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Abstract. We prove the existence of asymptotically hyperbolic solutions to the vacuum Einstein

constraint equations with a marginally outer trapped boundary of positive mean curvature, using the

constant mean curvature conformal method. As an application of this result, we verify the Penrose

inequality for certain perturbations of Schwarzschild Anti-de Sitter black hole initial data.

1. Introduction

An initial data set for the vacuum Einstein equations with cosmological constant Λ < 0 consists
of a triple (M, ĝ, k̂), where M is a 3-dimensional Riemannian manifold with metric ĝ and k̂ is a
symmetric 2-tensor that satisfy

(1.1) Rĝ + (trĝk̂)
2 − |k̂|2ĝ + 2|Λ| = 0, divĝk̂ − d(trĝk̂) = 0,

in which Rĝ denotes scalar curvature. These are the constraint equations that represent vanishing
energy and momentum densities of the matter fields, and arise from traces of the Gauss-Codazzi
system when the data are viewed as embedded in spacetime. In order to study isolated gravitating
systems, it will be assumed that the data are asymptotically hyperbolic in the sense that the extrinsic
curvature k̂ falls-off, and the metric ĝ asymptotes to the hyperbolic metric in an asymptotic end.
Constructions of asymptotically hyperbolic initial data sets have previously been studied by several
authors including Andersson-Chruściel [4], Gicquaud [19, 20], and Sakovich [36]. See also the recent
related work of Allen-Lee-Maxwell [2].

In the current paper, we will study the problem of constructing asymptotically hyperbolic initial
data with apparent horizon, or rather marginally outer trapped surface (MOTS), boundary conditions
in which the mean curvature is positive. Recall that a closed 2-sided surface Σ ⊂ M is future trapped
if its null expansion satisfies θ+ = ĥ + trΣk̂ < 0, where ĥ denotes mean curvature with respect to
the unit normal pointing towards the asymptotic end. From the spacetime perspective, the null
expansion represents the mean curvature in null directions, and thus measures the rate of change
of area of shells of light emanating from the surface in the outward future direction. The trapped
condition is interpreted as signifying a strong gravitational field. Moreover, MOTS are defined by
the equation θ+ = 0 and arise as the boundary of trapped regions [5, 18]. These surfaces may be
interpreted as quasi-local versions of the event horizon within initial data, since they depend only on
the local geometry of a slice whereas the event horizon requires global knowledge of the spacetime.
Previous work centered on initial data construction with MOTS boundary, in the asymptotically flat
context, has been carried out by Bowen-York [7], Dain [17], Holst-Meier [21], Maxwell [31, 32], and
Thornburg [37] among others.
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A standard approach to solving the Einstein constraint equations is the conformal method of
Lichnerowicz [29], Choquet-Bruhat and York [14], where (in vacuum) the conformal metric, the
divergence-free and traceless part of the ‘conformal extrinsic curvature’, and the mean curvature of
the slice are treated as free data. This reduces the constraint equations to a coupled elliptic system,
where the unknowns are the conformal factor and the remaining portion of the conformal extrinsic
curvature. Moreover, the mean curvature serves as a coupling function in the reduced system, so that
in the CMC (constant mean curvature) case the Hamiltonian and momentum constraints decouple
and can be solved independently. Initial data containing black holes fits well into this approach. The
assumption that the boundary is a marginally outer trapped surface can be encoded in the form of
a Robin-type boundary condition for the conformal factor. An extended discussion of results and
approaches to the conformal method can be found in reviews by Bartnik-Isenberg [6], and Carlotto
[10].

As an application of our existence result, concerning asymptotically hyperbolic initial data ad-
mitting a MOTS boundary with positive mean curvature, we will confirm the Penrose inequality for
certain perturbations of Schwarzschild-AdS. The Penrose inequality is a precise lower bound for the
total mass of an initial data set in terms of the (appropriately defined) surface area of black holes
contained within it. Although it was originally conjectured in the asymptotically flat setting [35],
where it was proven in time-symmetry by Bray [8] and Huisken-Ilmanen [23], the Penrose inequal-
ity has been proposed with two different versions in the asymptotically hyperbolic context [9, 38].
Namely, one form of the inequality is suited for asymptotically hyperboloidal slices of asymptotically
flat spacetimes, while the other is tailored for asymptotically totally geodesic slices of asymptotically
AdS spacetimes; it is the latter that will be studied here. Relatively little is known about the hyper-
bolic versions of the Penrose inequality outside of spherical symmetry [24], the graphical case [16, 30],
and time-symmetric perturbations of Schwarzschild-AdS [3]. See also the results of [1, Theorem 1.3]
and [28] concerning asymptotically locally hyperbolic initial data. Moreover, it is known that the
naive approach using inverse mean curvature flow does not succeed [34], however when coupled with
a Jang-type equation the desired inequality follows [12, 13] assuming existence for a coupled system
of equations.

This paper is organized as follows. In the next section the main results will be stated, while
in Section 3 we make the appropriate definitions, set notation, and review various details of the
conformal method. Section 4 is dedicated to a mean curvature estimate, and in Section 5 we construct
appropriate barriers for application of the method of sub/super solutions to solve the Lichnerowicz
equation. The purpose of Section 6 is to record properties of initial data with a MOTS boundary
that are conformal to Schwarzschild-AdS, in preparation for studying the Penrose inequality in a
perturbative regime. Lastly, in Section 7 we establish the spacetime Penrose inequality for a class of
conformal perturbations of Schwarzschild-AdS data.

2. Statement of Results

The main results of this work consist of two theorems. The first is a statement concerning the
existence of vacuum asymptotically hyperbolic maximal initial data having a MOTS boundary of
positive mean curvature. This is established with the conformal method, and comes with an as-
sumption that the boundary mean curvature with respect to the seed metric g is nonnegative and
bounded above by a constant C depending on the boundary normal injectivity radius T0, the sectional
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curvature K of g, and the cosmological constant Λ. Namely

(2.1) max
∂M

h < C
(
T0,min

MT0

K,max
MT0

K+,Λ

)
,

where K+ is the positive part of K, and MT0 denotes the set of points whose distance from the bound-
ary is not larger than T0. While the precise form of this constant is given in Proposition 2, here we
note that C reduces to min{4, 4|Λ|} for boundaries with an infinite injectivity radius in manifolds
of nonpositive curvature. Another hypothesis of the result is that the seed Riemannian manifold
is asymptotically hyperbolic of constant scalar curvature, and with a boundary of positive mean
curvature. However, such seeds are readily available as they may be obtained by conformal defor-
mation from essentially any asymptotically hyperbolic manifold [19, Theorem 1.1]. This hypothesis
may be compared with a similar one in the asymptotically flat setting, where in [31, Corollary 1]
seed data are produced by conformal change to zero scalar curvature and small positive boundary
mean curvature1. The weighted Hölder spaces used in the following result are presented in the next
section.

Theorem 1. Let (M, g) be a 3-dimensional C2,β
τ -asymptotically hyperbolic manifold with 0 < β < 1,

1 < τ < 3, scalar curvature Rg = −2|Λ|, and boundary of nonnegative mean curvature h that satisfies

(2.1). Assume that k ∈ C1,β
τ (M) is a divergence and trace-free 2-tensor with 0 ≤ knn ≤ h on ∂M ,

where n denotes the unit normal pointing towards the asymptotic end. Then the boundary value
problem

∆gϕ =
|Λ|
4
ϕ
(
ϕ4 − 1

)
− 1

8
|k|2gϕ−7 on M,

∂nϕ = −1

4
hϕ+

1

4
knnϕ

−3 on ∂M,

(2.2)

admits a positive solution with ϕ − 1 ∈ C2,β
τ (M). In particular, the metric ĝ = ϕ4g and tensor k̂ =

ϕ−2k satisfy the vacuum constraints (1.1), and (M, ĝ, k̂) forms an asymptotically hyperbolic maximal

initial data set of class (β, τ) with a MOTS boundary of nonnegative mean curvature ĥ = ϕ−6knn.

