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We present the first examples of formally asymptotically flat black hole solutions with horizons of
general lens space topology L(p, q). These 5-dimensional static/stationary spacetimes are regular
on and outside the event horizon for any choice of relatively prime integers 1 ≤ q < p, in particular
conical singularities are absent. They are supported by Kaluza-Klein matter fields arising from
higher dimensional vacuum solutions through reduction on tori. The technique is sufficiently robust
that it leads to the explicit construction of regular solutions, in any dimension, realising the full
range of possible topologies for the horizon as well as the domain of outer communication, that
are allowable with multi-axisymmetry. Lastly, as a by product, we obtain new examples of regular
gravitational instantons in higher dimensions.

What are the possible shapes of a black hole? Fifty
years ago, Hawking [13] provided an answer to this fun-
damental question in spacetime dimension 4, with his
horizon topology theorem. This result asserts that cross-
sections of the event horizon, in asymptotically flat sta-
tionary black hole spacetimes satisfying the dominant
energy condition, must be topologically a 2-sphere S2.
In 2002, Emparan-Reall [6] discovered the first regu-
lar asymptotically flat non-spherical black hole, a 5-
dimensional black ring with horizon topology S1 × S2.
Not only did this give impetus to the question above,
but it also showed that the traditional black hole no hair
theorem is false in higher dimensions [7]. Shortly there-
after, Galloway-Schoen [10] generalized Hawking’s the-
orem to higher dimensions, stating that horizon cross-
sections must be of positive Yamabe invariant. This con-
dition is equivalent to the underlying topology admit-
ting a metric of positive scalar curvature, and leads to a
concise list of possible horizon topologies in five dimen-
sions [9]. Namely, orientable horizons in this setting must
be either a quotient of the 3-sphere S3 (spherical space
form), the ring S1×S2, or a finite connected sum thereof.
Further restrictions are possible in the case of extreme
black holes [23], in particular all but one connected sum
can be ruled out.

The basic question of whether each topology on the
list is achieved by a black hole solution has remained
unresolved. The totality of non-spherical black holes
found to date consists of the ring S1 × S2 [6, 29], and
the lens spaces L(p, 1) discovered initially by Kunduri-
Lucietti when p = 2 [24] and extended to all positive
integers p by Tomizawa-Nozawa [31], see also [18]. While
the ring is a vacuum solution, the lenses are solutions
of minimal supergravity [4]. Moreover, there is evidence
that suggests regular asymptotically flat vacuum black
lenses do not exist [25], and proposals to balance black
lenses in a bubble of nothing [35] have been unsuccessful
[32] (although it is possible for black rings [2]).

Symmetry yields further restrictions on topology. In-
deed, the rigidity theorem [15, 27] guarantees that gener-

ically stationary black holes come with at least one rota-
tional symmetry, and in fact almost all known solutions
in 5-dimensions have U(1)2 rotational symmetry; see [18]
for recent examples admitting only U(1) symmetry. In
this setting of bi-axisymmetry, the list of possible hori-
zon topologies reduces to the sphere S3, the ring S1×S2,
and the lens spaces L(p, q) ∼= S3/Zp for any choice of rel-
atively prime integers 1 ≤ q < p. It is also possible to
classify the list of possible domain of outer communica-
tion (DOC) topologies [14, 17, 19] in this regime. Namely,
the compactified Cauchy surfaces within the DOC must
either be the 4-sphere S4, a connected sum of S2 × S2’s,
or in the non-spin case a connected sum of complex pro-

jective planes CP2 and CP2
. There have been a num-

ber of attempts to realize all the topologies in these lists,
however they have all suffered from the presence of either
naked singularities [3, 8], conical singularities on the axes
[17, 21, 25], or closed timelike curves [30], when trying
to implement the more complicated configurations. In
spacetime dimensions greater than 5 very little is known,
although a systematic study of static vacuum generalized
Weyl solutions was given in [5] and stationary vacuum so-
lutions with possible conical singularities were produced
in [17].

