struction for lifting a section of greg to a one of T lies in H1(Y,HY ) = 0),

hence it is a Gm-equivariant G(Y )-torsor. Therefore σ : Π̃T → Π is a lifting

of a Gm-equivariant Ḡ(Y )-torsor Π to a Gm-equivariant G(Y )-torsor. Such

liftings form a groupoid Π̂′ in an obvious manner. Clearly, the above functor

Π̂ → Π̂′, (T , σ) → (Π̃T , σ), is equivalence of categories (the inverse functor

assigns to (Π̃, σ) the induced GY -torsor TΠ̃ := GY ×G(Y ) Π̃).

We see that Π̂ is nonempty iff the obstruction α from 5.5.1 vanishes;

assume for a while that this is the case.

5.6.2. Let P denote the category of Gm-equivariant Center G-torsors. This

is a strictly commutative Picard category with automorphism group of an

object equal to Center G, and the group of isomorphism classes of objects

equal to H1(Gm,Center G) = ΓW . We have an obvious “multiplication of

torsors” functor ∗ : P × Π̂→ Π̂. It is clear (look at Π̂′-version) that * makes

Π̂ a “P-torsor”: for any (T , σ) ∈ Π̂ the corresponding functor P → Π̂,

P 7→ P ∗ (T , σ), is the equivalence of categories. Equivalently, Π is a P-gerb.

The following lemma follows from the definitions:

5.6.3 Lemma. For (T , σ) ∈ Π̂ we have a canonical Gm-equivariant iso-
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morphism G∨
Y = Aut T (:= automorphisms of T as GY -torsor). It identifies

HY ⊂ G∨
Y with the subgroup {ϕR, amAut T : σϕ = ϕ}.

5.6.4. If the obstruction α from 5.5.1 does not vanish, let us consider the

“squared” action of Gm on our spaces (the new action of λ ∈ Gm is the

old one of λ2). We may repeat the above constructions for this action. The

corresponding category Π̂(2) of pairs (T (2), σ), where T (2) is a Gm-equivariant

(for a new action!) G-torsor on Y , and σ : T (2) → greg is a Gm×G-map, is

nonempty by 5.5.1. We may repeat 5.6.1–5.6.3 word-by-word.

5.7. For a quantum analog of the above constructions, see [KL].
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6. A Construction of G-Bundles

Let C be a smooth projective curve, and L be a line bundle on C.

Denote by L· := L\{zero section} the corresponding Gm-torsor. If X is

any variety with a Gm-action, then XL denotes X twisted by L·. There-

fore XL is a C-scheme equal to the quotient of L· × X modulo Gm-action

λ(`, x) = (λ`, λ−1x). In particular, if X = V is a vector space with Gm-

action by homotheties, then VL = L⊗ V . An L-twisted map θ : C →
L

X is,

by definition, a section of XL. Equivalently, this is a Gm-equivariant map

θH : L·−1 → X.

6.1. From now on assume that L is positive. Let θ : C →
L

Y be a L-twisted

map (here Y carries the Gm-action defined in 5.5). We will say that θ is

regular, if for any c ∈ C such that θ(c) ∈ R one has θ∗(TC(c)) ⊂ TR(θ(c)).

Equivalently, this means that the image of θ intersects R transversally at

regular points of R.

Assume that θ is regular. Put C̃θ := C ×YL ỸL. This is a C-scheme

with respect to projection p : C̃θ → C equipped with a W -action along the

fibers of p. The projection C̃θ → ỸL is a W -equivariant LC̃θ
-twisted map

θ̃ : C̃θ −→
LC̃θ

Ỹ = h which is the same as W -invariant section θ̃ of LC̃θ
⊗ h.

Lemma. (i) C̃θ is a smooth irreducible projective curve.

(ii) The W -action on C̃θ is free at generic point of C̃θ, and C = W\C̃θ.

(iii) The non-trivial stabilizers of points of C̃θ are precisely all the order

two subgroups Wγ := {1, σγ} ⊂ W , γ is a root.
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Proof: Let us prove that for any root γ one has C̃
σγ

θ 6= ∅. Let hσγ ⊂ h be

the corresponding hyperplane. Since L is positive, a section θ̃ mod hσγ of

LC̃θ
⊗ h/hσγ must have a zero x ∈ C̃θ. Clearly, x ∈ C̃σγ

θ .

Let us prove that C̃θ is connected. Let C̃ ′
θ be a connected component of

C̃θ. The same reason as above shows that for any root γ one has C̃
′σγ

θ 6= ∅,

hence σγC̃
′
θ = C̃θ. So WC̃ ′

θ = C̃ ′
θ. Since WC̃ ′

θ obviously equals C̃θ, we are

done.

The other statements of the lemma are obvious. �

6.2. Consider the pull-back of the group schemes HY , G∨
Y by the projection

L′ × Y → Y . According to 5.5 they carry a canonical Gm-action, hence by

descent we get the group scheme HYL , G∨
YL

on YL together with a canonical

embedding i : HYL ↪→ G∨
YL

, ϕYL : p∗HYL → HeYL , ϕYL : HYL → (p∗GeYL)W .

6.2.1. Remark. G∨
YL

is a twisted form of a constant group scheme GYL .

If the obstruction α from 5.5.1 vanishes, then a choice of (τ, σ) ∈ Π̂ (see

5.6) defines, by Gm-descent, a GYL-torsor TYL with G∨
YL

= Aut TYL . If α is

arbitrary, let us assume that deg L is even. Choose L1/2 (:= a Gm-torsor

s.t. (L1/2)2 = L). Then YL = Y
(32)

L1/2 , where Y (2) is Y with “squared” Gm-

action. Now a choice of T (2) in Π̂(2) (see 5.6.4) defines, by Gm-descent from

L1/2 × Y (2), a GYL-torsor T (2)
YL

with G∨
YL

= Aut T (2)
YL

.

Let θ : C →
L

Y be a regular L-twisted map. Put Hθ := θ∗HYL ,

G∨
θ := θ∗G∨

YL
; one has a canonical embedding (p∗H eCθ

)W ϕ← Hθ
i→ G′

θ. The

group scheme G′
θ is a twisted form of GC ; if deg L is even, or α vanishes,

then following 6.2.1, we get a GC-torsor T (2)
θ := θ∗T (2)

YL
, or Tθ = θ∗TYL with

G∨
θ identified with its automorphism sheaf.
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Denote by Rθ ⊂ C the ramification set for p : C̃θ → C. To each point

x ∈ Rθ there corresponds a conjugacy class of roots γx, so that Wγx are

stabilizers of points in p−1(x). We will say that x ∈ Rθ is a type i (i = 1, 2, 3)

point if γx is a type i root (see 5.2.1); let Rθi
⊂ Rθ be a subset of type i

points.

6.2.2 Lemma. (i) (p∗HC̃θ
)W/ϕ(Hθ) is a skyscraper sheaf

⊗
x∈Rθ2

Z/2x.

(ii) The embedding i identifies global sections Γ(C,Hθ) with Center G.

Proof: (i) follows from 5.3. One has Γ(C, (p∗HC̃θ
)W ) = H(C̃θ)

W = HW

(since C̃θ is connected and proper), hence (ii) follows from (i) and 5.2.1. �

6.3. We are going to relate G-bundles on C and W -equivariant H-bundles

on C̃θ using Hθ-torsors as mediators.

6.3.1 Remark. Let G′
C be any twisted form of GC . Then the categories

of G′
C-torsors in Zariski, étale and classical topology on C are canonically

equivalent. For Zariski = étale see [ ] (for G 6= GLn one really needs here

that C is a curve), and étale = classical is GAGA-type statement. Similarly,

Hθ-torsors are the same in Zariski, étale and classical versions.

Let Γroot ⊂ Γ be the sublattice generated by coroots; note that W acts

trivially on Γ/Γroot. Consider the i-induction functor between the stacks of

torsors itors : Hθ − tors→ G∨
θ − tors.

6.3.2. Lemma. The functor itors induces the bijection between the sets of

connected components of stacks Hθ-tors and G∨
θ -tors. These sets are in a

natural 1-1 correspondence with Γ/Γroot.