Remark 1. Let κ be a smooth section of T ∗M restricted to ∂M . Then Theorem 4 below shows

how to construct a transverse-traceless (divergence and trace-free) tensor k ∈ C1,β
τ (M) such that

k(n, ·) = κ on ∂M . Hence, for any function κ(n) ∈ C∞(∂M) satisfying 0 ≤ κ(n) ≤ h, there exists k
satisfying the relevant hypotheses of Theorem 1.

This theorem is complementary to [19, Theorem 1.2], where the resulting initial data has a MOTS
of nonpositive mean curvature because of the assumption there that knn ≤ 0 on ∂M . Theorem 1
admits MOTS of positive ĥ, at the cost of placing an upper bound (2.1) on the seed mean curvature

in terms of the geometry near the boundary. The positive sign of ĥ is relevant from the perspective of
proving the Penrose inequality, where it is used in the perturbative setting to show that the boundary
is outerminimizing; for a precise statement regarding this issue see Lemma 4 below. The proof of
Theorem 1 is motivated by a similar result for the asymptotically flat case treated by Maxwell [31,
Theorem 1], where the hypothesis of a positive Yamabe invariant is used and may be viewed as
related to the mean curvature upper bound. Indeed, when combined with a seed metric of zero
scalar curvature, positivity of the Yamabe invariant [31, page 563] yields an integral upper bound
for the mean curvature in terms of global quantities.

1In the statement of [31, Corollary 1] the mean curvature is said to be negative, however the author there is using

an alternative definition of second fundamental form, resulting in a change of sign.
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The second main result is a verification of the Penrose inequality for perturbations of Schwarzschild-
AdS initial data. A similar study has been carried out by the second author and Tafel in [25, 26]
for asymptotically flat and axisymmetric initial data, where the Penrose inequality with angular
momentum was confirmed up to second order of expansion with respect to a scale determined by the
conformal extrinsic curvature. Moreover, the Penrose inequality for perturbations of Schwarzschild-
AdS has been established in the time-symmetric case by Ambrozio [3]. In the current work, we will
consider the case of non-time-symmetric perturbations, in particular those with a MOTS boundary.
We start with seed data (gS , k), where gS is the induced metric on the canonical slice of Schwarzschild-
AdS and k is a transverse-traceless tensor with respect to gS . Recall that in Schwarzschild coordinates
the seed metric of mass m > 0 is defined on M = [ρh,∞)× S2 and is given by

(2.3) gS =
dρ2

1− 2m
ρ + |Λ|

3 ρ2
+ ρ2gS2 ,

where ρh > 0 is the real zero of the static potential, and gS2 denotes the unit round metric on the
2-sphere. In order to obtain perturbations of the canonical slice, we take solutions to the constraints
via the conformal method such that the conformal factor and seed extrinsic curvature satisfy

(2.4) ϕ = 1 +
∞∑
j=1

ϕjϵ
j , k = ϵk′,

for a perturbation parameter ϵ > 0, functions ϕj ∈ C2,β
τ (M), and a fixed transverse-traceless tensor

k′ ∈ C1,β
τ (M). Further discussion on the construction of the perturbed data is given in Section 6.3.

In the following result, dVS and H1 will represent the volume form and Sobolev space of square
integrable derivatives with respect to gS .

Theorem 2. Let (M, ĝ = ϕ4gS , k̂ = ϕ−2k) be a 3-dimensional, vacuum, maximal, asymptotically
hyperbolic, conformally perturbed Schwarzschild-AdS initial data set as in (2.4) of class (β, τ) with
0 < β < 1, τ > 3/2, and having MOTS inner boundary ∂M . If there exists a constant C and domain
M ′ ⊃ ∂M such that

(2.5)

∫
M

|k|2gS

√
1− 2m

ρ
+

|Λ|
3
ρ2dVS > C||knn||2H1(M ′),

then the Penrose inequality

(2.6) m ≥
√

Ah

16π

(
1 +

|Λ|
12π

Ah

)
holds for all ϵ sufficiently small, where m denotes total mass and Ah is the area of the MOTS
boundary.

3. Preliminaries

3.1. Asymptotically hyperbolic initial data. Let Λ < 0 and consider the reference hyperbolic
space (H3

Λ, b) of curvature Λ/3, where the metric is given in scaled geodesic polar coordinates by

(3.1) b =
3

|Λ|
(
dr2 + sinh2 rgS2

)
,

and gS2 is the unit round metric on the 2-sphere. We will work with definitions of weighted Hölder
spaces as presented in [22]; see [2] for recent developments on the use of weighted spaces in the
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asymptotically hyperbolic context. Let B ⊂ H3
Λ be a ball, l ∈ N, β ∈ [0, 1], τ ∈ R and define

C l,β
τ

(
H3

Λ \B
)
to be the collection of functions that are locally Hölder smooth of order (l, β) on the

complement domain and satisfy

(3.2) |f |
Cl,β

τ (H3
Λ\B)

:=
l∑

i=0

sup
x∈H3

Λ\B
eτr|∇̊if(x)|b + sup

x∈H3
Λ\B

eτr[∇̊lf ]β;B1(x) < ∞,

where ∇̊ denotes covariant differentiation with respect to b and

(3.3) [∇̊lf ]β;B1(x) = sup
1≤i1,...,il≤3

(
sup

y ̸=z∈B1(x)

|ei1 · · · eil(f)(y)− ei1 · · · eil(f)(z)|
db(y, z)β

)
,

where B1(x) is the unit geodesic ball centered at x intersected with H3
Λ \B, the b-distance is labelled

db, and {ei} is the orthonormal frame for b adapted to the geodesic polar coordinates used in (3.1).
This definition may be extended to tensors of arbitrary type by requiring that their components

(in the orthonormal frame) lie inside C l,β
τ

(
H3

Λ \B
)
. Furthermore, if K ⊂ M is a compact set and

Ψ : M \K → H3
Λ \B is a diffeomorphism, then the weighted Hölder norms |f |

Cl,β
τ (M)

may be defined

as the sum of the weighted norm |Ψ∗f |Cl,β
τ (H3

Λ\B)
and the typical C l,β norm over K. The completion

of the spaces C l,β
c (M) of compact support, with respect to the weighted Hölder norm, is then denoted

C l,β
τ (M).

Definition 1. We say that a 3-dimensional Riemannian manifold (M, g) is C l,β
τ -asymptotically

hyperbolic for l ∈ N, β ∈ [0, 1], and τ > 0, if there exists a compact set K ⊂ M and a diffeomorphism
Ψ : M \ K → H3

Λ \B such that

(3.4) Ψ∗g − b ∈ C l,β
τ

(
H3

Λ \B
)
.

Definition 2. A triple (M, g, k) is an asymptotically hyperbolic initial data set of class (β, τ) with
β ∈ [0, 1] and τ > 0 if

• (M, g) is a C2,β
τ -asymptotically hyperbolic manifold,

• k is a symmetric 2-tensor and k ∈ C1,β
τ (M).

3.2. Conformal method for the Einstein constraint equations. In this well-studied approach
to the vacuum constraints, a triple (M, g, ς) consisting of Riemannian manifold (M, g) and a scalar
function (prescribed mean curvature) ς is given. The constraints are then solved by searching for a
scalar function ϕ > 0 (the conformal factor) and a one-form X that satisfy

∆gϕ− 1

8
Rgϕ =

1

4

(
1

3
ς2 + |Λ|

)
ϕ5 − 1

8
|k|2gϕ−7,(3.5)

divg (DgX) =
2

3
ϕ6dς,(3.6)

where Rg is scalar curvature, ∆g is the Laplace operator of g, the conformal extrinsic curvature is
given by k = DgX, and Dg represents the trace-free Lie derivative

(3.7) DgX := LXg − 2

3
(divgX) g.

The semilinear elliptic equation (3.5) is called the Lichnerowicz equation [29]. Furthermore, the

desired solution initial data set (M, ĝ, k̂) for the vacuum constraint equations may then be obtained
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from these quantities as follows

(3.8) ĝ = ϕ4g, k̂ = ϕ−2k +
1

3
ςϕ4g.

