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Abstract. We present several new space-periodic solutions of the static vacuum Einstein equations in

higher dimensions, both with and without black holes, having Kasner asymptotics. These latter solutions

are referred to as gravitational solitons. Further partially compactified solutions are also obtained by taking
appropriate quotients, and the topologies are computed explicitly in terms of connected sums of products of

spheres. In addition, it is shown that there is a correspondence, via Wick rotation, between the spacelike

slices of the solitons and black hole solutions in one dimension less. As a corollary, the solitons give rise to
complete Ricci flat Riemannian manifolds of infinite topological type and generic holonomy, in dimensions 4

and higher.

This paper is dedicated to Demetrios Christodoulou. The work herein is inspired by the problem that he
suggested to the third author, for his PhD thesis, almost four decades ago.

1. Introduction

Configurations of multiple static and asymptotically flat vacuum black holes typically exhibit conical singu-
larities and possibly other pathologies. These cone angles are necessary to keep the gravitational equilibrium
and are therefore usually interpreted as repulsive forces. A detailed analysis of this phenomenon in the
axisymmetric setting was originally carried out by Bach and Weyl [3] for the 4-dimensional case, proving in
particular the existence of an angle defect along any piece of the axis joining two black holes. In higher dimen-
sions, a thorough investigation was initiated by Emparan and Reall [11]. We know that in general, regular
configurations of two or more black holes are ruled out in 4 dimensions by Bunting and Masood-ul-Alam’s the-
orem [7]. This result also extends to higher dimensions [12,18], where the Schwarzschild-Tangherlini solution
realizes the only asymptotically flat static black hole in a vacuum. Without the assumption of asymptotic
flatness, however, this type of rigidity breaks down even in dimension 4. Indeed, partly motivated by the
balancing of multiple static electro-vacuum black holes in the Majumdar-Papapetrou spacetime, Myers [30]
constructed regular 4-dimensional static vacuum spacetimes in which an infinite number of Schwarzschild
black holes are aligned in a periodic fashion along an axis of symmetry. These same solutions were later re-
discovered by Korotkin and Nicolai in [26]. The Myers-Korotkin-Nicolai solutions are asymptotically Kasner,
and play an integral role in an extended version of static black hole uniqueness given by Peraza and Reiris
[34]. In [30], it was conjectured that these space-periodic vacuum configurations can be generalized to higher
dimensions, perhaps with black holes of nontrivial topology. We confirmed this to be the case in [24], by
producing a variety of examples of 5-dimensional space-periodic static vacuum solutions with combinations
of the sphere S3 and ring S1 × S2 horizon cross-sectional topologies.

The methods of [24] also led to the discovery of 5-dimensional vacuum solitons. Here, a gravitational
soliton refers to a nontrivial, globally static and geodesically complete spacetime. Although such horizonless
soliton solutions are well-known features of supergravity theories [14], where nontrivial topology is supported
by magnetic flux supplied through Maxwell fields, an asymptotically flat stationary vacuum spacetime which
is geodesically complete must be Minkowski space. This latter statement is a classical result of Lichnerowicz
[27] in dimension 4, and in general can be established as a corollary of the rigidity portion of the positive
mass theorem [36,37,39], together with Stokes’ theorem and the Komar expression for mass. This no-soliton
result essentially holds even without the assumption of asymptotic flatness in 4 dimensions, in the sense that
solitons of this dimension are always covered by the Minkowski spacetime [1, Theorem 0.1]. In dimensions
greater than four, vacuum solitons must have constant lapse [8,35], and therefore such spacetimes factor into
a pure product of time with a complete Ricci flat Riemannian manifold (a Cauchy hypersurface).
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The examples constructed in [24, Theorem 2] have a time slice topology homeomorphic to an infinite
connected sum #∞ S2 × S2, and therefore have infinite second Betti number. These solutions of the static
vacuum equations admit Kasner asymptotics, are bi-axisymmetric, geodesically complete, and space-periodic.
By taking quotients, we also obtain solitons on M4

k \ (B2 × T 2) where B2 and T 2 are the 2-ball and 2-torus
respectively, and M4

k is either S4 or #k S2 × S2 depending on whether k = 0 or 1 ≤ k < ∞.
The purpose of the present work is as follows. We will extend the results of [24] to obtain space-periodic

vacuum solitons in all dimensions greater than 3, and will then confirm that the static potential for these
solutions must in fact be constant, thus the time slices yield complete Ricci flat Riemannian manifolds.
These manifolds are simply connected but of infinite topological type, admit Kasner asymptotics and generic
holonomy, and are of cohomogeneity-two via a torus action. Moreover, these manifolds are periodic in one
direction, allowing for further solutions by taking discrete quotients; we are able to compute the topology
of such quotients in terms of connected sums of products of spheres. In addition, it will be shown that
there is a correspondence, induced through Wick rotation, between the space-periodic Ricci flat manifolds
arising from the solitons, and space-periodic black hole solutions in one dimension less. Previous examples of
complete Ricci flat manifolds of infinite topological type have been constructed in 4-dimensions by Anderson-
Kronheimer-LeBrun [2] using the Gibbons-Hawking ansatz, and by Goto [13] in dimensions 4m with a Tm

symmetry using the hyper-Kähler quotient method; these were later studied further by Hattori [16]. The
approach of Goto was also generalized by Dancer-Swann [10] to produce hypertoric manifolds of infinite
topological type, which were analyzed in more detail in [9]. All of these previous works fit within the hyper-
Kähler context, and in particular have dimensional restrictions as well as special holonomy. By contrast,
the Ricci flat manifolds that we produce are derived from an entirely different source, and consequently they
exhibit distinct properties. More precisely, the construction arises naturally as a byproduct from our study of
the stationary vacuum multi-axisymmetric Einstein equations in higher dimensions [20–25]. These equations
reduce to a study of singular harmonic maps from R3 into a nonpositively curved symmetric space, although,
in the static case with some additional restrictions, solutions may be found by the superposition of Green’s
functions with concentration along intervals of the z-axis. The arrangement of such intervals and the choice
of Green’s functions determine the so called ‘rod structure’ of the solution, which may be used to prescribe
the topology and other aspects of the spacetime. Typically conical singularities are produced in this process,
however, we show that by choosing certain periodic arrangements of the rods these singularities are relieved.