The purpose of this note is the following. We show
that all possible horizon topologies, and DOC topolo-
gies from the classification, including all combinations of
multiple horizon configurations, are realized by regular
formally asymptotically flat black hole solutions. In par-
ticular, this includes the first examples of general lens
space topology L(p, q), involving a topology change be-
tween the horizon and asymptotic end. These black holes
can be either static or stationary, and are supported by
Kaluza-Klein matter fields in that they arise from higher
dimensional vacuum solutions through reduction on tori.
The methods also extend to all higher dimensions, al-
lowing for the construction of solutions, realising the full
range of possible topologies for the horizon as well as
the DOC, that are compatible with multi-axisymmetry
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in which the orbit space is 2-dimensional. Furthermore,
as a by product, we obtain new examples of regular grav-
itational instantons [12] in higher dimensions.

The basic strategy consists of the following steps.
Given the desired DOC Mn+3 for a (n+ 3)-dimensional
static/stationary spacetime admitting U(1)n symmetry
with n ≥ 1, we show how to encode its topology in
a higher dimensional DOC M̃n+3+k having a relatively
simple topological structure. On this higher dimensional
spacetime manifold, we solve the static/stationary vac-
uum Einstein equations with U(1)n+k symmetry, and
take advantage of the simple topology to balance any
conical singularities (choose parameters to achieve a cone
angle of zero). A dimensional reduction, or quotient pro-
cedure, is then carried out in order to obtain a regular
solution with Kaluza-Klein matter on the original topol-
ogy Mn+3.

Due to global hyperbolicity, the topology of the space-
times considered here will always be of the form Mn+3 =
R ×Mn+2. The time slice Mn+2 is assumed to admit
an effective action by the torus Tn = U(1)n, and hence
the quotient map Mn+2 → Mn+2/Tn exhibits Mn+2 as
a Tn-bundle over a 2-dimensional base space with any
degenerate fibers occurring on the boundary. In partic-
ular, while fibers over interior points are n-dimensional,
fibers over boundary points can be (n − 1) or (n − 2)-
dimensional. Those points where the fiber is (n − 1)-
dimensional are called axis rods, and the points with an
(n− 2)-dimensional fiber are discrete and called corners.
Consistency with topological censorship demands that
the base spaceMn+2/Tn is homeomorphic to a half plane
R2

+ [16].

The entire topology of Mn+2 may be recorded in the
boundary ∂R2

+ of this half-plane. This is achieved by
dividing it into disjoint intervals separated by corners
or horizon rods (assumed to be finite) where the fibers
do not degenerate. Associated to each axis rod interval
Γi ⊂ ∂R2

+ is a vector vi ∈ Zn referred to as the rod
structure, which determines the 1-dimensional isotropy
subgroup R · vi + Zn ⊂ Rn/Zn ∼= Tn for the action of
Tn on points that lie over Γi. See [5, 11, 17] for further
discussion concerning rod structures. We then have

Mn+2 ∼= (R2
+ × Tn)/ ∼, (1)

where the equivalence relation ∼ is given by (p,ϕϕϕ) ∼
(p,ϕϕϕ + λvi) with p ∈ Γi, λ ∈ R/Z, and ϕϕϕ ∈ Tn. To-
gether, the rod structures form a (n-dimensional) rod
data set D = {(v1,Γ1), . . . , (vk,Γk)} which enshrines the
topology of the DOC. Rod data sets may be chosen arbi-
trarily except for an admissibility condition when n ≥ 2
that guarantees the total space is a manifold [17, Section
3], namely if rod structures vi,vi+1 arise from neighbor-
ing rods separated by a corner then the 2nd determinant

divisor

det2(vi,vi+1) = gcd{|Qj1j2 |}

is 1, where Qj1j2 is the determinant of the 2 × 2 minor
obtained from the matrix defined by the column vectors
vi,vi+1 by picking rows j1 and j2. We may assume with-
out loss of generality that each rod structure vi is primi-
tive, in the sense that its components are relatively prime
gcd(v1i , . . . , v