41



Proof: In the proof we willuse the analytic version of torsors.

1. Note that Γ(1) coincides with the fundamental group π1(H). An em-

bedding of a maximal torus H ↪→ G induces a canonical isomorphism

Γ/Γroot(1) →
L

π1(G). Consider the universal covering G̃ of the topo-

logical groups Gtop, therefore G̃ is a central extension of Gtop by π1(G).

The adjoint action of Ḡ lifts to G̃, hence we have the corresponding

central extension 1→ π1(G)C → G̃∨
θ → G∨

θ top → 1 of twisted topologi-

cal groups. An easy topological consideration show that the boundary

map (first Chern class) H1(C,G∨
θ top) → H2(C, π1(G)) = Γ/Γroot is bi-

jection. Since the space of holomorphic structures (= ∂̄-connections)

on a given topological G′-bundle is nonempty and connected, we get

the desired identification of the set of connected components of the

stack G∨
θ -tors with Γ/Γroot.

2. Let Lie Hθ be the Lie algebra of Hθ (which is a vector bundle on C)

and exp : Lie Hθ → Hθ be the exponential map. On the open set

U := C\Rθ the map exp is surjective, and ker exp is a local system

ΓeU(1), which is Γ(1) twisted by W -torsor Ũ := p−1(U) → U (here

W acts on Γ in a standard way). Let jU∗ΓŨ(1) be the direct image

extension of ΓŨ(1) to C (here jU : U ↪→ C). Then ker exp = jU∗ΓŨ(1),

and cokerexp =
⊕

x∈Rθ1
Z/2x by 5.2.1 (v).

Since H i(C,Lie Hθ) are C-vector spaces and H2(C,Lie Hθ) = 0 the

group of connected components of the stack of Hθ-torsors is equal to

hyper-cohomology groupH2(c,F ·), where F · is a constructible complex

F0 := Lie Hθ
exp→ F1 := Hθ. Therefore H2(C,F ·) = coker(Z/2Rθ1

∂→
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H2(C, jU∗ΓŨ(1)). But H2(C, jU∗ΓŨ(1)) = ΓW , and an easy local com-

putation shows that for x ∈ Rθ1 the morphism ∂ : Z/2x → ΓW is given

by formula ∂(1) = γx. Since obviously both type 2 and type 3 roots

γ have zero classes in ΓW and any type 1 root occurs as some γx by

6.1(iii), we see that H2(C,F ·) = Γ/Γroot.

3. We identified canonically the set of connected components of both Hθ-

tors and G′
C-tors with Γ/Γroot. It is easy to see that the map induced

by ϕ-induction itors is the identical map of Γ/Γroot. We are done.

6.4. The functor ϕ defines the induction functors Hθ-tors → (p∗HC̃θ
)W -

tors → HC̃θ
-tors. Here HC̃θ,W -tors denotes the category of W -equivariant

H-torsors on C̃θ. Let us compare these categories.

Take F ∈ HC̃θ,W -tors. For a point x ∈ C̃θ the fiber Fx is a Wx-equivariant

H-torsor; let c`2F := c`Fx ∈ H1(Wx, H) be its class. If Wx 6= {1} then Wx =

{1, σγ} and H1(Wx, H) = Hγ−/Hγ−0, where Hγ− := {h ∈ H : σγh = h−1},

Hγ−0 := {h ∈ H : h = σγ(`) · `−1} = connected component of Hγ−.

We will say that F is pointwise trivial if c`xF = 0 or, equivalently, FWx
x 6=

) for any x ∈ C̃θ. Denote by HC̃θ,W -tors0 the full subcategory of such F ’s. It

is easy to see that for any T ∈ (p∗H
W
C̃θ

-tors the corresponding HC̃θ,W -torsor

is pointwise trivial.

For F ∈ HC̃θ,W -tors0 and a type 2 point x the fiber FWx
x has 2 connected

components. A+-structure on F is a choice for any type 2 point x of a

component F+
x ⊂ FWx

x such that for any w ∈ W one has w(F+
x ) = F+

wx.

Denote by F+ ⊂ F a subsheaf of sections that take value in F+
x for any type

2 point x. The pointwise trivial torsors with +-structure form a category
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HC̃θ,W -tors+
0 . If T is an Hθ-torsor, then the corresponding HC̃θ

-torsor F

carries a natural +-structure F+
x := ϕ(Tp(x)), hence the functor Hθ-tors →

HC̃θ,W -tors+
0 .

6.4.1 Lemma. The functors Hθ-tors → HC̃θ,W -tors+
0 , p∗(HC̃θ

)W -tors →

HC̃θ,W -tors0 are equivalence of categories.

Proof: Easy. The inverse functors are respectively F 7→ (p∗F+)W , F 7→

(p∗F)W . �

Denote by |?−tors|the group of isomorphism classes of corresponding torsors.

Consider the forgetting of W -action functor 0 : HC̃θ,W -tors0 → HC̃θ
-tors.

6.4.2 Lemma. The corresponding morphism of groups 0 : |HC̃θ,W -tors| →

|HC̃θ
-tors| = Pic(C̃θ)⊗ Γ is injective.

Proof: The isomorphism classes of HC̃θ
-torsors trivial as HC̃θ

-torsors form

a group H1(W,H). The pointwise trivial ones form a subgroup

H1(W,H)0 :=
⋂

x∈C̃θ

ker(H1(W,H)→ H1(Wx, H))

=
⋂
γ∈S

ker(H1(W,H)→ H1(Wγ, H))

(see 6.1(iii). To see that H1(W,H)0 = 0 consider the short exact sequence

1→ HW → H
ν→

∏
γ∈S

Hγ−0 → 1,

ν(h) := (σγ(h) · h−1)γ∈S = (iγχγ(h
−1)γ∈S

(see 5.2.1). If α ∈ Z1(W,H) is a cocycle with a class in H1(W,H)0, then

α(σγ) ∈ Hγ−0 (since H1(Wγ, H) = Hγ−/Hγ−0). Hence (α(σγ))γ∈S ∈ ν(H),
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i.e., for some h ∈ H one has α(σγ) = σγ(h) · h−1 for any γ ∈ S. Since

σγ, γ ∈ S, generate W we see that α(w) = w(h) · h−1 for any w, i.e., α is

holologous to 0. �

Let indices 0 denote the connected component of an algebraic group.

6.4.3 Corollary. One has the isomorphism |HC̃θ,W -tors|0 →
∼

(Pic(C̃θ) ⊗

Γ)W0. The corresponding map |Hθ-tors|0 → |Pic(C̃θ) ⊗ Γ|W is an isogenic

with kernel a 2-group.

Proof: The second statement follows from the fact that the group of +-

structures on a trivialHC̃θ,W -torsor coincides with
∏

γ∈S Z/2Rγ/δ(Z/2), where

Rγ := {x ∈ Rθ : γx = γ}, and δ : Z/2→ Z/2Rγ is diagonal embedding. �
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Appendix A

Rings of Twisted Differential Operators

A1. Basic Definitions and Equivalences

In this section we will give several descriptions of category of twisted differ-

ential operator rings. Below X is a smooth algebraic or analytic variety over

C.

Definition. Let D be a sheaf of rings on X equipped with a ring filtration

D0 ⊂ D1 ⊂ D2 ⊂ · · · (we have Di · Dj ⊂ Di+j) and a ring isomorphism

D0 = OX . We call D a ring of twisted differential operators (or simply a

tdo) if

(i) The graded ring is a commutative OX-algebra (with respect to OX =

D0 ↪→ gr.D) such that the corresponding morphism S·(D1/D0) → gr.D is

isomorphism.

(ii) ThePoisson bracket { , } : graD×grbD → gra+bD (defined by formula

{f, g} := f̃ g̃ − g̃f̃ mod Da+b−2 where f̃ ∈ Da, g̃ ∈ Db are representatives

of f, g) defines the isomorphism σ : D1/D0 →∼ TX , σ(τ)(f) = {τ, f}. �

Note that for a tdo D the filtration D. is completely determined by OX =

D0 ↪→ D: one has D1 = {∂ ∈ D : [∂,D0] ⊂ D0}, Di = Di
1.