2. Background and Setup

Let (Mn+3,g), n ≥ 1 be the domain of outer communication of a stationary n-axisymmetric (n + 3)-
dimensional spacetime, that is, it admits R × U(1)n as a subgroup of its isometry group. Under reasonable
hypotheses [17], the orbit space Mn+3/[R × U(1)n] is homeomorphic to the right half plane {(ρ, z) | ρ >
0}. In this setting, the vacuum Einstein equations reduce to an axisymmetric harmonic map, with do-
main R3 \ {z − axis} parameterized by the cylindrical coordinates (ρ, z, φ), and target symmetric space
SL(n+ 1,R)/SO(n+ 1). The z-axis boundary of the orbit space is decomposed into an exhaustive sequence
of intervals called rods, each of which is defined by a particular isotropy subgroup of U(1)n. We will label these
intervals by {Γl}l∈I for some index set I which may be infinite, and will divide the set of rods into two types,
namely axis rods and horizons rods. Each axis rod Γl is defined by the vanishing of a linear combination vil∂ϕi

of the generators ∂ϕi , i = 1, . . . , n of the U(1)n symmetry, where the nonzero vector vl = (v1l , . . . , v
n
l ) ∈ Zn

consists of relatively prime integers so that gcd{v1l , . . . , vnl } = 1, and is called the rod structure of Γl; the
coordinates ϕi on Tn have period 2π. Thus, each axis rod structure defines a 1-dimensional isotropy subgroup
R/Z · vl ⊂ Rn/Zn ∼= Tn for the action of Tn on points that lie over Γl. On the other hand, a horizon rod
Γh is an interval of the z-axis where no closed-orbit Killing field degenerates, that is vh = 0, but where
|∂t +Ωi∂ϕi | vanishes with ∂t denoting the stationary Killing field, and with Ωi, i = 1, . . . , n representing the
horizon angular velocities. A point in the orbit space at which two neighboring axis rods intersect is referred
to as a corner, and since two (linearly independent) rotational Killing fields vanish there, the total space over
this point is an (n − 2)-torus; the intersection point of an axis rod with a horizon rod is called a pole. In
order to avoid orbifold singularities at corner points, neighboring axis rod structures v, w are required to
satisfy [20, Section 3] the admissibility condition Det2(v,w) = ±1, where the second determinant divisor is
defined by

(2.1) Det2(v,w) = gcd{Qj | j = (j1, j2) ∈ Z2, 1 ≤ j1 < j2 ≤ n}
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with the determinant Qj arising from the 2 × 2 minor constructed from the matrix having columns v, w
by choosing the j1, j2 rows. The collection of rods and associated rod structures completely determines the
topology of horizons and the domain of outer communication, see [20, 21]. For instance, if the two axis rods
bordering a horizon rod have rod structures ei, ej , where ei is the standard basis element of Zn which has a
1 in the ith slot and zeros elsewhere, then the horizon topology is S3 × Tn−2 for i ̸= j and S1 × S2 × Tn−2

for i = j.
The stationary n-axisymmetric vacuum Einstein equations [28] reduce to solving the following harmonic

map system

∆fij − fab∇kfia∇kfjb + f−1∇kωi∇kωj = 0,

∆ωi − fab∇kfia∇kωb − fab∇kfab∇kωi = 0,
(2.2)

where ∆ is the R3-Laplacian, F = (fij) is an n × n symmetric matrix which is positive definite away from
the axes, f = detF , and ω = (ω1, . . . , ωn)

t is the set of twist potentials associated with the U(1)n symmetry.
These quantities parameterize the symmetric space target through a (n + 1) × (n + 1) symmetric, positive
definite, unimodular matrix

(2.3) Φ =

(
f−1 −f−1ωi

−f−1ωi fij + f−1ωiωj

)
, i, j = 1, .., n.

Furthermore, the spacetime metric on Mn+3 can be constructed from these quantities and expressed in
Weyl-Papapetrou coordinates by

(2.4) g = −f−1ρ2dt2 + e2α(dρ2 + dz2) + fij(dϕ
i + βidt)(dϕj + βjdt).

Note that this shows an interpretation of rod structures as vectors vl lying in the 1-dimensional kernel of the
matrix F at an axis rod Γl. The functions α and βi may be obtained by quadrature [19], more precisely they
can be found by integrating the equations

(2.5) βi
ρ = ρf−1f ijωj,z, βi

z = −ρf−1f ijωj,ρ,

and

αρ =
ρ

8

[
(log f)2ρ − (log f)2z + trF−1FρF

−1Fρ − trF−1FzF
−1Fz −

4

ρ
(log f)ρ +

2

f
F−1(ω2

ρ − ω2
z)

]
,

αz =
ρ

4

[
(log f)ρ(log f)z + trF−1FρF

−1Fz −
2

ρ
(log f)z +

2

f
F−1ωρωz

]
,

(2.6)

where we have used the notation F−1ωρωz := ωt
ρF

−1ωz. The integrability conditions for (2.5) and (2.6)
correspond to the harmonic map equations (2.2). If Γ denotes the union of all axis rods, then the relevant
harmonic map Φ : R3 \ Γ → SL(n+ 1,R)/SO(n+ 1) is singular along the axes, and its asymptotics encode
the rod structures and values of the potentials at these points. Boundary conditions (prescribed asymptotics)
are therefore imposed on the axes in order to achieve the desired rod structures, and the potentials ω are
assigned to be constants cl ∈ Rn on each axis rod Γl, in such a manner to guarantee that the values of the
constants agree on consecutive axis rods. Hence, the potential constants can only change across horizon rods,
and the difference determines the horizon angular momenta. The relevant existence theory is studied in [20].