n
i ) = 1, since this does not change the asso-

ciated isotropy subgroup.
Given a topology Mn+3 that we wish to realize as

the DOC for a static/stationary solution of the Einstein
equations, and which is characterized by a n-dimensional
admissible rod data set D, the first goal is to encode
this into a higher dimensional rod data set having a sim-
pler structure. To this end, we define a new (n + k)-
dimensional rod data set D̃ = {(ṽ1,Γ1), . . . , (ṽk,Γk)} by
ṽi = v̄i+ en+i for i = 1, . . . , k, where ej is an element of
the standard basis for Zn+k having 1 in position j and
zeros elsewhere, and v̄i = (vi,0) ∈ Zn+k. Note that each
vector ṽi is primitive since the same is true for vi, and
similarly since det2(ṽi, ṽj) divides det2(vi,vj) the data
set D̃ inherits the admissibility property from D. In par-
ticular, the analogous quotient M̃n+k+2 as in (1) defined
with respect to D̃ yields an (n+k+2)-dimensional mani-
fold admitting an effective action by U(1)n+k, which will
serve as a DOC time slice for a static/stationary space-
time.
We claim that topologically the new higher dimen-

sional manifold is relatively simple, in that it is the prod-
uct of a torus with a connected sum consisting of prod-
ucts of spheres, and can be described by a rod struc-
ture having only standard basis elements. To see this,
we note that changing coordinates on the torus fibers
Tn+k ∼= Rn+k/Zn+k does not change the topology of
M̃n+k+2. Such a coordinate change may be described by
a matrix U ∈ SL(n + k,Z) defined by U(ej) = ej for
j = 1, . . . , n and U(ṽi) = en+i for i = 1, . . . , k so that

U−1 =

[
In V
0 Ik

]
,

where In is the n × n identity matrix, Ik is the k ×
k identity matrix, and V is the n × k matrix con-
sisting of the rod structures [v1, . . . ,vk]. Thus, af-
ter this coordinate change the rod data set becomes
D̃′ = {(en+1,Γ1), . . . , (en+k,Γk)}, so that according to
[26, Theorem 3.4] (see also the discussion in the proof of
[20, Theorem 2 (iv)]) the topology of the compactified
manifold M̃n+k+2

c is given by[
k−3

#
ℓ=1

ℓ

(
k − 2

ℓ+ 1

)
S2+ℓ × Sk−ℓ

]
× Tn (2)

for k ≥ 4, whereas for k = 2, 3 the topology is S4 × Tn,
S5 × Tn respectively. In this expression binomial co-
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efficients are used to indicate the number of times the
connected sum is taken for each ℓ. Here the compacti-
fied manifold is obtained from M̃n+k+2 by filling-in each
horizon as well as infinity with a 4-ball cross a torus
B4 × Tn+k−2 (attach along common boundaries), since
horizons are characterized by neighboring rod structures
ei, ei+1 showing that they have topology S3 × Tn+k−2,
and similarly for the cross-section at infinity.

We will now solve the Einstein equations on
M̃n+k+3 = R × M̃n+k+2 to obtain a regular static vac-
uum spacetime realizing this DOC topology; at the end
it will be explained how to similarly obtain the rotat-
ing stationary analogues. An ansatz, studied initially
by Emparan-Reall [5], will be imposed that restricts the
metric along the torus fibers to be given as a diagonal ma-
trix function yielding the following form for the spacetime
metric

g̃ = −ρ2e−
∑n+k

i=1 uidt2 + e2α(dρ2 + dz2) +

n+k∑
i=1

eui
(
dψi

)2
,

where all coefficients depend only on ρ > 0, z which pa-
rameterize the orbit space half-plane R2

+, and the Killing
fields ∂ψi generate the U(1)n+k rotational isometries with
0 ≤ ψi < 2π. In this setting the static vacuum Einstein
equations reduce to finding n+k axisymmetric harmonic
functions ui on R3 \ Γ, where R3 is parameterized in
cylindrical coordinates (ρ, z, ϕ) with 0 ≤ ϕ < 2π and Γ
denotes the z-axis. The remaining metric coefficient α
may be solved by quadrature, using harmonicity of the
ui as an integrability condition

αρ =
ρ
8

[
(Σui,ρ)

2 − (Σui,z)
2 +Σ

(
u2i,ρ − u2i,z

)
− 4

ρΣui,ρ

]
,

αz =
ρ
4

[
(Σui,ρ)(Σui,z) + Σui,ρui,z − 2

ρΣui,z

]
.