If ς = const (CMC data) then the conformally formulated constraints decouple, and the solution
can be obtained by firstly solving (3.6) for X and then solving (3.5) for ϕ. Alternatively, if one is
given a transverse-traceless tensor k on (M, g) to begin with, then it is only necessary to solve the
Lichnerowicz equation, and we refer to (M, g, k) as seed data.

3.3. Marginally outer trapped surface boundary condition. Suppose that a solution to the
constraints (M, ĝ, k̂) is given with an asymptotic end, as described above. Then the future null
expansion of an inner boundary ∂M takes the form

(3.9) θ+(∂M) = ς − k̂n̂n̂ + ĥ,

where ĥ = d̂iv∂M n̂ is mean curvature and n̂ is the boundary unit normal with respect to ĝ that is
pointing towards the asymptotic end. In terms of conformal quantities we have

(3.10) θ+(∂M) =
2

3
ς − knnϕ

−6 + (4∂nϕ+ hϕ)ϕ−3,

where h and n are the boundary mean curvature and unit normal with respect to g. The boundary
is a MOTS if θ+(∂M) = 0, which reduces to a nonlinear Robin-type boundary condition for ϕ that
may be expressed as

(3.11) ∂nϕ+
h

4
ϕ =

1

4
knnϕ

−3 − ς

6
ϕ3 on ∂M.

The physical interpretation of the MOTS condition is that light rays emanating from such a surface
to the future are not diverging. Under favorable conditions, this indicates the existence of a black
hole region within the spacetime evolved from the initial data.

3.4. Maximal initial data with a MOTS. In summary, if the vacuum initial data set (M, ĝ, k̂) has
vanishing mean curvature (ς = 0) and an inner boundary ∂M that is a MOTS, then the conformally
formulated constraint equations reduce to the boundary value problem

∆gϕ− 1

8
Rgϕ =

1

4
|Λ|ϕ5 − 1

8
|k|2gϕ−7 on M,

∂nϕ+
1

4
hϕ =

1

4
knnϕ

−3 on ∂M,

(3.12)

in addition to the vector equation for the extrinsic curvature

(3.13) divg (DgX) = 0.

In what follows we will study the existence of solutions to (3.12) and (3.13) in the asymptotically
hyperbolic setting, under the CMC assumption. Note that the asymptotically hyperbolic condition
implies that the only constant mean curvature possible is ς = 0.

4. Mean Curvature Estimate

In this section we will prove a lower bound on the mean curvature of constant distance surfaces to
the boundary of a Riemannian manifold, assuming that the boundary is of nonnegative mean curva-
ture. This estimate will play an important role in the construction of barriers for the Lichnerowicz
equation.
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Proposition 1. Let (M, g) be a 3-dimensional complete Riemannian manifold with boundary ∂M ,
and set MT = {x ∈ M | t(x) ≤ T} where t(x) = dist (x, ∂M). Assume that T is smaller than the
normal injectivity radius of ∂M , and that its mean curvature is non-negative. Then

(4.1) max
MT

|h−t | ≤ T cosh2(
√

|K0|T )
∑
i=1,2

max
MT

K+(∂t, ei),

where h−t is the negative part of the mean curvature for the t-level sets, K+ is the positive part of the
sectional curvature, K0 is a negative lower bound for sectional curvature in MT , and {∂t, e1, e2} is
an orthonormal frame.

Proof. Choose T < T0, where T0 is the normal injectivity radius of ∂M . The mean curvature ht of the
t-level sets can be estimated from below in the following way. Consider a Jacobi field J orthogonal
to ∂t along a radial geodesic emanating from the boundary. Then from the Riccati equation we have

(4.2) ∂t (AJJ) = −K(∂t, J) |J |2g +A2
JJ ≥ −max

MT

K+ (∂t, J)max
MT

|J |2g,

where A is the second fundamental form of constant t-surfaces, and K(∂t, J) denotes sectional cur-
vature. Hence

(4.3) AJJ(t) ≥ −t

(
max
MT

K+ (∂t, J)max
MT

|J |2g
)
+AJJ(0),

for t ≤ T . Next, consider the Jacobi field Dirichlet problems

(4.4) ∇t∇tJi +R(Ji, ∂t)∂t = 0, Ji(0) = vi, Ji(T ) = wi, i = 1, 2,

where {v1, v2} and {w1, w2} are orthonormal eigenvectors of the second fundamental form A at t = 0
and t = T , respectively. Note that since there are no conjugate points for t ≤ T < T0, a unique
solution exists to these boundary value problems. Using Ji, i = 1, 2 from (4.4) and taking a trace of
(4.3) yields

(4.5) max
MT

|h−t | ≤ T
∑
i=1,2

(
max
MT

K+ (∂t, Ji)max
MT

|Ji|2g
)
,

where the non-negativity of h0 has been used. Observe that if K+ = 0, then the constant distance
surfaces have nonnegative mean curvature (h−t = 0).

To estimate the size of the Jacobi field we will use the Rauch comparison theorem for hypersurfaces
(see [39, Theorem 4.3]). Let K0 < 0 be a lower bound for the sectional curvature of MT , and consider
the hyperbolic space (H3, gK0) of curvature K0 with metric

(4.6) gK0 = ds2 +
1

|K0|
sinh2

(√
|K0|s

)
gS2 .

The two eigenvalues of the second fundamental form for the s = s0 coordinate sphere are given by

(4.7) λK0
i (s0) =

√
|K0| coth

(√
|K0|s0

)
, i = 1, 2.

Moreover, if z(s) is a parallel transported unit vector field along and orthogonal to a radial geodesic
in hyperbolic space, then

(4.8) JK0(s) =
C√
|K0|

cosh
(√

|K0|s
)
z(s)
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is a Jacobi field for any constant C. We may choose s0 > 0 sufficiently small so that

(4.9) λi(0) ≤ λK0
i (s0) =

1

s0
+O(1),

where λi(0) are the eigenvalues of the extrinsic curvature of ∂M , and we can arrange for JK0 to have
unit norm at s = s0 by setting

(4.10) C =

√
|K0|

cosh
(√

|K0|s0

) ⇒ |JK0 (s0) |gK0 = |Ji (0) |g = 1.

Therefore, by applying [39, Theorem 4.3] it follows that

|Ji(t)|g ≤ |JK0(s0 + t)|gK0 =
cosh

(√
|K0| (s0 + t)

)
cosh

(√
|K0|s0

) for t ∈ [0, T ].(4.11)

Since (4.11) is satisfied for all appropriately small s0, we can take the limit s0 → 0 to obtain

(4.12) |Ji(t)|g ≤ cosh
(√

|K0|t
)

for t ∈ [0, T ], i = 1, 2.

Hence, the desired inequality (4.1) now follows from (4.5) and (4.12). □

5. Constraint Equations With a MOTS Boundary Condition

Let (M, g) be a C2,β
τ -asymptotically hyperbolic manifold with a boundary ∂M , such that 0 < β < 1

and 1 < τ < 3. We will use a barrier method following Gicquaud [19, Proposition 2.1] to solve the
Lichnerowicz equation with MOTS boundary condition (3.12). The result of [19] only gives rise
to initial data with a MOTS boundary that has nonpositive mean curvature, while here we obtain
initial data with a MOTS boundary of positive mean curvature. The construction of barriers in this
latter case requires additional control of the geometry of the seed metric near the boundary, which is
recorded below in Proposition 2. It should be noted that a similar formulation of the barrier method
was utilized by Maxwell [31], but with the local control on the near-boundary geometry replaced with
a restriction on the Yamabe invariant, in the context of asymptotically flat initial data with MOTS
boundary condition. In addition, Sakovich [36] studied the Lichnerowicz equation with matter on
asymptotically hyperbolic manifolds without inner boundary.