A solution to the singular harmonic map problem gives rise to an n-axisymmetric stationary vacuum
spacetime, with prescribed rod structures and horizon angular momenta. However, it is possible that conical
singularities form on the axes when assembling the spacetime metric (2.4) from the harmonic map. The
conical singularity at an interior point (0, z0) along the axis rod Γl, having rod structure vl, is quantified by
the angle defect θ ∈ (−∞, 2π) arising from the 2-dimensional cone formed by the orbits of vj∂ϕj over the
line z = z0 in the orbit space. This value may be computed from the expression

(2.7)
2π

2π − θ
= lim

ρ→0

2π · Radius
Circumference

= lim
ρ→0

∫ ρ

0

√
e2α√

fijvivj
= lim

ρ→0

√
ρ2e2α

fijvivj
.

A conical singularity is absent if the angle defect vanishes. It is routine to check that with the aid of a change
from polar to Cartesian coordinates, this condition is necessary and sufficient for the smooth extendibility
of the metric across the axis, assuming that analytic regularity has been established. Moreover, analytic

regularity allows for a well-defined notion of logarithmic angle defect bl = log
(

2π
2π−θ

)
associated with the
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axis rod Γl, since the angle defect must then be constant on each axis rod [15]. The conical singularity on Γl

is referred to as an angle deficit if bl > 0, and an angle surplus if bl < 0.

3. Statement of Results

We will now restrict attention to static n-axisymmetric vacuum spacetimes. This requires the vanishing
of twist potentials ωi = 0, i = 1, . . . , n, and significantly simplifies the harmonic map equations (2.2). Note,
however, that the equations are still nonlinear. In order to make contact with a linear system, we may impose
a further ansatz that restricts the metric along the torus fibers to be given as a diagonal matrix function

(3.1) F = diag(eu1 , . . . , eun).

Observe that with these assumption, the vacuum Einstein equations reduce to finding n harmonic functions
ui on R3 \ Γ, and the spacetime metric takes the form

(3.2) g = −ρ2e−
∑n

i=1 uidt2 + e2α(dρ2 + dz2) +

n∑
i=1

eui
(
dϕi
)2

.

In this setting the axes can only exhibit the rod structures ei, i = 1, . . . , n from the standard basis of Zn.
For an axis rod Γl having the rod structure el, we find that the corresponding logarithmic angle defect is
given by

(3.3) bl = lim
ρ→0

(
log ρ+ α− 1

2
ul

)
on Γl.

In what follows, the functions ui will be constructed as a sum of Green’s functions such that they are periodic
in the z-direction. The function α, which is obtained by quadrature from (2.6), will then be shown to also
possess the same periodicity, yielding the desired space-periodic static vacuum spacetimes. More precisely,
we will say that such solutions are space-periodic if the group Z acts by isometries through translations in the
z-direction of the Weyl-Papapetrou coordinate system. The spacetimes that we discuss are asymptotically
Kasner, meaning that the metric asymptotes to the Kasner form

(3.4) g ∼ −q0dt
2 + q1dτ

2 + τ2p0dz2 +

n∑
i=1

τ2pi
(
dϕi
)2

,

where q0, q1 > 0 are constants and the exponents satisfy the Kasner conditions
∑n

i=0 pi =
∑n

i=0 p
2
i = 1.

Geometric regularity of the solutions is established by eliminating the possibility of conical singularities
along the axes. This will be achieved by utilizing the degrees of freedom arising from addition of constants
to the ui and α.

Theorem 1. For each n ≥ 2, there is a regular n-axisymmetric static vacuum soliton spacetime (Mn+3,g)
which is space-periodic and asymptotically Kasner. The rod structure is periodic with fundamental period
e1, . . . , en. Furthermore, these spacetimes are simply connected and of infinite topological type, in that the
codimension-three Betti number is infinite, bn(M

n+3) = ∞.

The staticity of the spacetimes implies that topologically Mn+3 = R ×Mn+2, where Mn+2 represents a
constant time slice. The periodicity allows for the taking of quotients by subgroups of Z, to obtain further
solutions with partially compactified time slice topology M̃n+2. Since the rod structure period of the quotients
contains the fundamental basis for Z, these spaces will also be simply connected. Moreover, M̃n+2 still admits
an effective Tn-action, and therefore we may apply the classification results of Oh and Orlik-Raymond [31–33]
to compute the topology of these slices. Up to spatial dimension 6, within the spin category, closed simply
connected manifolds admitting a cohomogeneity-two torus action are connected sums of products of spheres.
By choosing appropriate periodic configurations of rod structures, beyond those treated in Theorem 1, we are
able to produce solitons whose topology involves each type of spherical product appearing in the classification
list. Moreover, for dimensions greater than or equal to 6, the topology associated with the basic rod structure
sequence is also known to be a connected sum of products of spheres, by the work of McGavran [29, Theorem
3.4] and additionally [5, Theorem 6.3], [6, Theorem 4.6.12]. In the statements below, note that cases (iii)
and (iv) have a partial overlap.

Theorem 2. There exist regular n-axisymmetric static vacuum soliton spacetimes (R× M̃n+2,g) which are

asymptotically Kasner, and such that M̃n+2 admits the following topologies with associated rod structures.
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(i) For n = 2, the spatial slice is homeomorphic to either S4 \ (B2 × T 2) or S2 × S2 \ (B2 × T 2), with rod
structure periods e1, e2 or e1, e2, e1, e2 respectively.

(ii) For n = 3, the spatial slice is homeomorphic to either S5 \ (B2 × T 3) or S2 × S3 \ (B2 × T 3), with rod
structure periods e1, e2, e3 or e1, e2, e1, e3 respectively.

(iii) For n = 4, the spatial slice is homeomorphic to either S3×S3 \ (B2×T 4) or
[
(S2 × S4)#2(S3 × S3)

]
\

(B2 × T 4), with rod structure periods e1, e2, e3, e4 or e1, e2, e1, e3, e4 respectively.
(iv) For n ≥ 4, the spatial slice is homeomorphic to

(3.5)

[
n−3

#
k=1

k

(
n− 2

k + 1

)
S2+k × Sn−k

]
\ (B2 × Tn),

with rod structure period e1, . . . , en.