Observe that with the spacetime metric ansatz, axes can
only exhibit rod structures of type ei, i = 1, . . . , n + k.
Moreover, for an axis rod Γl having the rod structure el,
we find that the corresponding logarithmic angle defect
[20] is given by

bl = lim
ρ→0

(
log ρ+ α− 1

2
ul

)
. (3)

Recall that nonzero logarithmic angle defect is associated
with a force exerted by the axis, which arises from the
geometric singularity [33, Section 5]. It is known that
the limit (3) is constant along the axis Γl, a fact which
may be derived from the equations defining α and the
asymptotic expansion of ul with respect to ρ. In a more
general setting this was established in [11, Section 3.1].

The harmonic functions will be taken as potentials for
a uniform charge distribution along associated axis rods;
note, however, that g̃ will solve the vacuum equations so

Maxwell fields are not present. More precisely, suppose
that the axis rods consist of the intervals Γ1 = (−∞, b1],
Γi = [ai, bi] for i = 2, . . . , k− 1, and Γk = [ak,∞), where
ai < bi ≤ ai+i < bi+1 for each i. We then set

un+i = log(rai − zai)− log(rbi − zbi)

for i = 2, . . . , k − 1, and

un+1 = 2 log ρ− log(rb1 − zb1), un+k = log(rak − zak),

where ra =
√
ρ2 + (z − a)2 and za = z − a. Each of the

individual logarithm expressions is harmonic. Further-
more, observe that the functions with i = 2, . . . , k − 1
are negatively valued and satisfy the following properties:
un+i ∼ 2 log ρ near Γi, and un+i = (ai − bi)/r + O(r−2)
as r → ∞. The remaining functions are set to uj = 0,
j = 1, . . . , n since they are not linked to axis rods.
Clearly then, these harmonic functions guarantee that
the desired rod data set D̃′ is achieved through the met-
ric g̃.

The spacetime (M̃n+k+3, g̃) has the desired topology,
satisfies the static vacuum equations, and is asymptoti-
cally Kaluza-Klein in the sense that when distances are
very far from the horizon the spacetime is approximately
the product of 5-dimensional Minkowski space with a flat
torus of dimension n+k−2. However, it may possess con-
ical singularities along axis rods. Nevertheless, due to the
diagonal matrix structure of the torus fiber metrics, any
conical singularity along an axis rod Γi may be resolved
by adding an appropriate constant to the associated har-
monic function un+i 7→ un+i+ci, where the constant ci is
chosen to ensure that the logarithmic angle defect bi = 0
in (3). This translation in the harmonic functions does
not alter any of the properties listed above for the space-
time. We note that a related balancing procedure was
employed by Emparan-Reall in [5] for certain examples;
it was also used more recently in [20, 22]. Furthermore,
absence of conical singularities leads to full regularity of
the spacetime metric, a fact which may be established
analogously to [22, Section 5.1]. A similar procedure may
be used to produce regular stationary vacuum solutions
having the same rod data set, with prescribed angular
momenta for each black hole, by utilizing the results of
[17]; although we do not pursue this here.

We now record two auxiliarly results, concerning the
ability to achieve certain DOC topologies, that are conse-
quences of the above arguments. Notice that the assump-
tion n ≥ 1 is not required when constructing the higher
dimensional static vacuum spacetime, and this leads to
the following statement.

Theorem 1 For each pair of integers n ≥ 0 and k ≥ 2,
the compactified domain of outer communication topol-
ogy M̃n+k+2

c given by (2), is realized by time slices of a
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regular, asymptotically Kaluza-Klein (or asymptotically
flat when n = 0, k = 2), static vacuum solution with up
to k − 1 horizons of topology S3 × Tn+k−2.

In fact, the construction proceeds just as well if no hori-
zons are present. In this case, the z-axis consists entirely
of axis rods. Furthermore, in this case, for some constant
c the function

∑n+k
i=1 ui−2 log ρ−c is harmonic on R3\Γ,

tends to zero at infinity, and remains bounded upon ap-
proach to Γ. Therefore, a version of the maximum princi-
ple (or Weinstein Lemma [34, Lemma 8]) shows that this
function vanishes identically, that is

∑n+k
i=1 ui = 2 log ρ+c

and hence the static potential is constant. It follows that
the time slice is a complete Ricci flat Riemannian mani-
fold, yielding new examples of higher dimensional gravi-
tational instantons.