A1.2 Example: If L is a line bundle on X, then DL := ring of differential

operators acting on L is a tdo (with dL := operators of order ≤ i).

Clearly tdo’s on X form a category (a groupoid) TDO(X). Below we will

give several descriptions of this groupoid.
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A1.3. Let T̃ be a sheaf of OX-modules equipped with a Lie algebra structure

[ ], a section 1 of the center of T̃ , and an OX-linear map σ : T̃ → TX such

that the sequence 0 → OX
i→ T̃ σ→ TX → 0, where i(f) := f · 1 is exact

and one has [∂1, f∂2] = σ(∂1)(f)∂2 +f [∂1, ∂2] for ∂1, ∂2 ∈ T̃ , f ∈ OX . Clearly

∂ is a Lie algebra map, i identifies OX with an abelian ideal of T̃ and adjoint

action of T̃ on OX with σ.

We will call such T̃ an O-extension of TX . These form a groupoid

TDO′(X). Note that TDO′(X) is a “C-vector space in categories”: We

can form C-linear combinations of O-extensions (Baer sum construction).

A1.4 Lemma. The groupoids TDO(X) and T DO′(X) are canonically equiv-

alent.

Proof: The corresponding mutually inverse function T DO(X) � T DO′(X)

are the following ones. If D is a tdo, then T̃D := D1 is an O-extension

of TX (the OX-module structure on T̃D comes from left multiplication by

functions. Conversely, if T is an O-extension, then let DeT be an associative

algebra generated by T̃ with the only relations ∂1 · ∂2 − ∂2 · ∂1 = [∂1, ∂2],

f1 ·f2 = f1f2, 1 = 1 ∈ T̃ , f ·∂ = f∂, for ∂i ∈ T̃ , fi ∈ OX ⊂ T̃ (here · denotes

the product in D). This DeT is the tdo that corresponds to T̃ . �

A1.5. Let d : An → An+1 be a morphism of sheaves of abelian groups on

X, considered as length 2 complex A· supported in degrees n and n+ 1. An

A·-torsor is a pair (F , c), where F is an An-torsor and c : F → An+1 is a

map such that c(a + ϕ) = d(a) + c(ϕ) for a ∈ An, ϕ ∈ F (in other words,

curv is a trivialization of the induced An+1-torsor d(F)). These A·-torsors

form a groupoid A·-tors. One has Aut F = Γ(X, ker d) = Hn(X,A·), and
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isomorphism classes of A·-torsors are in a natural 1-1 correspondence with

Hn+1(X,A·).

Remark. A·-tors is a stack in Picard categories on X; if A· is a complex of

C-vector spaces, thern A·-tors is a C-vector space in categories (one forms

C-linear combinations of torsors in an obvious way). If d is surjective, then

A·tors = (ker d)-tors.

Consider the truncated de Rham complex Ω≥1
X := (Ω1

X → Ω2c`), where Ω2c`

are closed 2-forms.

A1.6 Lemma. One has a canonical equivalence of C-vector space in cate-

gories C : T DO′(X)→
∼

Ω≥1
X -tors.

Proof: Let T̃ be an O-extension of TX . Connections ∇ on T̃ form an Ω1
X-

torsor C(T̃ ) (for a connection ∇ and a 1-form ν one has (ν+∇)(τ) := ν(τ)+

∇(τ), τ ∈ TX). A curvature of ∇ is a closed 2-form curv(∇) defined by

formula curv(∇)(τ1∧τ2) := [∇(τ1),∇(τ2)]−∇([τ1, τ2]); one has curv(ν+∇) =

dν + curv(∇). So our functor C is T̃ 7→ (C(T̃ ), curv). Obviously this is a

C-linear equivalence of categories. �

By A1.6 we may identify the set of isomorphism classes of tdo’s with

H2(X,Ω≥1
X ). For a tdo D we will denote by c1(D) ∈ H2(X,Ω≥1

X ) the corre-

sponding class.

A1.7. For a tdo D a connection ∇ on D is a connection on a corresponding

O-extension of TX . Note that pairs (D,∇), ∇ is a connection on a tdo D, are

rigid: the only automorphism of D that preserves ∇ is identity. The pairs
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(D,∇) are in 1-1 correspondence with closed 2-forms; for ω ∈ Ω2v`(X) we

will denote by (Dω,∇ω) a unique vp to a canonical isomorphism) tdo with

curve (∇) = ω. A corresponding Ω≥1
X -torsor (Fω, curvω) is given by formula

Fω, curvω; ) is given by formula Fω = Ω1
X , curvω(ν) = dν + ω. �

Now consider a cotangent bundle T ∗ = T ∗(X)
π→ X. This is a vector

bundle over X; also T ∗ carries a canonical symplectic 2-form ω such that π

is a polarization. If ν is a 1-form on X, and tν : T ∗ → T ∗, tν(a) = a+ ν ·π(a),

is translated by ν, then t∗ν(ω) = π∗(dν) + ω.

A1.8 Definition. A twisted cotangent bundle is a T ∗-torsor φ
πφ→ X (i.e.,

πφ is a fibration equipped with a simple transitive action of T ∗ along the

fibers) together with a symplectic form ωφ on φ such that πφ is a polarization

for ωφ, and for any 1-form ν one has t∗ν(ωφ) = π∗φdν + ω. �

For a twisted cotangent bundle φ we will denote by Aφ theOX-algebra πφ∗Oφ.

Then Aφ carries Poisson bracket { , } (defined by ωφ) and a filtration Aφi
=

functions of degree ≤ i along the fibers of πφ. Clearly one has Aφi
= {ϕ ∈

A)φ : {ϕ,OX} ⊂ Aφi−1
} = SiAφ1 , and the graded algebra of gr.Aφ coincides

with AT ∗ = S·TX .

A1.9 Remarks: (i) The T ∗-torsor structure on φ is uniquely determined by

the symplectic structure ωφ and the polarization πφ (since the infinitesimal

action of a 1-form ν ∈ Ω1(X) is given by a vector field ξν , ξνωφ = π∗φ(ν)).

(ii) Twisted cotangent bundles overX for a groupoid T CB(X). According

to (i), T CB(X) is a full subcategory of the category of triples (Y, ωY , πY )

where (Y, ωY ) is a symplectic manifold and πY : Y → X is a polarization
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(for the symplectic structure).

A1.10 Lemma. One has a canonical equivalence of categories Γ : T CB(X)→
∼

Ω≥1
X -torsor.

Proof: Put Γ(φ) = Ω1-torsor of section of φ; the map curv: Γ(φ) → Ω2c`
X

is curv(γ) := γ∗(ωφ). Note that the corresponding OX-extension T̃φ of TX is

Aφ1 equipped with the bracket { , }.

The inverse functor Γ−1 maps Ω≥1
X -torsor (F , curv) to (φ, πφ, ωφ), where πφ :

φ → X is the space of torsor F , and the symplectic form ωφ is a unique

form such that for a section γ ∈ F of πφ the corresponding isomorphism

T ∗X →
∼

φ, 0 7→ γ, identifies ωφ with ω + π∗p curv(γ).

A1.11. Let D be a tdo, and φ be the corresponding twisted cotangent

bundle. Then D is a “canonical quantization” of φ in a sense that D is a

deformation of a commutative algebra, Aφ. Precisely, one has a canonical

family D = {Dt} of sheaves of filtered rings on X parameterized by t ∈ P!

(i.e., D is a flat OP1-algebra) such that

(i) for t 6= ∞ one has Dt = Dt eT (here T̃ = T̃D; for a product of an

OX-extension by t ∈ C; see 2.2). In particular, D1 = D, D0 = DOX
.

(ii) D∞ = Aφ, and the ωφ-Poisson bracket on Aφ is given by usual formula

{ϕ1, ϕ2} = [t(ϕ̃1, ϕ̃2− ϕ̃2ϕ̃1)] mod t−1 (here ϕi ∈ D∞, and ϕ̃i are any sections

of D round t =∞ such that ϕ̃i(∞) = ϕi).

(iii) graD = (SaTX)(−a).