Soliton solutions are devoid of horizons. However, the solitons exhibited in Theorems 1 and 2 can be used
to produce static vacuum black hole solutions in one dimension less. In particular, by choosing an angular
coordinate ϕi, we may Wick rotate the Riemannian spatial slice so that ∂ϕi becomes timelike. Thus, the time
slices of the solitons become black hole spacetimes in which the ei-axis rods transform into horizon rods.
It can then be shown that the resulting spacetimes are vacuum. The horizon topologies resulting from this
process are restricted to the product of a sphere or ring, with tori. We note that the original space-periodic
black hole solution found by Myers-Korotkin-Nicolai [26, 30] arises from this process, applied to the soliton
of Theorem 1 with n = 2.

Theorem 3. Let (Mn+2, g), n ≥ 2 be a time slice of any soliton produced in Theorems 1 or 2, and pick an
angular coordinate ϕi, 1 ≤ i ≤ n. Then the Wick rotation ϕi →

√
−1t applied to the Weyl-Papapetrou form of

the metric transforms this manifold into a regular black hole solution (Mn+2,g) of the (n− 1)-axisymmetric
static vacuum Einstein equations, with Kasner asymptotics.

The converse of this result also holds, in that given a space-periodic (n− 1)-axisymmetric static vacuum
solution, Wick rotation of the time coordinate into an angular variable produces a periodic n-axisymmetric
Ricci flat Riemannian manifold of the same dimension, which can then serve as the time slice of a soliton in one
dimension higher. The key observation needed to establish this statement, as well as to prove Theorem 3, is
that the static potential for the solitons produced in Theorems 1 and 2 must be constant. A consequence of this
fact is that the time slices of these solitons are complete Ricci flat Riemannian manifolds, and thus yield new
examples of Riemannian Einstein metrics. We will say that such Riemannian manifolds are asymptotically
Kasner if the metric asymptotes to the time slice of the Kasner metric in (3.4).

Theorem 4. The time slice (Mn+2, g) of any soliton from Theorems 1 or 2 is a complete Ricci flat Riemann-
ian manifold, admitting a cohomogeneity-two torus action, and with Kasner asymptotics. Furthermore, those
arising from Theorem 1 are simply connected and of infinite topological type, in that the codimension-two
Betti number is infinite, bn(M

n+2) = ∞.

Previous examples of complete Ricci flat Riemannian manifolds of infinite topological type have been
found within the hyper-Kähler context, as discussed in the introduction. By contrast, those arising from the
solitons above are of generic holonomy. This is proven, with the help of the Ambrose-Singer Theorem, by
analyzing the structure of the curvature tensor in the asymptotic end.

Theorem 5. The complete Ricci flat Riemannian manifolds of Theorem 4 are of generic holonomy.

4. Soliton Existence

In this section we establish existence of the solitons asserted in Theorems 1 and 2. The arguments follow
closely those of [24]. For simplicity, we will assume that in the rod configurations all rod lengths are equal.
In a remark at the end of the section, we will describe how this requirement may be relaxed with some
restrictions.

4.1. Theorem 1 existence. Let L > 0, and divide the z-axis of R3 into segments Γl, l ∈ Z such that each is
of length L/n. The initial step consists of constructing n axially symmetric harmonic functions ui, i = 1, . . . n
on R3, which are L-periodic in z and asymptote to 2 log ρ near the rods Γnl+i, l ∈ Z. For completeness we
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present this construction here. Consider the Green’s function for a uniform charge distribution along an
interval I = [a, b] within the z-axis, namely

(4.1) UI = log(ra − za)− log(rb − zb),

where

(4.2) ra =
√
ρ2 + (z − a)2, za = z − a.

Note that this function satisfies the following properties

(4.3) UI < 0, UI ∼ 2 log ρ near I, UI = (a− b)/r +O(r−2) as r → ∞.

We may then form the potentials

(4.4) ui = lim
m→∞

(
m∑

l=−m

UΓnl+i
+

2

n
logm

)
, i = 1, . . . , n.

For any (ρ, z) with ρ > 0, and each large l, we have by (4.3) that UΓnl+i
(ρ, z) ∼ 1

nl . Thus, the additional

term 2
n logm renormalizes the divergent series of harmonic functions to produce a finite harmonic limit away

from the axis. Near each Γnl+i, l ∈ Z the asymptotics for these functions is ui ∼ 2 log ρ, so that according to
(3.2) the rod structure of Γnl+i is ei. The harmonic functions ui are L-periodic by construction, and it can
be shown as in [24, Example 1] by expanding in cylindrical harmonics (modified Bessel functions) that

(4.5) ui =
2

n
log ρ+ ci +O(e−aiρ) as ρ → ∞, i = 1, . . . , n,

for some constants ai > 0 and ci.
With the harmonic functions ui in hand, we may form the spacetime metric (3.2). In order to aid with the

arguments showing that the function α is L-periodic, it should be observed that the sum of these functions
reduces to an explicit analytic expression, namely

(4.6)

n∑
i=1

ui = 2 log ρ+ c,

where c is the sum of ci. To see this, observe that
∑n

i=1 ui−2 log ρ−c is a harmonic function that is uniformly
bounded, L-periodic, and tends to zero as ρ → ∞. One can then apply a version of the maximum principle
[38, Lemma 8] on horizontal strips in the ρz-plane to conclude that this function must vanish identically. In
fact, it can be shown that c = −2 log(2L) with the following alternative justification of (4.6). By choosing
the origin of the z-axis appropriately we have

n∑
i=1

ui = lim
m→∞

(
U[

−
(2m+1)

2 L,
(2m+1)

2 L

] + 2 logm

)

= lim
m→∞

(
U[

−
(2m+1)

2 L,
(2m+1)

2 L

] + 2 log ((2m+ 1)L)

)
− 2 log(2L)

=2 log ρ− 2 log(2L).

(4.7)

We will now consider the periodicity of α. Note that with (4.6), the quadrature equations (2.6) simplify
to

(4.8) αρ =
ρ

8

n∑
i=1

(
u2
i,ρ − u2

i,z

)
− 1

2ρ
, αz =

ρ

4

n∑
i=1

ui,ρui,z.