The proof of the main theorem will rely on the existence of a solution to a linear Robin boundary
value problem on the asymptotically hyperbolic manifold. It may be interpreted as a model equation
for the nonlinear Lichnerowicz equation with MOTS boundary condition, and will be used in the
construction of the global supersolution for the latter. In order to solve this model equation we
require a bound on the mean curvature of the inner boundary of the form

(5.1) max
∂M

h < C (T0,K0,K1,Λ) ,

where T0 is the injectivity radius of the boundary and K0 and K1 are sectional curvature lower and
upper bounds in a neighborhood of ∂M . In the limit as |Λ| → 0 the function C approaches zero,
whereas for boundaries with infinite injectivity radius in manifolds of nonpositive curvature it is equal
to min{4, 4|Λ|}. Moreover, if there exists a foliation of positive mean curvature surfaces emanating
from ∂M , the form of C simplifies in a significant way and no longer depends on K0 and K1.
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Proposition 2. Let (M, g) be a C2,β
τ -asymptotically hyperbolic manifold with 0 < β < 1, and τ > 0.

Assume that the mean curvature h of the boundary ∂M is nonnegative and bounded from above in
the following way

(5.2) max
∂M

h < C (T0,K0,K1,Λ) := sup
T∈[0,T0)

(
4T min{1, |Λ|}

8 + T + 2T 2K1 cosh
2(
√
|K0|T )

)
,

where T0 is the boundary injectivity radius, K0 < 0 is a lower bound for sectional curvature in MT ,
and K1 := maxMT

K+ is the maximum of the positive part of the sectional curvature K. Then the
boundary value problem

(∆g − |Λ|)u = F on M,(
∂n +

α

4
h
)
u = f on ∂M,

(5.3)

with F ∈ C0,β
δ (M), f ∈ C1,β(∂M) and α ∈ [0, 1] admits a solution u in C2,β

δ (M) for 1 < δ < 3.

Proof. First note that the operator P =
(
∆g − |Λ|,

(
∂n + α

4h
)
|∂M

)
is self-adjoint. Suppose that

u ∈ kerP ⊂ C2,β
δ (M) with δ > 1, then

0 =

∫
M

(
−u∆gu+ |Λ|u2

)
dV

=

∫
M

(
|∇u|2g + |Λ|u2

)
dV − α

4

∫
∂M

hu2dσ.

(5.4)

We can also use the Sobolev trace inequality to find

(5.5)

∫
M

(
|∇u|2g + u2

)
dV ≥ C

∫
∂M

u2dσ,

for some constant C > 0 that will be examined below. By combining this with the previous equation
we obtain

(5.6) 0 ≥
(
Cmin{1, |Λ|} − 1

4
max
∂M

h

)
||u||2H1(M).

Therefore, the kernel is trivial if max∂M h < 4Cmin{1, |Λ|}. In this case, the existence of a solution
for 1 < δ < 3 follows from a similar argument as in [31, Proposition 3.1], adapted to the weighted
Hölder spaces and Fredholm properties of elliptic operators in the asymptotically hyperbolic setting
([27, Theorem C] with R = 2).

It remains to estimate the constant C in (5.5). Consider the distance function to the boundary
t(x) = dist(x, ∂M), and let T < T0 where T0 is the normal injectivity radius of ∂M . Define a
nonnegative cut-off function η = η(t) such that η(t) = 1 for t ≤ T/2 and η(t) = 0 for t ≥ T , then∫

∂M
u2dσ =

∫
∂M

η2u2dσ = −
∫
M

div
(
η2u2∂t

)
dV

= −
∫
M

(
2ηu2∂tη + 2uη2∂tu+ u2η2ht

)
dV

≤
∫
M

(
|∇u|2g +

(
2|∇η|g + 1 + |h−t |

)
u2
)
dV

≤
(
max
MT

(
2|∇η|g + 1 + |h−t |

))
||u||2H1(M)

(5.7)



10 MARCUS KHURI AND JAROS LAW KOPIŃSKI

where ht is the mean curvature of the t-level sets and h−t = min{ht, 0}. Therefore we may take

(5.8) C =

(
max
MT

(
2|∇η|g + 1 + |h−t |

))−1

,

and the condition for a trivial kernel becomes

(5.9) max
∂M

h <
4min{1, |Λ|}

8T−1 + 1 +maxMT
|h−t |

,

where the cut-off function has been chosen to ensure

(5.10) max
MT

|∇η|g ≤ 4

T
.

Moreover, using the lower bound on |h−t | from Proposition 1 shows that (5.9) holds if

(5.11) max
∂M

h <
4T min{1, |Λ|}

8 + T + 2T 2K̃1 cosh
2(
√
|K0|T )

,

where

(5.12) K̃1 := max
i=1,2

max
MT

K+ (∂t, ei) .

Since T may be chosen arbitrarily within the injectivity radius, the desired result now follows. □

We are now in a position to use the sub/supersolution method of [19, Proposition 2.1] to solve
the Lichnerowicz equation on an asymptotically hyperbolic manifold (M, g) with constant negative
scalar curvature Rg = −2|Λ|, and nonnegative mean curvature on the boundary. These conditions
on the scalar and mean curvature may be assumed without loss of generality (if 0 < τ < 3) in
light of [19, Theorem 1.1], which shows that an arbitrary asymptotically hyperbolic manifold can be
conformally transformed to achieve this outcome.

Our construction of the supersolution for the nonlinear boundary value problem (2.2) is motivated
by a similar existence theorem given by Maxwell [31]. However, instead of assuming a global bound on
the geometry in the form of a positive Yamabe invariant, we prove the existence of a supersolution
under a condition bounding the mean curvature (5.2). This approach also differs from the one
presented by the Gicquaud [19], where the barriers are constructed in an explicit way.

In the next theorem we solve the Lichnerowicz equation with Robin boundary condition, which
will be used to form initial data with a MOTS of positive mean curvature. This may be viewed as a
complimentary result to the analogous theorem from [19, Theorem 1.2], where the resulting MOTS
has nonpositive mean curvature. The positive mean curvature property of the MOTS that we find
here allows us to apply new initial data to study the asymptotically hyperbolic Penrose inequality
in Section 7.

Theorem 3. Let (M, g) be a C2,β
τ -asymptotically hyperbolic manifold with 0 < β < 1, 1 < τ < 3,

scalar curvature Rg = −2|Λ|, and boundary of nonnegative mean curvature h that satisfies (5.2).

Assume that k ∈ C1,β
τ (M) is a divergence and trace-free 2-tensor with 0 ≤ knn ≤ h on ∂M . Then

the boundary value problem

∆gϕ =
|Λ|
4
ϕ
(
ϕ4 − 1

)
− 1

8
|k|2gϕ−7 on M,

∂nϕ = −1

4
hϕ+

1

4
knnϕ

−3 on ∂M,

(5.13)

admits a positive solution with ϕ− 1 ∈ C2,β
τ (M).
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Proof. Let ϕ = 1 + v and set

L (v) := ∆gv −
|Λ|
4

(1 + v)
(
(1 + v)4 − 1

)
+

1

8 (1 + v)7
|k|2g,

B (v) := ∂nv +
h

4
(1 + v)− knn

4 (1 + v)3
.

(5.14)

It can be checked that

(5.15) L (0) =
|k|2g
8

, B (0) =
h

4
− knn

4
,

so v− = 0 is a subsolution due to the assumption that knn ≤ h on ∂M .
Following [31], in order to find a supersolution consider the boundary value problem

∆gvα − |Λ|vα = −α

8
|k|2g on M,

∂nvα = −α

4
h (1 + vα) on ∂M,

(5.16)

for α ∈ [0, 1]. The existence of a solution vα ∈ C2,β
τ (M) is guaranteed by Proposition 2. Let

I = {α ∈ [0, 1] | vα > −1}. Notice that this set is nonempty since v0 = 0, and from the estimates
implicit in the proof of the previous proposition we find continuous dependence of the solutions on
coefficients, showing that I is open as well. Next consider α0 ∈ Ī. Then vα0 ≥ −1, as α0 is a limit
point. In fact, the strong maximum principle implies that vα0 > 0, and therefore I is closed. It
follows that I = [0, 1], and we choose v+ = v1. Observe that