Here is a construction of D. Define first the restriction D|P1\{∞}. The ring

D(P1\{∞}) of sections is a C[t]-algebra generated by subalgebra OX and a
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subsheaf T̃ with the only relations ∂1 · ∂2 − ∂2 · ∂1 = [∂1, ∂2], f · ∂ = f∂,

tf = [f ]; here ∂i, ∂ ∈ T̃ , f ∈ OX and [f ] ∈ T̃ is f considered as element of

OX ⊂ T̃ . Let j : P1\{∞} ↪→ P1 be embedding. Our D is a subalgebra of

j∗DP1\{∞} generated by OX and OP1(−∞) · T̃ . The identification Aφ →∼ D∞

assigns to ∂ ∈ T̃ ⊂ Aφ the element (t−1∂)∞ ∈ D∞ = D/t−1D.

A1.12. Let us see what the above constructions mean in case D = DL,

L is a line bundle. The corresponding OX-extension T̃L = T̃DL consists of

pairs (τ, τ̃), where τ is a vector field and τ̃ is an action of τ on L. The Ω≥1
X -

torsor (FL, curvL) := C(T̃L) is the sheaf of connection on L, curvL is a usual

curvature. Note that this functor O∗X-tors → Ω≥1
X -tors is precisely the push-

out functor for the morphism d log : O∗X → Ω1c`
X (⊂ Ω≥1

X [1]). In particular it

transforms ⊗ to the sum of torsors. For any λ ∈ C we put DLλ := λDL. One

has c1(DL) = c1(L) ∈ H2(X,Ω≥1
X .

A1.13. A tdo D is called locally trivial if locally it is isomorphic to DX =

DOX
; according to A1.6 the locally trivial tdo’s are the same as Ω1c`

X -torsors.

Note that in analytic situation each tdo is locally trivial. In algebraic situa-

tion this is not true in general. For example, let X be a compact algebraic

variety. The space of isomorphism classes of tdo’s H2(X,Ω≥1
X ) coincides with

Hodge filtration space F 1H2
DR, and it is easy to see that the locally trivial

ones correspond precisely to a C-linear combinations of an algebraic cycles

classes.

A1.14 Definition. Let D be a tdo. A D-module M is lisse if M is coherent

as OX-module. �
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A1.15 Lemma. Let D be a tdo, and M be a non-zero lisse D-module then

(i) M is a vector bundle of dimension, say, d.

(ii) One has a canonical isomorphism of tdo’s D
∼→ Ddet M)1/d. In partic-

ular, D is locally trivial.

Proof. (i) is well known (see, e.g., [Bo]). The isomorphism D
∼→

D(det M)1/d comes from the isomorphism of O-extensions dM T̃D
∼→ T̃det M :

an element τ̃ ∈ TD acts on det M = ΛdM by Leibnitz rule τ̃(m1∧ . . .∧md) =

τ̃(m1) ∧ . . . ∧md + . . .+m1 ∧ . . . ∧ τ̃(md) �

One has a following relation between twisted D-module structures and

integrable projective connections. Let E be a quasicoherent OX-module. An

action of a vector field τ ∈ TX on E is an endomorphism τ̃ ∈ EndCE such

that for f ∈ OX , e ∈ E one has τ̃ fe = f τ̃e + τ(f)e. Let T̃E be the sheaf

of all such pairs (τ, τ̃): this is an OX-module and Lie algebra in an obvious

manner; we have an exact sequence 0→ EndmE → T̃E
σ→ TX of Lie algebras.

Clearly OX · idE ⊂ EndOX
E ⊂ T̃E are ideals; put End E := End E/OX · IdE ,

T̃E := T̃E/OX · idE
σ→ TS.

A1.16 Definition. (i) A projective connection E is an OX-linear section

∇ : TX → T E of σ̄. Such ∇ is integrable if it commutes with brackets.

(ii) Let D be a tdo. A D-structure on E is an action of D on E that

extends the given OX-action.

Clearly a D-structure on E is the same as an OX-linear morphism of Lie

algebras α : T̃D → T̃E such that σα = σ and α(1) = idE . Such α defines

an integrable projective connection ∇α on E by formula ∇α(τ) = α(τ̃) mod
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OXidE , where τ̃ ∈ T , σ(τ̃ = τ).

A1.17 Lemma. Assume that the map OX → End E, f 7→ f idE , is injective.

Then the above map α 7→ ∇α from the set of pairs (D,α), D is a tdo, α is

a D-structure on E, to the set of projective integrable connections on E is

bijective.

Proof: One constructs the inverse map as follows. Let ∇ : TX → T E be an

integrable projective connection. Then T̃∇ := TX ×eTE T̃E is an O-extension

of TX , and the projection α∇ : T̃∇ → T̃E defines the DeT∇-structure on E . �

A2 Subprincipal Symbols

Let Ω = det Ω1
X be the sheaf of volume forms on X, and T̃Ω be the corre-

sponding O-extension of TX . One has a canonical section ` : TX → T̃ω which

assigns to ∂ ∈ TX its Lie derivative `(∂). Clearly ` commutes with bracket

and for f ∈ OX one has f`(∂) = `(f∂)− ∂(f).

A2.1. Now let T̃ be any O-extension of TX . Denote by T̃ 0 and O-extension

of TX together with isomorphism of sheaves ∗ : T →
∼
T̃ 0 such that ∗[τ1, τ2] =

−[∗τ1, ∗τ2], ∗(fτ) = f∗τ+τ(f), σ(∗τ) = −σ(τ), ∗(1) = 1 for τi ∈ T̃ , f ∈ OX .

Clearly * extends to isomorphism of tdo’s ∗ : D0eT → DeT 0 , where DeT 0 means

the ring DeT with reversed multiplication. Note that (T̃ 0)0 and ∗∗ = id.

Denote by T̃ 01 the Baer difference T̃Ω − T̃ of O-extensions (see A1.3), so an

element of T̃ 01 is a pair (a, b) a ∈ T̃Ω, b ∈ T̃ , such that σ(a) = σ(b), modulo

relations (a, b) = (a + f, b + f), f ∈ OX . One has a canonical isomorphism
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T̃ 0 ∼→ T̃ 01 defined by formula ∗τ 7→ (−`σ(τ),−τ), τ ∈ T̃ , hence we have

∗ : D0eT →∼ DeT 0 = DeT 01 .

A2.2. Consider the O-extension T̃Ω1/2 and the corresponding tdo DΩ1/2 .

Since T̃ 01
Ω1/2 = T̃Ω1/2 we have ∗ : D0

Ω1/2 → DΩ1/2 , i.e., * is automorphism of the

sheaf DΩ1/2 such that ∗(∂1∂2) = ∗(∂2) ∗ (∂1). ∗2 = id and ∗ induces multipli-

cation by `i on DΩ1.2i/DΩ1.2i−1 = SiTX . Denote by D±
Ω1/2 the ±1-eigenspaces

of * on DΩ1/2 , so DΩ1/2 = D+
Ω1/2 ⊕ D−

Ω1/2 . Note that gr D+
Ω1/2 = ⊕S2iTX ,

gr D−
Ω1/2 = ⊕S2i+1TX , and the ±-grading is compatible with bracket: for

a ±-homogeneous elements a, b ∈ DΩ1/2 the elements [ab] = ab − ba is also

homogeneous.

A2.3. Let D be a tdo. Put g̃raD := Da/Da−2. We will consider g̃r.D =

⊕ g̃raD as a Lie algebra with bracket { , } : g̃raD × g̃rbD → g̃ra+b−1D that

comes from the bracket [ , ] on D. So S·TX = gr.D equipped with a usual

Poisson bracket is a quotient of g̃r.D modulo the abelian ideal.

A2.4 Example: The ±-grading on DΩ1/2 induces a canonical isomorphism

g̃raDΩ1/2 = SaTX ⊕ Sa−1TX which identifies { } with the usual Poisson

bracket.