Corollary 2 For each pair of integers n ≥ 0 and k ≥ 2,
the topology M̃n+k+2

c gives rise to a gravitational instan-
ton. More precisely, on the complement of a B4×Tn+k−2

this manifold admits a regular, complete, Ricci flat Rie-
mannian metric which is asymptotically Kaluza-Klein (or
asymptotically flat when n = 0, k = 2).

In order to proceed with the original problem of realiz-
ing a static solution on the given topologyMn+3 with rod
data set D, we will perform a dimensional reduction (or
quotienting procedure) on the constructed static space-
time M̃n+k+3 having rod data set D̃. First note that
the static vacuum metric g̃ is expressed above with coor-
dinates ψi, on the torus fibers, that yield the simplistic
rod data set D̃′ in terms of standard basis vectors, how-
ever we may change back to the original coordinates ϕi

in which the rod data set is given by D̃. This is achieved
with the unimodular matrix U = (U ij) through the rela-
tion ψi = U ijϕ

j . It follows that in these coordinates

g̃ = −f̃−1ρ2dt2 + f̃−1e2σ(dρ2 + dz2) +

n+k∑
i,j=1

f̃ijdϕ
idϕj ,

where (f̃ij) = UTdiag(eu1 , . . . , eun+k)U , f̃ = det(f̃ij),
and 2σ = 2α+ log f̃ where α is defined above (3).
The reduction procedure will be carried out using a

k-dimensional torus whose action is free (devoid of fixed
points) on M̃n+k+3. In fact, the desired subtorus action
is defined by

T k ∼= spanR{en+1, . . . , en+k}/ spanZ{en+1, . . . , en+k}.

To confirm that this is indeed free, we will show that
the circle action of R/Z ·w ⊂ Rn+k/Zn+k is free for any
primitive vector w ∈ spanZ{en+1, . . . , en+k}. Proceed-
ing by contradiction, assume that for some w the action
is not free. Since fixed points can only occur at axis rods
or corners, this implies that for some i ∈ {1, . . . , k − 1}

there are λ, α, β ∈ R with 0 < λ ≤ 1, and z ∈ Zn+k,
such that λw + z = αṽi + βṽi+1. If λ is irrational then
utilize the transformation matrix U to obtain the equa-
tion λUw + Uz = αen+i + βen+i+1, and observe that
then all components of Uw and Uz vanish except possi-
bly those in the n+ i, n+ i+1 positions. Writing Uz as a
linear combination of en+i, en+i+1, and applying the in-
verse transformation then shows that w = α′ṽi+β

′ṽi+1.
However, this is impossible since wj = 0 for j = 1, . . . , n
while vi and vi+1 are linearly independent. It follows
that λ is rational, and hence so are α and β.

We may now find relatively prime integers a,b, c, and
1 < d ≤ m, such that λ = d/m and

c d
mw + cz = aṽi + bṽi+1.

Let x ∈ Zn and y,wk ∈ Zk be such that z = (x,y) and
w = (0,wk), then this equation splits into two parts

cx = avi + bvi+1, cdwk = m(aei + bei+1 − cy).

Clearly m cannot divide d, and also m cannot divide
every component of wk = (wn+1, . . . , wn+k) since w is
primitive. It follows that m must divide c, and thus c =
mc′ for some integer c′. Since the rod structures making
up D satisfy the admissibility condition, we then have

b = det2(vi, avi + bvi+1) = mdet2(vi, c
′x).

Hence m divides b. By a similar argument we can see that
m divides a as well. We have now reached a contradiction
since m > 1 divides a, b, and c which are relatively prime.
Therefore, the subtorus action must be free.

The free subtorus action rotates the last k circles
in the fibers of M̃n+k+3 which are parameterized by
(ϕn+1, . . . , ϕn+k), while keeping the first n circles fixed.
Hence, viewing the spacetime as a bundle with torus
fibers, the projection map M̃n+k+3 → M̃n+k+3/T k may
be described by

(p, ϕ1, . . . , ϕn+k) 7→ (p, ϕ1, . . . , ϕn),

where p ∈ R2
+. To show that the quotient space is indeed

homeomorphic to the given topology Mn+3, we observe
that the projection map implies that the rod data set
D̃ encoding the higher dimensional topology, descends
down to the rod data set D for M̃n+k+3/T k; this will be
shown in detail below.