L (v+) = −
|k|2g
8

(
1− 1

(1 + v+)
7

)
− |Λ|

4
v2

+

(
10 + 10v+ + 5v2

+ + v3
+

)
≤ 0,

B (v+) = − knn

4 (1 + v+)
3 ≤ 0,

(5.17)

since knn ≥ 0 on ∂M , and therefore v+ is a supersolution. We can now use [19, Proposition
2.1] combined with the proof of [19, Theorem 3.3] to obtain a solution ϕ of (5.13) with ϕ − 1 ∈
C2,β
τ (M). □

5.1. The momentum constraint. The seed extrinsic curvature will be sought in the form k =
DgX, where X is a 1-form satisfying

divg (DgX) = 0 on M,

DgX(n) = κ on ∂M.
(5.18)

Note that the boundary data 1-form κ has a normal component κ(n) = knn, which is required to
satisfy an upper bound for applicability of Theorem 3. In order to study the existence of solutions,

consider X ∈ C2,β
δ (M), δ > 1 in the kernel of (divgDg, B|∂M ), where B is the boundary operator

from (5.18). Integrating by parts produces

(5.19) 0 = −
∫
M
⟨X,divg(DgX)⟩dV =

1

2

∫
M

|DgX|2gdV,

so that DgX = 0. This means that X is a conformal Killing field vanishing at infinity, and it is a well-
known fact that in the asymptotically hyperbolic setting there are no such nontrivial fields [19, 27].
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Moreover, the L2-adjoint operator may be computed in a straightforward way. Let X,Y ∈ C2,β
δ (M)

with δ > 1, then∫
M
⟨Y, divg(DgX)⟩dV =−

∫
∂M

DgX (Y, n) dσ −
∫
M
⟨DgY,∇X⟩dV

=

∫
∂M

(DgY (X,n)−DgX (Y, n)) dσ +

∫
M
⟨divg(DgY ), X⟩dV

(5.20)

showing that the operator is self-adjoint. Hence, the boundary value problem (5.18) has trivial
cokernel, and may be solved for arbitrary κ as long as the operator is Fredholm. A complete proof,
with general fall-off, is presented in [19, Theorem 6.9].

Theorem 4. Let (M, g) be a C2,β
τ -asymptotically hyperbolic manifold with 0 < β < 1, τ > 0. Let κ

be a smooth section of T ∗M restricted to ∂M , then the boundary value problem

divg (DgX) = 0 on M,

DgX(n) = κ on ∂M,
(5.21)

admits a unique solution X ∈ C2,β
δ (M) for any 1 < δ < 3.

6. Initial Data With a MOTS Conformal to Schwarzschild-AdS

The conformal method of the Einstein constraint equations can be used to verify the Penrose
inequality for a class of perturbations of known black hole solutions. In [25, 26], this has been carried
out for the Penrose inequality with angular momentum assuming axisymmetric perturbations of
Schwarzschild initial data. As an application of the existence results derived above for the constraints
with a MOTS boundary in the asymptotically hyperbolic setting, we will study the hyperbolic
Penrose inequality for perturbations of Schwarzschild-AdS initial data. In this section we apply
Theorem 3 to construct initial data conformal to Schwarzschild-AdS as well as calculate mass and
linear momentum for such data. In the following section we will treat the Penrose inequality for
perturbations of Schwarzschild-AdS initial data.

6.1. Schwarzschild-AdS initial data. The Schwarzschild-AdS metric in Schwarzschild coordi-
nates is given by

(6.1) g = −
(
1− 2m

ρ
+

|Λ|
3
ρ2

)
dt2 +

dρ2

1− 2m
ρ + |Λ|

3 ρ2
+ ρ2gS2 ,

on the domain of outer communication R× [ρh,∞)× S2. The first fundamental form of a t =const
hypersurface is then

(6.2) gS =
dρ2

1− 2m
ρ + |Λ|

3 ρ2
+ ρ2gS2 ,

and the radius ρh at which a MOTS (minimal surface) occurs satisfies the relation

(6.3) θ+ = h = 0 ⇐⇒ m =
ρh
2

(
1 +

|Λ|
3
ρ2
h

)
.

Note that that there is a single positive real root (MOTS radius) regardless of the values of m > 0
and |Λ|.
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6.2. The total energy-momentum vector of asymptotically hyperbolic initial data. Let
(M, g, k) be an asymptotically hyperbolic vacuum initial data set of class (β, τ) with τ > 3

2 . Such
initial data have a well-defined total energy and linear momentum (see Michel [33]) defined as follows.
Let

(6.4) b =
dρ2

1 + |Λ|
3 ρ2

+ ρ2gS2

be the hyperbolic reference metric in hyperboloidal coordinates, which may be obtained from (3.1) by

setting ρ =
√

3
|Λ| sinh r. Define ḡ = Ψ∗g − b where Ψ is the diffeomorphism defining the asymptotic

coordinate system, and consider lapse functions for Killing fields on AdS

(6.5) V0 =

√
1 +

|Λ|
3
ρ2, Vi =

√
|Λ|
3
xiρ,

where xi are the Cartesian coordinates restricted to the unit sphere S2, that is

(6.6) x1 = sin θ cosφ, x2 = sin θ sinφ, x3 = cos θ.

We have

(6.7) Hessb Vα =
|Λ|
3
bVα.

Following [11, 15], the total energy-momentum vector of (M, g, k) can be defined as

(6.8) pα :=
1

16π
lim
ρ→∞

∫
Sρ

[Vα (divbḡ)− Vα (d trb ḡ) + trb ḡ (dVα)− ḡ (∇bVα)] (νb) dσb,

where α ∈ {0, 1, 2, 3} and νb =

√
1 + |Λ|

3 ρ2∂ρ. The mass m is then defined with a Lorentzian norm

of the energy-momentum 4-vector

(6.9) m2 := p2
0 −

3∑
i=1

p2
i .

In particular, if the metric is conformal to Schwarzschild-AdS, that is g = ϕ4gS , then

p0 = m− 1

8π
lim
ρ→∞

∫
Sρ

[
4ϕ3

(
1 +

|Λ|
3
ρ2

)
∂ρϕ− |Λ|

3
ρ
(
ϕ4 − 1

)]
dσ,

pi = − 1

8π
lim
ρ→∞

∫
Sρ

(
1

2ρ
+

|Λ|
3
ρ

)
xi
[
4ρϕ3∂ρϕ−

(
ϕ4 − 1

)]
dσ,

(6.10)

where the energy-momentum vector of Schwarzschild-AdS initial data is

(6.11) pS0 = m, pSi = 0.

Moreover, we have

(6.12) m =

(
AS

h

16π

)1/2

+
4

3
|Λ|
(
AS

h

16π

)3/2

,

whereAS
h = 4πρ2

h is the area of the minimal surface within the constant time slice of the Schwarzschild-
AdS spacetime.
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6.3. Perturbations of Schwarzschild-AdS initial data. We shall apply Theorem 3 to construct
a large class of perturbed Schwarzschild-AdS data having a MOTS boundary with positive mean
curvature, and will then show that the Penrose inequality holds for sufficiently small perturbation
parameter. It should be noted, however, that Theorem 3 cannot be directly applied to the time
slice of Schwarzschild-AdS (MS , gS) as this data possesses a minimal boundary. More precisely, we
require the condition that 0 ≤ knn ≤ h where h is the boundary mean curvature of the seed data.
Therefore, we will use the hyperbolic metric b as a seed, together with the fact that the time slices
of the Schwarzschild-AdS spacetime are conformal to hyperbolic space, that is gS = ϕ4

Sb.