This example could be generalized as follows. For any tdo D consider an

O-extension T̃ ∨ := T̃D−T̃Ω1/2 . Let (φ, πφ, ωφ) be its twisted cotangent bundle,

and A. = πφ∗Oφ, be the corresponding filtered commutative algebra with

Poisson bracket { }, so An−Sn(T̃ ∨) (see A1.8, A1.10). Put g̃r.A = A./A.−2:

this is a commutative algebra, and { , } induces the Lie algebra structure on

g̃r.A.
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A2.5 One has a canonical isomorphism σ̃ : g̃r.D →
∼

g̃r.A, compatible with

brackets, that lifts the isomorphism σ. : gr.D →
∼

gr.A = S·TX .

Proof: Let us construct the inverse isomorphism α : g̃r.A usr g̃r.D. Cer-

tainly α0 = idOX
. One has T̃D = T̃ ∨ + T̃Ω1/2 := {(a, b) ∈ T̃ ∨ × T̃Ω1/2 :

σ(a) = σ(b)}/{relations(a, b) = (a + f, b − f) for f ∈ OX}. Define α1 :

g̃r1A = A1 = T̃ ∨ →
∼

g̃r1D = T̃D by formula α1(a) = (a, σ(a)−), where

σ(a)− is a unique element of T̃ −
Ω1/2 with σ(σ(a)−) = σ(a). Note that for

f ∈ OX one has α1(fa) = fα1(a)
1
2
σ(a)(f). For arbitrary n we define

αn : g̃rNA = SnA1/S
n−2A1 → g̃rND by formula αn(a1 · · · · · an) =(

1
n!

∑
S∈Σn

α1(AS(1) · α1(aS(2)) · · · · · α1(aS(n))
)

mod Dn−2. Here in right

bracket · means product of differential operators. To see that this formula is

correct it suffices to verify that for f ∈ OX one has αn(fa1 · a2 · · · · · an) =

αn(a1 · fa2 · · · · · an) (since the formula is obviously symmetric). One has
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αn(fa1 · a2 · · · · · an) =
1

n!

∑
1≤i≤n

∑
S∈Σn
S(i)=1

α1(aS(1)) · · ·

[
fα1(a1) +

1

2
σ(a1)(f)

]
· · ·α1(aS(n))

=

fαn(a1 · · · · · an)
1

n!

∑
1≤i≤n
1≤j<1

∑
σ∈Σn
s(i)=1

σ(aS(j))(f)

· α1(âS(1)) · · ·α1(âS(j)) · · ·α1(aS(n))

+
1

2
σ(a1)(f)an−1(a2 · · · · · an)

]
mod Dn−2

=

[
fαn(a1 · · · an) +

1

2

∑
i

σ(ai)(f)an−1(a1 · · · âi · · · an)

]
mod Dn−2

This implies correctness; since the diagram

0 → Sn−1TX → g̃rnD → SnTX → 0

|| ↓ αn ||

0 → Sn−1TX → g̃rnA → SnTX → 0

obviously commutes, our αn is isomorphism. Put σ̃. = α.−1.

Note that for D = DΩ1/2 one has A = AΩ1/2 = ⊕SiTX . The above

σ̃ obviously coincides in this case with the isomorphism from A2.4, hence

it commutes with brackets. Since any tdo locally (in algebraic situation,

actually, on formal neighborhood of points) is isomorphic to DΩ1/2 and our

σ̃ is natural, we see that σ̃ commutes with brackets for arbitrary D. �

A2.6 Corollary. A boundary δD : H i(S, SiTX) → H i+1(X,Sj−1Tx) for the

56



short exact sequence 0→ Sj−1TX)→ 0 coincides with convolution with class

c1(D)− 1
2
c1(Ω) ∈ H1(X,Ω1

X). �

A.3 Descent for tdo’s

Let π : X → Y be a morphism of smooth varieties. The corresponding

morphism Ω·
Y → Ω·

X defines a functor π∗ : Ω≥1
Y -tors → Ω≥1

Y -tors, hence,

by A1.4, A1.6, A1.10 the functors π∗ : T DO(Y ) → T DO(Y ), T CB(Y ) →

T CB(X).

Assume π is smooth and surjective. We would like to understand how to

go backwards from tdo’s on X to ones on Y , i.e., how to make a descent for

tdo’s.

Let (F , curv) be an Ω≥1
X -torsor. It defines by push-out the “fiberwise”

Ω≥1
X/Y -torsor (F/Y, curv/Y ), so F/Y = F mod π∗Ω1

Y . If DF is a tdo on X

that corresponds to F , then sections on F/Y are vertical connections on DF ;

a vertical connection α is called integrable if curv/Y (α) ∈ Ω2
X/Y vanishes.

For a section α of F/Y such that curv/Y (α) = 0 consider the sheaf

Fα := {γ ∈ F : γ mod π∗Ω1
Y = α and curv(γ)π∗Ω2

Y ⊂ Ω2
X}. We will

say that α is good if Fα is nonempty: in this case Fα is a π−1Ω1
Y -torsor

(here π−1Ω1
Y ⊂ Ω1

X is sheaf-theoretic inverse image of Ω1
Y ), and curv(Fα) ⊂

π∗Ω2
Y ⊂ Ω2

X . It is easy to find an obstruction for α to be good; it lies

in H0(Y,Ω1
Y ⊗ H1

DR(X/Y )). In particular, if fiberwise first the de Rham

cohomology H1(X/Y ) vanishes, then α is good.

A3.1 Definition. We will call a good section α a π-descent data for (F , curv),

(or for a corresponding tdo, a twisted cotangent bundle. . .). �
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An Ω≥1
X -torsor equipped with a π-descent data form a category Ω≥1

X -tors

πi in an obvious manner; one has a similar category T DO(X)π for tdo’s.

If (FY , curvY ) is an Ω≥1
Y -torsor, then the Ω≥1

X -torsor π∗(F , curvY ) carries

an obvious descent data α with (π∗FY )α = π−1F . This defines a functor

π∗ : Ω≥1
Y -tors → Ω≥1

X -torsπ.

A3.2 Lemma. If the fibers of π are connected, then π∗ : Ω≥1
Y -tors → Ω≥1

X -

torsπ is equivalence of categories.

Proof: The inverse functor π∗ is given by formula π∗(FX , curvX ;α) =

π.(Fα
X). �

Certainly, we may replace in A3.2 the torsors by tdo’s or twisted cotangent

bundles.

A3.3 Example: Let DY be a tdo on Y and π : X → Y, ω be the twisted

cotangent bundle that corresponds to DY . Then π∗DY carries a canoni-

cal connection ∇ with curvature ω, i.e., π∗DY = DωX
(see A1.7, A1.8).

The descent data coincides with vertical part ∇X/Y of ∇, hence DY =

π∗(DωX
,∇X/Y ). �

A4 Symmetries

Let g be a Lie algebra action on a smooth variety X, so we have a Lie algebra

map ν : g→ TX , and let D be a tdo on X.

A4.1 Definition (i) A weak ν-action of g on D is a Lie algebra map νD :

gDer(D) such that for f ∈ OX ⊂ D, a ∈ g one has ν(D)(α)(f) = ν(α)(f) ∈

OX ⊂ D.
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(ii) A strong ν-action of g on D is a Lie algebra map ν̃D : g → T̃D such

that σν̃φ = ν. �

Any strong ν-action ν̃D defines a weak one νD := adν̃D
. We will say that

ν̃D lifts νD.

A4.2 Lemma. Let νD be a weak ν-action. If either H1
DR(X) = 0 or

H2(g,C) = 0, then there exists a strong ν-action ν̃D that lifts νD. If H1(g,C) =

0 (i.e., if g = [g, g]) then such νD is unique.

Proof: Clear. �

A4.3 Examples: (i) Let L be an invertible sheaf on X. A strong ν-action

of g on DL is the same as a g-action ν̃D of g on L that lifts ν.

(ii) Let ω be a closed 2-form on X, and Dω be the tdo with connection

∇ω such that curv∇ω = ω (see A1.7). Let ν̃ω : g → T̃ω = T̃Dω be a strong

ν-action, so for α ∈ g one has ν̃ω(α) = ∇ων(α) + ϕ(α), where ϕ(α) ∈ OX .