Lastly, since the free subtorus action is by isometries,
and the static vacuum total space M̃n+k+3 is regular,
the same is true of the quotient Mn+3. In particular,
this solution is devoid of conical singularities. We note
that as a consequence of the dimensional reduction on
tori, Kaluza-Klein matter fields will be present. Indeed,
the metric on M̃n+k+3 may be expressed in Kaluza-Klein
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format as

g̃ = g +

n+k∑
µ,ν=n+1

hµν(dϕ
µ +Aµi dϕ

i)(dϕν +Aνj dϕ
j),

where i, j = 1, . . . , n, hµν = f̃µν , hµνA
µ
i = f̃νi, and

the (quotient) metric g on Mn+3 is given in Weyl-
Papapetrou [11] form by

g = −(fh)−1ρ2dt2+(fh)−1e2σ(dρ2+dz2)+

n∑
i,j=1

fijdϕ
idϕj ,

with fij + hµνA
µ
i A

ν
j = f̃ij , f = det(fij), and h =

det(hµν). The dimensionally reduced Lagrangian on
Mn+3 may then be expressed [28, Section 11.4] as

L =
√
hg

(
R− 1

4
(|Tr(h−1∇h)|2 +Tr(h−1∇h)2 + |F|2)

)
,

where R is the scalar curvature of g, |F|2 = hµνFµijFν
ij

with Fµ = dAµ and i, j labelling the coordinates of g,
and g = −detg. The second and third terms in the
Lagrangian give rise to the action for a sigma model
(harmonic map) with target space SL(k,R)/SO(k) (see
[17]), while the fourth term yields the action for Abelian
gauge fields. In partciular, the associated stress-energy-
momentum tensor will satisfy the dominant energy condi-
tion. This property is verified, and the relevant equations
of motion are given, in the appendix.

To see directly that D is the rod data set for
M̃n+k+3/T k, consider an axis rod Γl with rod structure
ṽl = v̄l+en+l within M̃n+k+3. Then f̃mjv

j
l+f̃m(n+l) = 0

on the axis rod for m = 1, . . . , n+ k. It follows from re-
lations above that

fijv
j
l + hµνA

µ
i A

ν
j v
j
l = f̃ijv

j
l = −f̃i(n+l),

and hµνA
ν
j v
j
l = f̃µjv

j
l = −f̃µ(n+l). Therefore

fijv
j
l = f̃µ(n+l)A

µ
i − f̃i(n+l) = hµ(n+l)A

µ
i − f̃i(n+l) = 0,

showing that v is the rod structure for Γl within the
quotient.

We now record what has been established. A globally
hyperbolic spacetime of dimension n+ 3 will be referred
to as multi-axisymmetric, if a (noncompact) Cauchy slice
admits the symmetry group U(1)n with a simply con-
nected 2-dimensional orbit space, so that its topology is
completely determined by an admissible rod data set D.

Theorem 3 Any possible topology of the domain of outer
communication for a multi-axisymmetric spacetime of di-
mension greater than or equal to 4, is realizable by a regu-
lar static solution of the Einstein equations with Kaluza-
Klein matter. In particular, these solutions are obtained
from a higher dimensional asymptotically Kaluza-Klein
vacuum solution by dimensional reduction on tori.

The 5-dimensional case is of particular interest. By
choosing rod structures v1 = (1, 0) and vk = (0, 1) for
the two semi-infinite rods Γ1 and Γk, cross-sections of
the time slice M4 near spatial infinity will be 3-spheres,
and in this region the spacetime curvature will approach
zero; solutions with these two properties will be referred
to as formally asymptotically flat. It should be noted
that various, often more specialized, notions of asymp-
totic flatness appear in the literature, which may not be
applicable to the solutions discussed here. In particular,
the 2-dimensional tori that foliate the S3 cross-sections,
which arise from the Hopf fibration, may not grow in the
asymptotic end. We state the next result with a focus on
the topology of black holes.

Corollary 4 There exist 5-dimensional regular formally
asymptotically flat static bi-axially symmetric solutions
of the Einstein equations with Kaluza-Klein matter, sup-
porting any finite configuration of nondegenerate black
hole horizons of the form S3, S1 × S2, or L(p, q) where
1 ≤ q < p with gcd(p, q) = 1.