Suppose that the asymptotically hyperbolic vacuum initial data with a MOTS (M, ĝ, k̂) is con-
structed via the conformal method of Theorem 3 with seed metric b and seed extrinsic curvature kb,
that is

(6.13) M = [rh,∞)× S2, ĝ = ϕ̄4b, k̂ = ϕ̄−2kb,

where ϕ̄ is a solution of the Lichnerowicz equation with the MOTS boundary condition (5.13) and
kb is a divergence-free and trace-free tensor with respect to b. The hypotheses of Theorem 3 require
that seed data (b, kb) satisfy

(6.14) 0 ≤ kbnn ≤
√

4|Λ|
3

coth r < 4min{1, |Λ|},

where the quantity after the second inequality is the mean curvature of the radius r-sphere in
hyperbolic space with respect to geodesic polar coordinates (see (3.1)). Moreover, we used the fact
that the sectional curvature of hyperbolic space is negative in the last inequality which arises from
(5.2). We would like the data (M, ĝ, k̂) to be expressed as conformal to Schwarzschild-AdS initial
data with minimal surface inner boundary ∂M , that is

(6.15) ĝ = ϕ4gS , k̂ = ϕ−2k,

where ϕ = ϕ̄ϕ−1
S and k = ϕ−2

S kb. Notice that k is divergence-free and trace-free with respect to gS ,
and ϕ satisfies the following boundary value problem

∆gSϕ =
|Λ|
4
ϕ
(
ϕ4 − 1

)
− 1

8
|k|2gSϕ

−7 on M,

∂nϕ =
1

4
knnϕ

−3 on ∂M,

(6.16)

if ∂M corresponds to the minimal surface of the Schwarzschild-AdS constant time slice. Let m and Λ
be the mass and cosmological constant of the Schwarzschild-AdS data, and denote by rh = rh(m,Λ)
the (geodesic polar) radial coordinate of the conformal hyperbolic space which corresponds to the
horizon. Then, in order to solve (6.16) with Theorem 3, we require rh to satisfy (6.14). We now
show that there is an open set within the range of parameters (m,Λ) for which (6.14) is satisfied.

The Schwarzschild-AdS canonical slice metric may be expressed in Schwarzschild coordinates, and
conformal to hyperbolic space with geodesic polar coordinates, to find

(6.17)
dρ2

1− 2m
ρ + |Λ|

3 ρ2
+ ρ2gS2 =

3

|Λ|
ϕ4
S

(
dr2 + sinh2 rgS2

)
.

Therefore

(6.18) ϕ2
S =

√
|Λ|
3

ρ

sinh r
,

dρ

dr
=

√
ρ2 − 2mρ+ |Λ|

3 ρ4

sinh r
.
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Below, in Lemma 1, we use these relations to show that rh(m,Λ) = ∞ as m → ∞. In this limit, the
mean curvatures of the coordinate spheres in hyperbolic space approach a constant value

(6.19) lim
m→∞

√
4|Λ|
3

coth rh =

√
4|Λ|
3

.

Thus, the last inequality of (6.14) is valid for the horizon if 1
12 < |Λ| < 12 for sufficiently large m.

We conclude that Theorem 3 may be used to construct initial data conformal to the full exterior
region of Schwarzschild-AdS, with parameters m and Λ in this range, such that the boundary of the
new data is a MOTS with positive mean curvature.

Lemma 1. Let rh(m,Λ) denote the radial geodesic polar coordinate of hyperbolic space, which corre-
sponds to the horizon in the conformal Schwarzschild-AdS time slice with mass m and cosmological
constant Λ. Then

(6.20) lim
m→∞

rh(m,Λ) = ∞.

Proof. Let ρh(m,Λ) be the radius of the horizon in Schwarzschild coordinates, as in (6.3). Then
equation (6.18) implies

(6.21)

∫ ∞

rh

dr̃

sinh r̃
=

∫ ∞

ρh

dρ̃√
ρ̃2 − 2mρ̃+ |Λ|

3 ρ̃4

.

Using the change of variables ρ̄ = ρ̃m−1/3, we find that

(6.22) − log
(
tanh

rh
2

)
= m−1/3

∫ ∞

ρhm−1/3

dρ̄√
m−2/3ρ̄2 − 2ρ̄+ |Λ|

3 ρ̄4

.

Furthermore, from (6.3) it can be shown that the asymptotic expansion of ρh for large m is given by

(6.23) ρh =

(
6m

|Λ|

)1/3

+O(m−1/3).

Therefore

(6.24) lim
m→∞

∣∣∣∣ log (tanh rh
2

) ∣∣∣∣ ≤ lim
m→∞

m−1/3

∫ ∞(
6
|Λ|

)1/3

dρ̄√
|Λ|
3 ρ̄4 − 2ρ̄

 = 0.

It follows that rh → ∞ as m → ∞. □

7. The Penrose inequality for perturbations of Schwarzschild-AdS initial data

7.1. Setup. In the previous section we showed how to apply the conformal method to construct
asymptotically hyperbolic initial data (M, ĝ = ϕ4gS , k̂ = ϕ−2k) with MOTS boundary from the seed
(gS , k), where gS arises from a constant time slice of the Schwarzschild-AdS spacetime of mass m
and cosmological constant Λ, and k is a transverse-traceless tensor with respect to gS . This data is
maximal and satisfies the vacuum constraints, in particular ϕ solves (6.16). We will now consider
data of this form which are perturbations of Schwarzschild-AdS. More precisely, it will be assumed
that

(7.1) ϕ = 1 +
∞∑
j=1

ϕjϵ
j , k = ϵk′,
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for some perturbation parameter ϵ > 0, where ϕj ∈ C2,β
τ (M), and k′ ∈ C1,β

τ (M) is again transverse-
traceless with respect to gS , such that τ > 3/2. The hyperbolic Penrose inequality takes the form

(7.2) m =

√√√√p2
0 −

3∑
i=1

p2
i ≥ A,

where

(7.3) A =

√
Ah

16π

(
1 +

|Λ|
12π

Ah

)
and Ah is the minimal area required to enclose the MOTS boundary. In the sequel we will verify the
Penrose inequality in which Ah is instead taken to be the area of the inner boundary MOTS, and
will later show that in the current perturbed context these two areas agree if the boundary mean
curvature is positive.

Each quantity appearing in the Penrose inequality may be expanded in the perturbation parameter
ϵ as follows

(7.4) p0 = m+

∞∑
j=1

p
(j)
0 ϵj , pi =

∞∑
j=1

p
(j)
i ϵj , A = m+

∞∑
j=1

A(j)ϵj .

We will study the Penrose inequality up to second order of the expansion. In order to compute the
corrections to the energy p0 we will make use of the following identity

lim
ρ→∞

ρ2

[(
1− 2m

ρ
+

|Λ|
3
ρ2

)
∂ρ ⟨ϕ⟩ −

|Λ|
3
ρ ⟨ϕ− 1⟩

]

=− ρh
2

⟨ϕ− 1⟩h
(
1 + |Λ|ρ2

h

)
− 1

8

∞∫
ρh

〈
|k|2gS
ϕ7

〉
ρ2dρ+

∞∫
ρh

|Λ|
4
ρ2
(〈
ϕ5
〉
− 5 ⟨ϕ⟩+ 4 ⟨1⟩

)
dρ,

(7.5)

where ⟨·⟩ denotes integration over the unit sphere and ⟨·⟩h is the same integral with the integrand
evaluated at the inner boundary (ρ = ρh). This identity can be derived from the Laplacian expressed
in Schwarzschild coordinates

∆gSϕ =

√
1− 2m

ρ + |Λ|
3 ρ2

ρ2
∂ρ

(
ρ2

√
1− 2m

ρ
+

|Λ|
3
ρ2∂ρϕ

)
+

1

ρ2
∆S2ϕ

=
1

ρ2
∂ρ

[
ρ2

(
1− 2m

ρ
+

|Λ|
3
ρ2

)
∂ρϕ

]
− 1

ρ2

(
m+

|Λ|
3
ρ3

)
∂ρϕ+

1

ρ2
∆S2ϕ

=
1

ρ2
∂ρ

[
ρ2

(
1− 2m

ρ
+

|Λ|
3
ρ2

)
∂ρϕ−

(
m+

|Λ|
3
ρ3

)
ϕ

]
+ |Λ|ϕ+

1

ρ2
∆S2ϕ,

(7.6)

by integrating with respect to the ‘flat volume form’ ρ2 sin θdρdθdφ, and employing the Lichenrowicz
equation (6.16) as well as the relation (6.3) between the mass m and the radius of inner boundary
ρh. Up to the second order of expansion, the energy p0 reads

p0 =m− 1

2π
lim
ρ→∞

ρ2

[(
1 +

|Λ|
3
ρ2

)(
∂ρ ⟨ϕ1⟩ ϵ+ ∂ρ ⟨ϕ2⟩ ϵ2

)
− |Λ|

3
ρ
(
⟨ϕ1⟩ ϵ+ ⟨ϕ2⟩ ϵ2

)]
− 3

2π
lim
ρ→∞

ρ2

(
1 +

|Λ|
3
ρ2

)
⟨ϕ1∂ρϕ1⟩ ϵ2 +

|Λ|
4π

lim
ρ→∞

ρ3
〈
ϕ2

1

〉
ϵ2 +O

(
ϵ3
)
.