This action preserves ∇ω (which means that [ν̃ω(α),∇(τ)] = ∇([ν(α), τ ])

for α ∈ g, τ ∈ TX) precisely if ϕ(α) is an ω-Hamiltonian for ν(α), i.e., if

dϕ(a) = ν(α)− ω. We will call such ν̃ω (or a pair (ν, ϕ) : g→ TX ×OX) an

ω-Hamiltonian action of g, or ω-Hamiltonian lifting of ν. �

A4.4. Assume we have a weak ν-action νD, and M is a D-module. A νD-

action of g on M is a Lie algebra map νM : g→ EndCM such that for ∂ ∈ D,

α ∈ g, m ∈M one has νM(α)∂ − ∂νM(α))m = νD(α)(∂)m.

Assume now that we have a strong lifting ν̃D : g → T̃D of νD. Then

one has a canonical νD-action ν0
M on any D-module M defined by formula

ν0
M(α)m = ν̃D(α)m. More generally, for aany νD-action νM of g on M
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consider the map [νM ] : g→ EndCM , [νm](α) := νM(α)− ν0
M(α).

A4.5 Lemma. The operators [νM ](α) commute with D-action and [νM ] :

g→ EndDM is a Lie algebra map, i.e., [νM ] is an action of g on D-module

M . The map νM 7→ [νM ] is a 1–1 correspondence between the set of νD-

actions of g on M and the one of actions of g on M as on D-module.

Proof: Clear. �
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Appendix B

Chern Classes

In this Appendix we recall an explicit Weil algebra construction of Chern

classes for de Rham and Deligne-type cohomology. Below “variety” means

either a smooth algebraic or analytic variety. Starting from B4 we assume

that we are in an analytic situation.

B1 Weil Algebra

We will start with some notations.

B1.1. For a variety X denoted by P(X) a category whose objects are Ω1
X-

extensions. These are short exact sequences P = (0 → Ω1
X(P ) → Ω̃1 →

M(P ) → 0) of coherent locally free OX-modules; morphsms are obvious.

The categories P(X) form a fibered category over category of varieties: for

a morphism π : X → Y of varieties we have a pullback functor π∗ : P(Y )→

P(X). Namely, for P = (0 → Ω1
Y → Ω̃1(P ) → M(P ) → 0) one has

π∗(P ) = (0 → Ω1
X → Ω̃1(π∗P ) → π∗M(P ) → 0), where Ω̃1(π∗P ) comese

from co-Cartesian square

π∗Ω1
Y

dπ→ Ω1
X

↓ ↓
π∗Ω̃1(P ) → Ω̃1(π∗P ).

B1.2. For P ∈ P(X) let Ω̃(P ) be a sheaf of commutative differential graded

(cdg for short) algebras generated by a subalgebra OX in degree 0 and an
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OX-module Ω̃1(P ) in degree 1 subject to only relation: for F ∈ OX its

differential coincides with usual differential df ∈ Ω1
X ⊂ Ω1(P ). Denote by F 1

the dg-ideal Ω̃≥1(P ) ⊂ Ω̃·(P ); its powers form a filtration F i on Ω̃·(P ). The

filtered cdg algebra Ω̃·(P ) depends on P in a functorial way.

B1.3 Examples: (i) Let P0 be a trivial Ω1
X extension, Ω̃1(P0) = Ω1

X . One

has Ω̃·(P0) = Ω·
X , F iΩ̃·(P0) = Ω≥i

X . Since P0 is a universal object in P(X)

we see that Ω̃·(P )’s are Ω·
X-algebras.

(ii) If X is a point, then Ω1
X = 0 and P ∈ T (X) reduces to a vector space

M = M(P ). The algebra Ω̃·(M) is a commutative graded algebra freely

generated by two copies of M : M (1) in degree one and M (2) in degree two.

The differential is determined by rule: for m ∈M (1) one has dm = m ∈M (2).

Hence Ω̃i(M) = ⊕a+2b=iΛ
qM ⊗ SbM , d(m1 ∧ · · · ∧ma ⊗m′

1 · · · · ·m′
b) =∑

(−1)im1 ∧ · · · ∧ m̂i ∧ · · · ∧ ma ⊗mi·,m′
1 · · · · ·m′

b. �

B1.4 Lemma. (i) For a morphism π : X → Y and P ∈ P(Y ) one has

Ω̃·(π∗P ) = π∗Ω̃·(P ) := Ω·
X ⊗π−1Ω·Y

π−1Ω̃·(P ), where π−1 is sheaf-theoretic

inverse image.

(ii) For P ∈ T (X) the complex F 1/F 2 = F 1Ω̃·(P )/F 2Ω̃·(P ), coincides

with complex Ω̃1(P )→M(P ) supported in degrees 1,2.

(iii) A natural morphism S∗(F 1/F 2)→ gr∗F Ω̃·(P ) is isomorphism. Here

S∗(F 1/F 2) is a free commutative graded dg algebra generated by F 1/F 2. Note

that, according to (ii), Si(F 1/F 2) is the complex Λi(Ω̃1(P ))→ Λi−1(Ω̃1(P ))⊗

M(P )→ · · · → Ω̃1(P )⊗Si−1M(P )→ SiM(P ) supported in degrees i, . . . , 2i.

(iv) A canonical morphism Ω·
X → Ω̃·(P ) is a filtered quasi-isomorphism.

Proof: (i) follows from definition, (ii), (iii) follows from (i) and B1.3(ii) since
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locally any P comes from a point, (iv) follows from (iii) since the sequence

0→ Ωi
X → ΛiΩ̃1(P )→ · · · → SiM(P )→ 0 is exact. �

B1.5. Let G be an algebraic group, g =Lie G, and p : E → X be a G-torsor

on our variety X. Consider the sheaf Ω̃1
X,E = (p∗Ω

1
E)

G of G-invariant 1-forms.

This is an OX-module; we have a short exact sequence PE = (0 → Ω1
X

dp→

Ω̃1
X,E → g∗E → 0), where g∗E = (p∗Ω

1
E/X)G is E-twist of g∗ ⊗ OX with respect

to coadjoint action of G. Put Ω̃·
X,E = Ω̃·(PE). This is a filtered commutative

differential graded Ω·
X-algebra such that a canonical map Ω·

X → Ω̃·
X,E is a

filtered quasi-isomorphism.

B1.6 Definition. Ω̃·
X,E is called Weil algebra of . �

B1.7 Lemma. Ω̃·
X,E depends on E in a functorial way. If π : X → Y

is a morphism of varieties, EY is a G-torsor on Y , and EX = π∗EY , then

Ω̃·
X,EX

= π∗Ω̃·
Y,EY

.

Proof: Follows from B1.4(i) since PEY
= π∗PEX

. �

The Weil algebra carries a canonical bigrading. To define it consider the

cdg algebra (p∗Ω
·
E)

G of all G-invariant differential forms. Clearly (p∗Ω
i
E)

G =

ΛiΩ̃1
X,E . Denote by d′ the differential on Λ·Ω̃1

X,E that comes from this iso-

morphism. For ν ∈ Ω̃1
X,E put d′′(ν) = d(ν) − d′(ν) ∈ Ω̃2

X,E ; here d′(ν) ∈

Λ2Ω̃1
X,E = F 2Ω̃2

X,E ⊂ Ω̃2
X,E . Clearly d′′ν = 0 for ν ∈ Ω1

X , and the isomorphism

Ω̃2
X,E/F

2Ω̃·
X,E ' g∗E = Ω̃1

X,E/Ω
1
X (see B1.4(ii)) identifies d′′ν mod F 2 with ν

mod Ω1
X . Hence d′′ defines a canonical OX-linear embedding α : g∗E ↪→ Ω̃2

X,E ,

d′′(ν) = α(ν mod Ω1
X) such that Ω̃2

X,E = Λ2Ω̃1
X,E⊕α(g∗E). Let Λ·Ω̃1

X,E⊗S∗g∗E
be a free commutative graded algebra with generators Ω̃1

X,E in degree 1 and
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g∗E in degree 2, and α̃ : Λ·Ω̃1
X,E⊗S∗g∗E → Ω̃·

X,E be a morphism of commutative

graded algebras which is equal to ideΩ1
X,E

on Ω̃1
X,E and to α on g∗E .

B1.8 Lemma. This α̃ is isomorphism.

Proof: Consider filtration F i on Λ· ⊗ S∗ by powers of augmentation ideal.