The second of these equations may be used to show that α is L-periodic, that is, if we fix ρ then

(4.9)

∫
P

αz dz = 0

where the integration is carried out over one period. Indeed, since all the ui’s are periodic, we can carry out
the integration for each term ui,ρui,z on a different period. Clearly, if we take the period centered at the
midpoint of Γi, then ui is even with respect to this midpoint, which implies that ui,ρui,z is odd and (4.9)
follows.
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z = −L/2 z = 0 z = L/2

e3 e1 e2 e1 e3

Figure 1. Periodicity of α in the e1, e2, e1, e3 soliton.

Consider now the issue of conical singularities. Recall that the logarithmic angle defect on axis rod Γi is
given by

(4.10) bi = lim
ρ→0

(
log ρ+ α− 1

2
ui

)
, i = 1, . . . , n.

Since the ui are only determined up to the addition of constants, we are free to adjust these constants to
ensure that bi = 0, i = 1, . . . , n. By periodicity, all axes are then free of conical singularities. Furthermore,
note that in a neighborhood of a point in the interior of Γi, we have that ūi = ui − 2 log ρ is smooth. This
follows from the fact that ūi is uniformly bounded and harmonic in this neighborhood away from the axis
by construction, and [38, Lemma 8] may be used to show that it can be extended smoothly across the axis.
Regularity of the spacetime metric (3.2) is then established with arguments analogous to those of [24, Section
5.1]; regularity at the corners is treated similarly. This completes the proof of existence for Theorem 1.

4.2. Theorem 2 existence. All of the solitons described in this theorem arise from space-periodic solitons
by taking a quotient. In particular, if (Mn+2, g) is the time slice of a space-periodic soliton with fundamental
period L, consider the discrete isometry group Z acting on Mn+2 by z 7→ z+L. This action is clearly properly
discontinuous, and hence the quotient M̃n+2 is a Riemannian manifold. Conical singularities will be absent
from M̃n+2 if they are absent from the cover Mn+2. Thus, it suffices to show that regular space-periodic
solitons exist with the given rod configurations.

Case (i) of this result is given in [24, Theorem 2]. Moreover, the first set of rod structures within case (ii)
is covered by the previous theorem, and so we now consider the second set of rod structures e1, e2, e1, e3. As
in Section 4.1, the z-axis may be divided into rod intervals of equal length having an L-periodic configuration,
with a fundamental domain consisting of this sequence of rod structures. Furthermore, L-periodic harmonic
functions u1, u2, u3 can be constructed that respect the given rod structure configuration. It remains to
confirm the periodicity of α, and to balance any conical singularities on the axes. To establish periodicity of
α, note that by translating, we can set the midpoint of an axis rod corresponding to e2 to be z = 0. Then
all three potentials u1, u2, and u3 are even with respect to the line z = 0, see Figure 1. It then follows as
before that each term ui,ρui,z is odd in the expression for αz, and therefore (4.9) holds, showing that α is
periodic. In order to relieve any conical singularities, we must arrange for the logarithmic angle defects to
vanish on the four axis rods of a fundamental domain. Note that there are three free constants arising from
the potentials ui, and thus we can immediately balance three of the axis rods in a fundamental domain, say
those associated with the e2, e3 rods and one of the e1 rods. Furthermore, the rod structure configuration
in Figure 1 clearly admits an involutive symmetry defined by reflection across the line z = 0, and this is
manifest in the functions ui, i = 1, 2, 3 and α. It follows that the logarithmic angle defect must also vanish
for the remaining e1 rod in the fundamental domain, since it coincides with the image of the balanced e1 rod
under the involution. We then have regular L-periodic solitons devoid of conical singularities in case (ii).

The first set of rod structures within case (iii) is covered by Theorem 1, and so we now consider the second
set of rod structures e1, e2, e1, e3, e4. As before, the z-axis is divided into rod intervals of equal length with
this sequence of rod structures defining an L-periodic configuration, and four L-periodic harmonic functions
u1, . . . , u4 are constructed that respect the rod structures. To prove periodicity of α, we again choose the
midpoint of an axis rod corresponding to e2 to be z = 0, as in Figure 2. It follows that u3(ρ,−z) = u4(ρ, z)
(up to addition of constants) and u1, u2 are even functions in z. As a consequence αz is odd since

u3,ρ(ρ,−z)u3,z(ρ,−z) =− u4,ρ(ρ, z)u4,ρ(ρ, z),

ui,ρ(ρ,−z)ui,z(ρ,−z) =− ui,ρ(ρ, z)ui,ρ(ρ, z), i = 1, 2.
(4.11)
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z = −L/2 z = 0 z = L/2

e4 e1 e2 e1 e3

Figure 2. Periodicity of α in the e1, e2, e1, e3, e4 soliton.

e3 e2 e1 e2 e3

Figure 3. Symmetry of the fundamental domain with non-equal axis rod lengths.

Thus (4.9) holds, confirming that α is periodic. In order to relieve any conical singularities, observe that
there are four free constants arising from the potentials ui, which can be used to balance four of the axis rods
in a fundamental domain, say those associated with the e2, e3, e4 rods, and one of the e1 rods. Moreover, the
rod structure arrangement in Figure 2 clearly admits an involutive symmetry across the line z = 0, and this
is transmitted to the functions u1 and α as described above. In analogy with the previous example, it follows
that the logarithmic angle defect must also vanish for the remaining e1 rod in the fundamental domain, due
to this symmetry. We then have regular L-periodic solitons devoid of conical singularities in case (iii).

Remark 1. We note that the existence arguments presented above can be extended to non-equal rod lengths
and other configurations with some limitations. As an example we describe here an extension with one
rod having a different length than the rest in a fundamental domain, see Figure 3. To see that the same
proof carries over, notice that if the origin of the z-axis is placed at the center of the e1 rod, then the
potential functions ui and α are even functions with respect to z. As before, this implies that α is periodic.
Furthermore, we may use the free constants associated with the ui to balance the conical singularities on the
axis rods within the fundamental domain which intersect the positive z-axis. By the involutive symmetry,
the remaining axis rods in the fundamental domain will also be balanced, yielding a regular soliton. This
generalizes the procedure of case (ii). Similarly, the procedure of case (iii) also admits a generlization to the
non-equal rod lengths regime. In this situation, the involutive symmetry is more complicated in that it arises
not only from a reflection in the domain space, but also involves composition with a map that interchanges
two harmonic functions ui, uj with i ̸= j. These latter maps may be viewed as isometries of the target
space when discussing the harmonic map formulation of this problem. Again, the symmetry allows us to
balance the second half of the axis rods in a fundamental domain, after balancing the first half using the free
constants associated with the potentials.