(7.7)
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The first line of the expression above can be simplified with the use of (7.5), namely

p0 =m+
ρh
4π

(
⟨ϕ1⟩h ϵ+ ⟨ϕ2⟩h ϵ

2
) (

1 + |Λ|ρ2
h

)
+

 1

16π

∞∫
ρh

〈
|k′|2gS

〉
ρ2dρ− 5|Λ|

4π

∞∫
ρh

〈
ϕ2

1

〉
ρ2dρ

 ϵ2

− 3

2π
lim
ρ→∞

ρ2

(
1 +

|Λ|
3
ρ2

)
⟨ϕ1∂ρϕ1⟩ ϵ2 +

|Λ|
4π

lim
ρ→∞

ρ3
〈
ϕ2

1

〉
ϵ2 +O

(
ϵ3
)
.

(7.8)

Moreover, because the first correction to the conformal factor ϕ1 satisfies

∆gSϕ1 − |Λ|ϕ1 = 0, on M,

∂nϕ1 −
k′nn
4

= 0, on ∂M,
(7.9)

we have ϕ1 = O1

(
ρ−3
)
in the asymptotic region. Hence, the last two terms in (7.8) vanish so that

p0 =m+
ρh
4π

(
⟨ϕ1⟩h ϵ+ ⟨ϕ2⟩h ϵ

2
) (

1 + |Λ|ρ2
h

)
+

 1

16π

∞∫
ρh

〈
|k′|2gS

〉
ρ2dρ− 5|Λ|

4π

∞∫
ρh

〈
ϕ2

1

〉
ρ2dρ

 ϵ2 +O
(
ϵ3
)
.

(7.10)

The surface area term A up to the second order of expansion reads

(7.11) A(1) =
ρh
4π

⟨ϕ1⟩h
(
1 + |Λ|ρ2

h

)
,

and

(7.12) A(2) = ρh
(
1 + |Λ|ρ2

h

)( 1

4π
⟨ϕ2⟩h +

3

8π

〈
ϕ2

1

〉
h

)
− ρh

16π2
⟨ϕ1⟩2h

(
1− |Λ|ρ2

h

)
,

whereas the first correction to the linear momentum is

(7.13) p
(1)
i = −|Λ|

6π
lim
ρ→∞

ρ3
〈
xiρ∂ρϕ1 − xiϕ1

〉
.

It is worth noticing that in contrast to the asymptotically flat setting considered in [25, 26], the
first contribution to the linear momentum does not depend on the extrinsic curvature. This is in
accordance with the definition (6.8).

In the first order of expansion

(7.14) m(1) =


√√√√p2

0 −
3∑

i=1

p2
i

(1)

= p
(1)
0 =

ρh
4π

⟨ϕ1⟩h
(
1 + |Λ|ρ2

h

)
.

Thus, after comparing (7.11) and (7.14) we find that the Penrose inequality is saturated in the first
order of expansion. Next observe that (7.10) implies

(7.15) p2
0 = m2 + 2mp

(1)
0 ϵ+

(
p

(1)
0

)2
ϵ2 + 2mp

(2)
0 ϵ2 +O(ϵ3), p2

i =
(
p

(1)
i

)2
ϵ2 +O(ϵ3),

and therefore in the second order

(7.16) m(2) =


√√√√p2

0 −
3∑

i=1

p2
i

(2)

= p
(2)
0 − 1

2m

3∑
i=1

(
p

(1)
i

)2
.
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It follows that the Penrose inequality is valid up to second order if

(7.17) p
(2)
0 − 1

2m

3∑
i=1

(
p

(1)
i

)2
≥ A(2).

In order to simplify this expression we will make use of the following estimate

(7.18) |Λ|
∫
M

ϕ2
1

√
1− 2m

ρ
+

|Λ|
3
ρ2dVS ≤ ρh

2

〈
ϕ2

1

〉
h

(
1 + |Λ|ρ2

h

)
,

where dVS is the volume form of the Schwarzschild-AdS metric (6.2). The inequality (7.18) may be

obtained by first multiplying equation (7.9) with ϕ1

√
1− 2m

ρ + |Λ|
3 ρ2 and integrating by parts

1

2

∫
M

〈
∇

√
1− 2m

ρ
+

|Λ|
3
ρ2,∇ϕ2

1

〉
dVS + |Λ|

∫
M

ϕ2
1

√
1− 2m

ρ
+

|Λ|
3
ρ2dVS

=−
∫
M

|∇ϕ1|2gS

√
1− 2m

ρ
+

|Λ|
3
ρ2dVs ≤ 0,

(7.19)

together with the calculation

1

2

∫
M

〈
∇

√
1− 2m

ρ
+

|Λ|
3
ρ2,∇ϕ2

1

〉
dVS

=
1

2

∞∫
ρh

(
m+

|Λ|
3
ρ3

)
∂ρ
〈
ϕ2

1

〉
dρ

=− 1

2

(
m+

|Λ|
3
ρ3

)
⟨ϕ2

1⟩
∣∣∣∣
ρ=ρh

− |Λ|
2

∫ ∞

ρh

ρ2⟨ϕ2
1⟩dρ

=− ρh
4

〈
ϕ2

1

〉
h

(
1 + |Λ|ρ2

h

)
− |Λ|

2

∫
M

ϕ2
1

√
1− 2m

ρ
+

|Λ|
3
ρ2dVS ,

(7.20)

where ϕ1 = O
(
ρ−3
)
and (6.3) have been used.

Ultimately, with the use of (7.8), (7.12), (7.13) and the estimate (7.18), the Penrose inequality in
the second order of expansion holds if the following inequality is satisfied

1

4

∫
M

|k′|2gS

√
1− 2m

ρ
+

|Λ|
3
ρ2dVS +

ρh
4π

⟨ϕ1⟩2h

≥ |Λ|2

18πm

3∑
i=1

(
lim
ρ→∞

ρ3
〈
xiρ∂ρϕ1 − xiϕ1

〉)2

+
ρ3
h

4π
|Λ| ⟨ϕ1⟩2h + 4ρh

〈
ϕ2

1

〉
h

(
1 + |Λ|ρ2

h

)
,

(7.21)

where ⟨·⟩ represents integration over the unit sphere. Verification of a similar inequality in the
asymptotically flat case was accomplished by finding an explicit expression for ϕ1 in terms of its
Neumann boundary data, see [25, 26]. However, in the current asymptotically hyperbolic regime
such an explicit expression is no longer feasible. Thus, in the next subsection we will proceed by
making appropriate estimates instead of explicit computations.
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7.2. Verifying the Penrose inequality up to second order of expansion. In this subsection
we will show that if the normal component knn = ϵk′nn of the seed extrinsic curvature has small
H1-norm in a neighborhood of the boundary ∂M compared to a global weighted L2-norm of |k|gS ,
then inequality (7.21) will be satisfied. The first step to achieve this goal is to show that ϕ1 is globally
controlled by k′nn near the boundary.

Lemma 2. Let ϕ1 ∈ C2,β
3 (M) be the solution of (7.9). Then

(7.22) ||ϕ1||H1(M) ≤ C||k′nn||H1(M ′),

where M ′ is any precompact domain within M containing the boundary ∂M and C = C(M ′).

Proof. The boundary value problem (7.9) can be used to derive the following equality,

(7.23)

∫
M

(
|∇ϕ1|2gS + |Λ|ϕ2

1

)
dVS = −1

4

∫
∂M

ϕ1k
′
nndσS .