By B1.4 (iii) α̃ induces isomorphism between grF ’s. �

Put Ω̃a,b
X,E := α̃(Λa−b2Ω̃1

X,E ⊗ Sbg∗E) ⊂ Ω̃a+b
X,E .

B1.9 Lemma. This is a canonical bigrading on Ω̃·
Y,E compatible with filtra-

tion F ·. In other words, one has Ω̃n
X,E = ⊕a+b=nΩ̃a,b

X,E , F
iΩ̃·

X,E = ⊕a≥iΩ̃
a,b
X,E ,

d = d′′ + d′′ : Ω̃a,b
X,E → Ω̃a+1,b

X,E + Ω̃a,b+1
X,E .

Proof: Clear. �

B1.10 Example: Assume that X is a point, so E is trivial. One has Ω̃a,b
X,E =

Λa−bg∗ ⊕ Sbg∗. The differential d′ = Λag∗ ⊗ Sbg∗ → Λa+1g∗ ⊗ Sbg∗ is the

differential in the cochain complex of g with values in symmetric power of

coadjoint representation. The differential d′′ : Λag∗⊗Sbg∗ → Λa−1g∗⊗Sb+1g∗

is Koszul differential. We see that Ω̃ is a classical Weil algebra (see, e.g., [ ]).

�

Since and AdG-invariant polynomial on g defines a polynomial on any

ad-twisted form of g, we have a canonical map wi : Si(g∗)G → Si(g∗E)
G =

Ω̃i,i
X,E ⊂ F iΩ̃·

X,E called Weil homomorphism.

B1.11 Lemma. The image of w consists of cycles, i.e., w· : S·(g∗[−2])G =

⊕i S
i(g∗)G[−2i]→ Ω̃·

X,E is a morphism of cdg algebras.
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Proof: The fact is local, hence we may assume that E is trivial, i.e., E is

a pullback of a G-torsor E ′ on a point. By functoriality it suffices to prove

B1.11 for E ′, which follows from B1.10.

B2 De Rham Chern Classes

Let E be a G-torsor on X. By B1.4 (iv) one has a canonical isomorphism

H ·(X,F iΩ̃·
X) →

∼
H ·(X,F iΩ·

X,E). By B1.11 one has a canonical ring ho-

momorphism wi : Si(g∗)G → H2i(X,F iΩ̃·
X,E). Let ωE be the composition

Si(g∗)G → H2i(X,F iΩ·
X). This is Weil homomorphism in de Rham coho-

mology.

Let us consider the universal situation. Let BG. be simplicial classifying

space of G, and p : Eun = ∆G. → BG. be universal torsor. So one has

∆Gn = Gn+1, BGn is a quotient of ∆Gn modulo diagonal action of G, and

the simplicial arrows are the obvious ones. The Chern character of Eun defines

the ring homomorphism

wi
Eun

: Si(g∗)G → H2i(BG,F iΩ·
BG)→ H i(BG.,Ωi

BG).

B2.1 Lemma. Assume that G is reductive. Then the map wi
Eun

is isomor-

phism and Hj(BG,Ωi
BG.) = 0 for j 6= i.

Proof: Consider first the algebraic situation. One has the exact sequence

0 → Ωi
BG. → ∆iΩ̃1(PEun) → Λi−1Ω̃1(PEun) ⊗ g∗Eun

→ . . . → Sig∗Eun
→ 0

(which is i-th symmetric power of the short acyclic complex 0 → Ω1
BG. →

Ω̃1(PEun)→ g∗Eun
→ 0, see B1.4(iii)). Note that BGn is affine and

H0(BGn,Λ
aT̃ 1(PEun)⊗ Sbfg∗Eun

) = [H0(∆Gn,Ω
a
∆Gn

)⊗ Sbg∗]G.
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Since ∆G. is “contractible simplex with set of verticesG,” one hasH i(∆G.,Ωa
∆G.) =

0 unless i = 0, a = 0, and H0(∆G.,O∆G.) = C. Since our group is reductive,

this implies H i(BG.,ΛaΩ̃1(PEun) ⊗ Sbg∗Eun
) = 0 unless i = 0, a = 0, and

H0(BG,Sbg∗Eun
) = [Sbg∗]G.

The above exact sequence shows that

H ·(BG.,Ωi
BG.) = H ·−i(BG., Sig∗Eun

),

and the lemma is proven. In analytic situation one should use the averaging

along a maximal compact subgroup of G to see that acyclicity of the complex

H0(∆G.,Ωi
∆G.) implies the acyclicity of complex of G-invariants. �

B2.2 Corollary. The maps

Si(g∗)G wEun−→ H2i(BG., F iΩ·
BG.)→ H2i(BG.,Ω·

BG.) = H2i
DR(BG.)

are isomorphisms. The odd-dimensional de Rham cohomology of BG. van-

ishes. The map Hj(BG., F iΩ·
BG.) → Hj

DR(BG.) is isomorphism for j ≥ 2i

for j < 2i, Hj(BG., F iΩ·
BG.) = 0. �

B3 Connections

Let E be a G-torsor on a variety X. A connection ∇ on E is an OX-

linear splitting of PE (see B1.5), i.e., ∇ is an O-linear map Ω̃1
X,E → Ω1

X

such that ∇(df) = df ∈ Ω1
X for f ∈ OX . One may consider ∇ as a mor-

phism PE → P0 (see B1.3(i)), hence it extends to a morphism of dg algebras

∇̃ : Ω̃·
X,E → Ω·

X left inverse to a canonical embedding Ω̃·
X ↪→ Ω̃·

X,E . The

morphism ∇̃11 = ∇̃|eΩ1,1
X,E

: Ω̃1,1
X,E = g∗E → Ω2

X , ∇̃1,1 ∈ gE ⊗ Ω2
X , is curvature
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form of our connection. We see that ∇̃ ◦ w sends an invariant polynomial

ϕ ∈ Si(g∗)G to ϕ(∇̃11) ∈ Ω2ic`
X .

B4 “Universal” Chern Classes

In this section we give a universal construction that matches integral topo-

logical Chern classes with de Rham ones. From now on we assume that our

varieties are analytic ones (so we will consider classical topology, not a Zariski

one). Our group G is reductive.

B4.1 LetX be a variety, and E be a G-torsor onX. Consider the embeddings

of constant sheaves

Z(i) ↪→ Ω̃•
X,E

wi
E←↩ Si(g∗)G[−2i];

here Z(i) := (2π
√
−1)iZ ⊂ C ⊂ OX . Put

UE(i) := Cone(Z(i)⊕ Si(g∗)G[−2i]
(+,−)−−−→ Ω̃•

X,E)[−1];

the arrow is difference of the embeddings. One has canonical triangles

in derived category of sheaves on X (recall that one has canonical quasi-

isomorphisms

C→
∼

Ω•
X →∼ Ω̃•

X,EC/Z(i)
exp−−→∼ C∗(i− 1) = C∗ ⊗ Z(i− 1)).

B4.2.

· · · → C[−1]→ UE(i)
(εZ,εp)−−−→ Z(i)⊕ Si(g∗)G[−2i]→ · · ·

· · · → C∗[−1]→ UE(i)
(εZ,εp)−−−→ Si(g∗)G[−2i]→ · · ·
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The groupsH ·(X,UE(i)) are clearly functorial with respect to (X, E). The

long exact sequences that correspond to B4.2 imply

B4.3 Lemma. (i) A canonical morphism Hj−1(X,C∗)(i−1)→ Hj(X,UE(i))

is isomorphism for j < 2i. One has a short exact sequence

0→ H2i−1(X,C∗)(i− 1)→ H2i(X,UE(i))→ Si(g∗)G
Z,E → 0,

where Si(g∗)G
Z,EsubsetS

i(g∗)G consists of those polynomials ϕ that
∫

γ
chi(E)(ϕ) ∈

Z(i) = (2π
√
−1)iZ ⊂ C for any γ ∈ H2i(X,Z).