5. Soliton Topology and Asymptotics

In this section we will establish the topological claims of Theorems 1 and 2, as well as the Kasner asymp-
totics. First observe that the solitons of these theorems are all simply connected, since the integer span of
their rod structures is Zn [20, Theorem 7.1]. Below we will verify the specific topologies of the quotient
solitons, and show that the space-periodic solitons are of infinite topological type.

5.1. Topology in Theorem 2. Within the space-periodic solitons, the fundamental domain of rod structures
is of length L, which identifies a strip −L/2 ≤ z ≤ L/2 in the orbit space. After identification to obtain
the partially compactified solitons, this strip becomes a punctured disc B2 \ {0} with boundary circle that is
divided into the various rod structures making up the fundamental domain. In order to analyze the topology,
we may fill-in the asymptotic end (represented by the puncture) with B2 ×Tn to obtain a compact manifold

M̂n+2, whose orbit space is the whole disc with boundary circle dividing into rod structures. It then suffices
to describe the topology of the compactified manifold M̂n+2.

Case (i) is treated in [24, Theorem 2], so consider case (ii). In the first example the orbit space consists
of a disc with boundary rod structures e1, e2, e3, see Figure 4. The green shaded region lifts to B4 × S1, a
solid ring, and the yellow shaded region lifts to S3 ×B2. The two are glued along an S3 ×S1, hence yielding
an S5. Next, consider the example with rod structures e1, e2, e1, e3, see Figure 5. Similarly to the previous
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e1

e2e3

Figure 4. Time slice topology of the e1, e2, e3 soliton.

e1

e2

e1

e3

Figure 5. Time slice topology of the e1, e2, e1, e3 soliton.

case, each vertical line, such as the dashed blue line, lifts to an S3 × S1. The S1 collapses to a point at the
left and right edges, hence yielding an S3 × S2.

We now examine case (iii) starting with the rod structure sequence e1, e2, e3, e4, as illustrated in Figure 6.
Each of the vertical lines, such as the vertical dashed red line in the figure, lifts to an S3×T 2. Note that each
of the horizontal lines, such as the dashed blue line, also lifts to an S3×T 2. Thus the topology corresponding
to this rod diagram is clearly a Cartesian product. The T 2, in the S3 × T 2 vertical slice degenerates along a
different generator at the left and right edges, hence yielding an S3 × S3.

Next, we classify the topology of case (iii) having rod structures e1, e2, e1, e3, e4, see Figure 7. This
example is different in that it is not apparent how to obtain the topology via the methods used above.
Instead, we will appeal to classification results of [31, 32]. For convenience when comparing with these
references, rename the rod structures by

(5.1) e1 → e3, e2 → e4, e3 → e1, e4 → e2,

then the circle boundary of the orbit space has rod structure sequence e3, e1, e2, e3, e4. Observe that the
circle action on M̂6 associated with the subgroup of T 4 generated by the 2e1+e2−e4 generator, is free. The
5-dimensional quotient manifold M̂6/∼ then admits an effective T 3 action, and has a disc orbit space with
rod structures e3, e1, e2, e3, 2e1 + e2. Furthermore, the proof of [32, Theorem 5.5] shows that this manifold

is spin, and because it is also simply connected and has five rods we find that M̂6/∼ ∼= #2
(
S3 × S2

)
. By

employing the Whitney product formula, and using that M̂6/∼ is spin, it follows that M̂6 is spin. Since
this manifold is simply connected and has five rods, the classification of [31, Theorem 1.1] implies that

M̂6 ∼= (S2 × S4)#2(S3 × S3).

Lastly, consider case (iv) in which n ≥ 4, and the orbit space for M̂n+2 is determined by the basic
sequence of rod structures e1, . . . , en. In [29, Theorem 3.4], it is shown that a closed simply connected
(n+2)-dimensional manifold having an effective Tn action, with exactly n rods on the orbit space boundary,
must be the connected sum of products of spheres in (3.5). By changing coordinates in the torus fibers (see
[20, Lemma 3.3]), such a sequence of rod structures may be transformed into the basic sequence. Thus,

we conclude that M̂n+2 has the topology arising from (3.5) by filling in the asymptotic end. We note that
although McGavran’s paper [29] contains an error in Theorem 3.6, as pointed out by Oh [32], Theorem 3.4
of [29] is not affected and has been generalized in [5, Theorem 6.3] (see also [6, Theorem 4.6.12]).

5.2. Infinite topological type. Here we show that the codimension-two Betti number bn(M
n+2) is infinite,

for the time slices of solitons produced in Theorem 1. Since we are only concerned with topology in this
subsection, a new metric may be introduced on Mn+2 which is not necessarily free of conical singularities,
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e1

e2

e3

e4

Figure 6. Time slice topology of the e1, e2, e3, e4 soliton.

e1

e2

e1

e3e4

Figure 7. Time slice topology of the e1, e2, e1, e3, e4 soliton.

namely

(5.2) g0 = dρ2 + dz2 +

n∑
i=1

eui
(
dϕi
)2

where ui, i = 1, . . . , n are as in Section 4.1. Let Γnl+i be a rod on the z-axis with associated Green’s function
UΓnl+i

. This function is harmonic on R3 \ Γnl+i with respect to the flat metric. However, we may also

view UΓnl+i
as an n-axisymmetric function on Mn+2 which is harmonic with respect to g0, in light of (4.6).