We remark that all solutions discussed may be written
down explicitly in terms of the harmonic functions ui
and rod structures vi. Moreover, it is possible to replace
static solutions with stationary solutions in these results,
thus giving rotation to the constructed black holes. This
is accomplished by utilizing the harmonic map approach
of [17], instead of the harmonic function technique to ob-
tain the relevant higher dimensional vacuum solutions.
Although these stationary solutions may be shown to
exist with the same underlying topologies of the static
solutions described above, the angular momenta of the
individual black holes cannot be fully prescribed due to
the process of balancing conical singularities.

Appendix. Here it is shown that the Kaluza-Klein
matter fields satisfy the dominant energy condition, and
their equations of motion are also derived. Let LM de-
note that matter portion of the Lagrangian L, and con-
sider the stress-energy-momentum tensor defined by

4Tij =− 4√
hg

δLM
δgij

=Tr(h−1∂ih)Tr(h
−1∂jh) + Tr(h−1∂ihh

−1∂jh)

− 1

2

(
|Tr(h−1∇h)|2 +Tr(h−1∇h)2

)
gij

+ 2hµνg
lmFµ

ilF
ν
jm − 1

2
|F|2gij.

(4)

To confirm that T(X,Y ) ≥ 0 for all future-pointing g-
causal vectors X and Y , it suffices to establish that

T(n,n) ≥ |T(n, ·)| (5)

for any unit timelike vector n, where · represents (space-
like) vectors orthogonal to n having norm less than or
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equal to 1. Observe that the last line of (4) may be in-
terpreted as a sum of stress-energy-momentum tensors
for abliean gauge fields, each of which satisfies the domi-
nant energy condition (see [1]). Therefore it is enough to
show (5) for the remaining piece TH of T. To this end,
we compute

TH(n,n) =
1

2

(
|Tr(h−1∂nh)|2 +Tr(h−1∂nh)

2
)

+
1

2

(
|Tr(h−1∇⃗h)|2 +Tr(h−1∇⃗h)2

)
where ∇⃗ denotes derivatives in directions perpendicular
to n, and

TH(n, ·) = Tr(h−1∂nh)Tr(h
−1∇⃗h)+Tr(h−1∂nhh

−1∇⃗h).

As mentioned previously, the second and third terms of
L constitute the action for a sigma model with target
Riemannian symmetric space SL(k,R)/SO(k). There-
fore, the expressions for TH(n,n) and TH(n, ·) consist
of inner products between tangent vectors to the target
space. It follows that the Cauchy-Schwarz inequality may
be applied to obtain the desired inequality (5) for TH .
Lastly, to find the equations of motion for the mat-

ter fields, it is convenient to conformally change the
spacetime metric on Mn+3, namely set g = e2ψḡ where
ψ = − 1

2(n+1) log deth. The Lagrangian then becomes

L=
√
ḡ

(̄
R− 1

4
(cn|Tr(h−1∇h)|2+Tr(h−1∇h)2+e−2ψ|F|2)

)
,

where ḡ = det ḡ, R̄ is the scalar curvature of ḡ, cn =
2n+3
n+1 , and all norms are now with respect to ḡ. A
straightforward, albeit tedious computation, then shows
that the associated Euler-Lagrange equations are

□̄hµν − hικ∇̄hµι · ∇̄hκν = c̄ne
−2ψ|F|2hµν ,

d̄iv
(
e−2ψhµνFν

)
= 0,

where □̄ and d̄iv are the wave and divergence operators
with respect to ḡ, and c̄−1

n = 4(n2 + 5n+ 5).
Acknowledgments. M. Khuri acknowledges the sup-

port of NSF Grant DMS-2104229. The authors would
like to thank Hari Kunduri, Martin Rocek, and Phil Saad
for helpful comments.

∗ khuri@math.sunysb.edu
† jordan.rainone@stonybrook.edu, rainonej@gmail.com

[1] A. Alaee, M. Khuri, and H. Kunduri, Internat. J. Modern
Phys. D, 30 (2021), no. 14, 2142022.

[2] M. Astorino, R. Emparan, and A. Viganò, J. High Energy
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