(ii)If π : X → Y is a morphism of varieties (or simplicial varieties) such

that π∗ : H ·(Y,Z)→ H ·(X,Z) is an isomorphism, then for any G-torsor EY

on Y , EX := π∗EY , a canonical map π∗ : H ·(Y,UEY
(i)) → H ·(X,UEX

(i)) is

isomorphism. �

B4.4 Remark: The same formulas that define product in Deligne cohomol-

ogy (see [B], [EV]) define a canonical homotopy associative and commutative

product UE(i)⊗UE(j)→ UE(i+j) such that the projection εZ : UE(·)→ Z(·),

εg : UE(·)→ S·(g∗)G[2·] commute with multiplication. �

Consider a universal G-torsor Eun on BG.

B4.5 Lemma. A canonical morphism εZ : H2i(BG.,UEun(i))→ H2i(BG,Z(i))

is isomorphism.

Proof: By B4.2 we have a long exact sequenceH2i−1(BG.,C)→ H2i(BG,UEun(i))→

H2i(BG,Z(i)) ⊕ Si(g∗)G → H2i(BG,C). Since H2i−1(BG.,C) = 0 and

Si(g∗)G → H2i(BG,C) is isomorphism (see B2.2), we get the lemma. �
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B4.6. Let us construct a “universal” Weil homomorphism. Let E be a G-

torsor on X. Put X∨
E := G\E × Eun, here G acts on E × Eun in a diagonal

way. One has two projections X
πX←− X∨

E
πBG−−→ BG. and an obvious iso-

morphism π∗XE ' π∗BG.Eun. Note that πX is a fibration with “contractible”

fibers isomorphic to Eun = DeltaG., hence π∗X : H ·(X,Z) → H ·(X∨, E ,Z)

is isomorphism; by B4.3(ii) π∗X : H ·(X,UE(i)) → H ·(X∨, E ,Uπ∗E(i)) are also

isomorphisms. Denote by

wE,U : H2i(BG.,Z(i))→ H2i(X,UE(i))

the composition

H2i(BG.,Z(i))
εZ←−∼ H2i(BG.,UE(i))

π∗BG←−− H2i(X∨
E ,Uπ∗BGEun(i))

= H2i(X∨
E ,Uπ∗XE(i))

π∗X←−∼ H2i(X,UE(i))

This is “universal” Weil homomorphism. Clearly wEZ = εZ ◦ wEU :

H2i(BG,Z(i))→ H2i(X,Z(i)) coincides with usual topological characteristic

class map. By B4.5 and the above construction our wEU is the only functo-

rial “lifting” of wEZ to U -cohomology. Also wEU is ring homomorphism (see

B4.4).

The classes wEU take values in UE -groups that depend on E themselves.

We will use them to produce classes in Deligne-type cohomology.

B.5 Deligne Cohomology Chern Classes

We will use a naive version of Deligne cohomology, see [B], [EV].
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B5.1 Let X be an analytic variety. The Deligne complex D(i)X is Cone

(Z(i)⊕ F iΩ·
X

(+,−)−→ Ω·
X)[−1], where the arrow is difference of an obvious em-

beddings; the Deligne cohomology groups are Hj
D(X,Z(i)) := Hj(X,D(i)X).

So we have a canonical map εZ : D(i)X → Z(i), εF : D(i)X → F iΩ·
X and the

long exact sequences

· · · −→ Hj−1(X,C) −→ Hj
D(X,Z(i))

εZ+εF−→ Hj(X,Z(i))⊕Hj(X,F iΩ·
X) −→ · · ·

· · · −→ Hj−1(X,F iΩ·
X)→ Hj−1(X,C∗)(i− 1)→ Hj

D(X,Z(i)) −→ · · ·

Let ε be a G-torsor on X. The embedding

Ω·
X ↪→ Ω̃·

X,E := Cone(Z(i)⊕ F iΩ̃X,E
(+,−)−→ Ω̃X,E)[−1].

Since w(Si(g∗)G) ⊂ F iΩ̃·
X,E we have a canonical embedding UE(i) ↪→ D(i)X,ε

which is identity on Z(i) and Ω̃X,E -components and coincides with w on

Si(g∗)G. This embedding commutes with multiplication onD- and U -complexes

(see B4.4, [B],[EV]). Denote by wED the composition H2i(BG,Z(i))
ωEU−→

H2i(X,UE(i)) −→ H2i(X,D(i)XE) = H2i
D (X,Z(i)). This is Weil homomor-

phism in naive Deligne cohomology.

B.6 Cheeger-Simons Cohomology

Let X be an analytic variety. Consider a complex CS(i)X := Cone(Z(i) ⊕

F 2iΩ·
X

(+,−)−→ Ω·
X)[−1] (so CS(i)X coincides with D(2i)X(−i)). We will call

CS(i)X a Cheeger-Simons complex and the corresponding groupsH ·
CS(X,Z(i)) :=

H ·(X, CS(i)X) Cheeger-Simons cohomology. We have a canonical morphism

εZ : CS(i)X −→ Z(i), εF : CS(i) −→ F 2i and a long exact sequence.
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B6.1.

· · · −→ Hj−1(X,C) −→ Hj
CS(X,Z(i))

εZ+εF−→ Hj(X,Z(i))⊕Hj(X,F 2iΩ·
X) −→ · · ·

· · · −→ Hj−1(X,F 2iΩ·
X) −→ Hj−1(X,C∗)(i− 1) −→ Hj

CS(X,Z(i))
εF−→ · · · .

In particular, the map Hj−1(X,C∗)(i− 1) −→ Hj
CS(X,Z(i)) is isomorphism

for j < 2i and for j = 2i one has a short exact sequence.

B6.2

0→ H2i−1(X,C∗)(i− 1) −→ H2i
CS(X,Z(i))

εF−→ H0(X,Ω2icl
X )Z(i) → 0

where H0(X,Ω2icl
X )Z(i) is the space of all closed holomorphic 2i-forms ν on X

such that
∫

γ
ν ∈ Z(i) ⊂ C for any γ ∈ H2i(X,Z).

B6.3. Let ∇ be a connection on a G-torsor E . By B3 we have a commutative

diagram
Z(i) = Z(i)

↘ ↘
Ω̃·

X,ε

e∇−→ Ω·
X

↗ ↗
Si(g∗)G[−2i] −→ F 2iΩ·

X

where the lowest horizontal arrow maps an invariant polynomial ϕ to its

value ϕ(∇̃11) on curvature form of ∇. This diagram defines a morphism

γ∇ : UE(i)→ CS(i)X , hence the map w(E,∇)CS = γ∇◦wEU : H2i(BG.,Z(i))→

H2i
CS(X,Z(i)). This is the Cheeger-Simons class of a torsor with connection.

Clearly εZ ◦ chCS(E ,∇) = chZ(E) and εF chCS(E ,∇) sends ϕ ∈ H2i(BG.,Z(i))

to the value of the corresponding polynomial ϕC ∈ H2i(BG.,C) = Si(g∗)G on

curvature form of∇. For example, if∇ is flat, the Cheeger-Simons classes live
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in H2i−1(X,C∗)(i−1) ⊂ H2i
CS(X,Z(i)). A canonical morphism CS(i)→ D(i),

that comes from the embedding F 21Ω·
X ↪→ F iΩ·

X , sends w(E,∇)CS to wcalED .

B6.4 Remark. The same formula as defines the product on Deligne and U -

complexes defines a product on Cheeger-Simons ones, so the canonical maps

UE(·) → CS(·) → D(·) commute with products. In particular, w(E,∇)CS :

H2·(BG,Z(·))→ H2·
CS(X,Z(·)) is morphism of rings.

B7 C∞-Version

] The above constructions, as well as proofs, give a construction of Chern

classes in C∞-situation. In B.1 one should consider the R-valued C∞-forms,

and take for G any Lie group. In B2.1, B2.2. one should assume that G

is compact. In B4.1 one replaced C by R; we will get, e.g., the long exact

sequence · · · −→ Hj−1(X,R/Z)(i) → Hj(X,UE)(i) → Hj(X,F iΩ·
X(i)) →

· · · . Same happens in B5, B6. The groups H2i
CS(H,Z(i)), or Hj

D(X,Z)(j)),

are Cheeger-Simons groups of differential characters [CS], which explains

their name.
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