Therefore the n-form on Mn+2 given by

(5.3) ιηi ⋆ dUΓnl+i
= ec/2ρ

(
∂ρUΓnl+i

dz ∧ dϕ2 ∧ · · · ˆdϕi · · · ∧ dϕn − ∂zUΓnl+i
dρ ∧ dϕ2 ∧ · · · ˆdϕi · · · ∧ dϕn

)
is closed by Cartan’s formula, where ⋆ is the g0-Hodge star and ιηi

denotes interior product with ηi = ∂ϕi .
Moreover, the asymptotics at the axis (4.3) show that this form is smooth on Mn+2. Next, note that the
axis rod Γnl+i lifts to an embedded n-cycle Σnl+i

∼= S3 × Tn−3 in Mn+2 for n ≥ 3, with Σnl+i
∼= S2 when

n = 2. Furthermore

(5.4)

∫
Σnl+i

ιηi
⋆ dUΓnl+i

= 2(2π)n−1ec/2|Γnl+i| ≠ 0,

∫
Σj

ιηi
⋆ dUΓnl+i

= 0, j ̸= nl + i,

where |Γnl+i| is the length of the rod. It follows that each [Σnl+i] represents a distinct generator of the
homology group Hn(M

n+2;Z), yielding the desired conclusion.

5.3. Asymptotics. We will now confirm the asymptotics of the solitons constructed in Theorems 1 and 2.
Recall that the Kasner metric on Rn+1,1 takes the form

(5.5) gK = −dt2 +

n∑
i=0

t2pi
(
dxi
)2

,

and that this metric satisfies the vacuum Einstein equations exactly when the Kasner conditions hold:

(5.6)

n∑
i=0

pi = 1,

n∑
i=0

p2i = 1.

The solitons that we produce have metrics of the form (3.2), where the asymptotics of the coefficients as
ρ → ∞ are determined by

(5.7) ui ∼ Ai log ρ, α ∼ C log ρ,
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with Ai > 0 and

(5.8) C =
1

8

n∑
i=1

A2
i −

1

2
.

It follows that

(5.9) g ∼ −4L2dt2 + ρ2C(dρ2 + dz2) +

n∑
i=1

ρAi
(
dϕi
)2

,

where we have used (4.6). Since g solves the vacuum Einstein equations, the powers of ρ in the above
expression satisfy the Kasner conditions. To see this more explicitly, set τ = ρC+1 and observe that C+1 > 0
as well as

(5.10) g ∼ −4L2dt2 +
1

(C + 1)2
dτ2 + τ

2C
C+1 dz2 +

n∑
i=1

τ
Ai

C+1
(
dϕi
)2

.

We can then verify, using
∑n

i=1 Ai = 2 from (4.5), that the Kasner conditions (5.6) hold for any values of
Ai, so long as C is given by (5.8). More precisely

(5.11)
C

C + 1
+

n∑
i=1

Ai

2(C + 1)
= 1,

(
C

C + 1

)2

+

n∑
i=1

A2
i

4(C + 1)2
=

C2 + 2C + 1

(C + 1)2
= 1.

Therefore, the solutions of Theorems 1 and 2 are asymptotically Kasner, with the role of ‘time’ being played
by the spatial variable ρ when the metric is considered in the Kasner context.

6. Wick Rotation, Riemannian Einstein Metrics, and Holonomy

In this section we will establish Theorems 3, 4, and 5. Let (Mn+2, g), n ≥ 2 denote the time slice of
a space-periodic soliton arising from Theorem 1 or 2; recall that the solutions of Theorem 2 derive from
quotients of space-periodic solitons. Choose an angular coordinate ϕi on the torus, and perform the Wick
rotation ϕi →

√
−1t which transforms the spacelike part of the metric (3.2) into

g =− euidt2 + e2α(dρ2 + dz2) +
∑
j ̸=i

euj
(
dϕj
)2

=− ρ2e−
∑

j ̸=i ujdt̄2 + e2α(dρ2 + dz2) +
∑
j ̸=i

euj
(
dϕj
)2

,
(6.1)

where we have used ui = 2 log ρ−∑j ̸=i uj + c from (4.6), and have rescaled the time coordinate to t̄ = ec/2t.

Therefore, from the soliton time slice (Mn+2, g) we have obtained a vacuum spacetime (Mn+2,g) which is
static, (n−1)-axisymmetric, and with Kasner asymptotics. Furthermore, α has already been shown (Section
4) to be L-periodic in the z-direction. Thus, these solutions are space-periodic. Moreover, since eui → 0
on Γnl+i, these intervals on the z-axis become horizon rods for the Wick rotated metric. The horizon cross-
sectional topologies are S3 × Tn−3 or S1 × S2 × Tn−3 for n ≥ 3 depending on whether the neighboring
rod structures are distinct or the same, respectively, and for n = 2 the topology is S2. Lastly, the conical
singularities remain balanced on the axes as the uj and α have not changed. This completes the proof of
Theorem 3.

Consider now a static solutions from either Theorem 1 or 2. The lapse or static potential is given by

(6.2) ρe−
1
2
∑n

i=1 ui = e−c/2,

where we have used (4.6). Since this is constant, it follows that the time slice (Mn+2, g) is Ricci flat.
The remaining properties stating that this Riemannian manifold is complete, simply connected, admits a
cohomogeneity-two torus action, and has Kasner asymptotics have been established above. Moreover, in the
space-periodic case we have shown in Section 5.2 that the codimension-two Betti number is infinite. This
completes the proof of Theorem 4. Lastly, we will establish Theorem 5.
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6.1. Holonomy. To show that the Ricci flat Riemannian manifolds (Mn+2, g) of Theorem 4 have generic
holonomy, we will make use the Ambrose-Singer Theorem [4], which may be interpreted as stating that
the Lie algebra holp of the holonomy group at p ∈ Mn+2 is generated by the curvature endomorphisms

R(X,Y ) : TqM
n+2 → TqM

n+2, where X and Y run through TqM
n+2 and q runs through Mn+2. Thus, in

order to establish that the holonomy is generic, it suffices to choose a suitable p and show that the curvature
endomorphisms at p generate so(n+2). Note that the holonomy algrbra determines the holonomy group, as
the manifolds discussed here are simply connected.

We begin by computing the curvature. A straightforward although tedious computation shows that the
non-zero components of the Riemann curvature tensor are given by

Rρzρz = −e2α∆2α, Rϕiϕjϕiϕj = G(ui, uj), 1 ≤ i < j ≤ n,

Rρϕiρϕi = F1(ui), Rρϕizϕi = F2(ui), Rzϕizϕi = F3(ui), i = 1, . . . , n,
(6.3)

where ∆2 = ∂2
ρ + ∂2

z and

F1(ui) =
eui

4

(
2ui,ραρ − 2ui,zαz − 2ui,ρρ − u2

i,ρ

)
,

F2(ui) =
eui

4
(2ui,ραz + 2ui,zαρ − 2ui,ρz − ui,ρui,z) , i = 1, . . . , n,

F3(ui) =
eui

4

(
2ui,zαz − 2ui,ραρ − 2ui,zz − u2

i,z

)
,

G(ui, uj) =− eui+uj−2α

4
(ui,ρuj,ρ + ui,zuj,z) , 1 ≤ i < j ≤ n.

(6.4)

It follows that the curvature endomorphisms may be represented in Weyl-Papapetrou coordinates as the
matrices

(6.5) R(∂ρ, ∂z) =


0 −e2α∆2α

e2α∆2α 0
0 . . . 0
0 . . . 0

0 0
...

...
0 0

0

 , R(∂ϕi , ∂ϕj ) =


0 0
0 0

0 . . . 0
0 . . . 0

0 0
...

...
0 0

G(i, j)

 ,

(6.6) R(∂ρ, ∂ϕi) =



0 0
0 0

. . . F1(ui) . . . 0

. . . F2(ui) . . . 0
...

...
−F1(ui) −F2(ui)

...
...

0 0

0


,

(6.7) R(∂z, ∂ϕi) =



0 0
0 0

. . . F2(ui) . . . 0

. . . F3(ui) . . . 0
...

...
−F2(ui) −F3(ui)

...
...

0 0

0


,

where the Fk(ui) (respectively −Fk(ui)) entries of R(∂ρ, ∂ϕi) and R(∂z, ∂ϕi) appear in the (i+ 2)th column
(respectively (i + 2)th row), and the only non-zero entries of the n × n matrix G(i, j) are G(ui, uj) and
−G(ui, uj) which occur in its ij and ji entries respectively, 1 ≤ i < j ≤ n. Therefore, if we find a point
p ∈ Mn+2 at which

(6.8) ∆2α ̸= 0, F1(ui)F3(ui)−F2(ui)
2 ̸= 0, i = 1, . . . , n, G(ui, uj) ̸= 0, 1 ≤ i < j ≤ n,

then these (n+ 2)(n+ 1)/2 matrices span so(n+ 2) at that point, and the holonomy group will be generic.
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An appropriate choice of the point p is sufficiently far out in the asymptotic end. To see this, recall the
asymptotics for ui and use (4.8) to obtain

(6.9) ui ∼
2

n
log ρ, α ∼

1− n

2n
log ρ.

Furthermore, expanding in cylindrical harmonics as in (4.5) produces

(6.10) ui,ρ ∼
2

nρ
, αρ ∼

1− n

2nρ
, ui,z and αz decay exponentially as ρ → ∞.

Hence

F1(ui)F3(ui)−F2(ui)
2 =− e2ui

16

[
(2ui,ραz + 2ui,zαρ − 2ui,ρz − ui,ρui,z)

2

−
(
2ui,zαz − 2ui,ραρ − 2ui,zz − u2

i,z

) (
2ui,ραρ − 2ui,zαz − 2ui,ρρ − u2

i,ρ

)]
∼− e2ui

8
ui,ραρ

(
2ui,ραρ − 2ui,ρρ − u2

i,ρ

)
∼
(n− 1)2

4n4
ρ

4
n−4.

(6.11)

We conclude that for ρ large enough, (6.11) is non-zero as n ≥ 2. Next, observe that

(6.12) ∆2α = −1

8

n∑
i=1

|∇ui|2 +
1

2
ρ−2 ∼

n− 1

2n
ρ−2, G(ui, uj) ∼ −ρ

3
n−1

n2
,

where the first equation is obtained from (4.8) together with the harmonicity of ui. Once again, for ρ
sufficiently large these expressions are non-zero. This completes the proof of Theorem 5.
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Masson et Cie, Paris, 1955.
[28] D. Maison, Ehlers-Harrison-type transformations for Jordan’s extended theory of gravitation Gen. Relativity Gravitation,

10 (1979), no. 8, 717–723.
[29] D. McGavran, Adjacent connected sums and torus actions, Trans. Amer. Math. Soc., 251 (1979), 235–254.

[30] R. Myers, Higher-dimensional black holes in compactified space-times, Phys. Rev. D, 35 (1987), no. 2, 455–466.

[31] H.-S. Oh, 6-dimensional manifolds with effective T 4-actions, Topology Appl., 13 (1982), no. 2, 137–154.
[32] H.-S. Oh, Toral actions on 5-manifolds, Trans. Amer. Math. Soc., 278 (1983), no. 1, 233–252.

[33] P. Orlik, and F. Raymond, Actions of the torus on 4-manifolds I., Trans. Amer. Math. Soc., 152 (1970), 531–559.

[34] J. Peraza, and M. Reiris, A complete classification of S1-symmetric static vacuum black holes, Class. Quantum Grav., 36
(2019), 225012.

[35] M. Reiris, On static solutions of the Einstein-scalar field equations, Gen. Relativity Gravitation, 49 (2017), no. 3, Paper

No. 46, 15 pp.
[36] R. Schoen, and S.-T. Yau, On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys., 65 (1979),

no. 1, 45–76.

[37] R. Schoen, and S.-T. Yau, Positive scalar curvature and minimal hypersurface singularities, preprint, 2017.
arXiv:1704.05490

[38] G. Weinstein, On the Dirichlet problem for harmonic maps with prescribed singularities, Duke Math. J., 77 (1995), 135–165.

[39] E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys., 80 (1981), no. 3, 381–402.

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, USA

Email address: khuri@math.sunysb.edu
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