Let η ∈ C∞
c (M) be a nonnegative cut-off function such that η ≡ 1 on some precompact domain

M ′ ⊂ M containing the boundary ∂M . Let t : M → R+ denote the distance function to ∂M , and
note that since the manifold is a Schwarzschild-AdS time slice the injectivity radius of the boundary
is infinite; hence the function t is globally smooth. We have

(7.24) −
∫
∂M

ϕ1k
′
nndσS =

∫
M ′

∂t
(
ηϕ1k

′
nn

)
dVS ≤ γ||ϕ1||2H1(M ′) + C1γ

−1||k′nn||2H1(M ′),

where Young’s inequality has been used and γ > 0 is a parameter. By choosing γ sufficiently small,
the combination of (7.23) and (7.24) yields

(7.25) ||ϕ1||H1(M) ≤ C2||k′nn||H1(M ′),

where C2 depends on the choice of M ′. □

This lemma shows that the last two terms on the right-hand side of (7.21) can be estimated in
terms of the squared H1-norm of knn in the neighborhood M ′ of the boundary ∂M . We will now
estimate the first term on the right-hand side of (7.21) in terms of the same quantity.

Lemma 3. Let ϕ1 ∈ C2,β
3 (M) be the solution of (7.9). Then

(7.26) lim
ρ→∞

ρ3
∣∣ 〈xiρ∂ρϕ1 − xiϕ1

〉 ∣∣ ≤ C3||k′nn||H1(M ′),

where C3 depends on the choice of M ′ and ⟨·⟩ denotes integration over the unit sphere.

Proof. In order to estimate the limit in (7.26) we will make use of the asymptotic expansion of the
equation from (7.9), that is

|Λ|
3ρ

∂ρ
(
ρ3∂ρϕ1

)
+

1

ρ2
∆S2ϕ1 − |Λ|ϕ1 = O(ρ−3) on M \Bρ(0),(7.27)

where the radius ρ is chosen sufficiently large. In this region the solution may be represented using
(real form) spherical harmonics

(7.28) ϕ1(ρ, θ, φ) =
∞∑
ℓ=0

ℓ∑
j=−ℓ

cℓjRℓ(ρ)Yℓj(θ, φ),
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where the leading term in each Rℓ is given in terms of a modified Bessel function of the first kind

(7.29) Rℓ(ρ) ∼
aℓ
ρ
I2

(
bℓ
ρ

)
= O(ρ−3),

for some constants aℓ, bℓ, and cℓj . If we assume that Rℓ(ρ̄) = 1, then expanding ϕ1 on the inner
boundary yields

(7.30) ϕ1

∣∣
∂Bρ̄(0)

=

∞∑
ℓ=0

ℓ∑
j=−ℓ

cℓjYℓj .

It follows that

(7.31) lim
ρ→∞

ρ3
∣∣ 〈xiρ∂ρϕ1 − xiϕ1

〉 ∣∣ ≤ C
1∑

j=−1

|c1j |,

since the ℓ = 1 spherical harmonics are normalized restrictions of the Cartesian coordinates to the
unit sphere. The desired estimate (7.26) may now be obtained by observing that the right-hand side
of (7.31) can be estimated in terms of the H1(M) norm of ϕ1 by the Sobolev trace theorem, and this
norm can in turn be estimated by ||k′nn||H1(M ′) according to Lemma 2. □

By Lemmas 2 and 3 the Penrose inequality in the second order of expansion is satisfied if

(7.32)

∫
M

|k′|2gS

√
1− 2m

ρ
+

|Λ|
3
ρ2dVS ≥ C||k′nn||2H1(M ′),

where C is a constant which depends on the local geometry of Schwarzschild-AdS near the boundary.
Clearly this inequality is achieved for a large class of seed data, as k′nn contributes to but does not
determine |k′|gS . Furthermore, we see that if a strict inequality is obtained in (7.32), then the error
in the Penrose inequality becomes

(7.33) m−
√

Ah

16π

(
1 +

|Λ|
12π

Ah

)
= cϵ2 +O(ϵ3),

for some constant c > 0. It follows that the desired inequality holds for a large class of perturbed
Schwarzschild-AdS initial data. Note that the outermost MOTS condition is not used here. However,
we may view the special nature of the perturbations, and in particular the condition (7.32), as a
replacement of this typical assumption.

Theorem 5. Let (M, ĝ = ϕ4gS , k̂ = ϕ−2k) be a 3-dimensional, vacuum, maximal, asymptotically
hyperbolic, conformally perturbed Schwarzschild-AdS initial data set as in (7.1) of class (β, τ) with
τ > 3/2, and having a MOTS inner boundary ∂M . If there exists a constant C and domain M ′ ⊃ ∂M
such that

(7.34)

∫
M

|k|2gS

√
1− 2m

ρ
+

|Λ|
3
ρ2dVS > C||knn||2H1(M ′),

then the Penrose inequality

(7.35) m ≥
√

Ah

16π

(
1 +

|Λ|
12π

Ah

)
holds for all ϵ sufficiently small, where Ah is the area of the MOTS boundary.
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7.3. An outer-minimizing inner boundary. In the context of the Penrose inequality, it may be
desirable for the boundary MOTS to be either outermost or outerminimizing. Although the type
of perturbations studied here do not require this hypothesis in order for the Penrose inequality to
hold, it is useful to note that if knn is positive on ∂M , then the class of initial data in Theorem 5
has an outerminimizing boundary. This may be established by showing that the boundary satisfies
the ‘shrink-wrap’ obstacle problem. More precisely, in this case M will admit a foliation by surfaces
of positive mean curvature.

Lemma 4. Let (M, ĝ = ϕ4gS , k̂ = ϕ−2k) be a 3-dimensional, vacuum, maximal, asymptotically
hyperbolic, conformally perturbed Schwarzschild-AdS initial data set as in (7.1) of class (β, τ), τ >
3/2, with MOTS inner boundary ∂M . If knn > 0 on ∂M , then each surface in the foliation by
ρ = const spheres has positive mean curvature for sufficiently small ϵ. In particular, the boundary is
outerminimizing.

Proof. Observe that the mean curvature of the coordinate spheres Sρ ↪→ (M, ĝ) is given by

(7.36) ĥ(ρ) = 4ϕ−3∂nϕ(ρ) + ϕ−2h(ρ), h(ρ) =
2

ρ

√
1− 2m

ρ
+

|Λ|
3
ρ2,

where h(ρ) is the mean curvature of the same coordinate sphere sitting inside a constant time slice
of the Schwarzschild-AdS spacetime. According to the expansion of (7.1) we have

(7.37) ĥ(ρ) =
2

ρ

√
1− 2m

ρ
+

|Λ|
3
ρ2 +O(ϵ).

Moreover by (3.9), since the inner boundary is a MOTS and the data is maximal it follows that

ĥ (ρh) = k̂n̂n̂(ρh). Using that k̂n̂n̂ = ϕ−6knn, as well as the assumption knn > 0 on ∂M , we see that
this surface has positive mean curvature. Furthermore

(7.38) ĥ(ρ) = 2

√
|Λ|
3

+O(ρ−2) +O(ϵ) as ρ → ∞,

and

(7.39) ĥ(ρ) = c
√
ρ− ρh +O

(
(ρ− ρh)

3/2
)
+O(ϵ) as ρ → ρh,

where c > 0 is a constant. Hence,

(7.40) ĥ(ρ) > 0 if ρ > ρh + c1ϵ
2

for ϵ sufficiently small, where c1 is another constant.
Next, observe that an expansion for ĥ at the boundary can be computed with help from the second

variation of area formula

(7.41) ∂n̂ĥ(ρh) = −R̂ic(n̂, n̂)− |Â|2ĝ,

where R̂ic(n̂, n̂) is the Ricci curvature in the n̂ direction and Â is the boundary extrinsic curvature.
Recall that two traces of the Gauss equations imply

(7.42) R̂ic(n̂, n̂) =
1

2
R̂− K̂ +

1

2
ĥ2 − 1

2
|Â|2ĝ = −|Λ|+ 1

2
|k̂|2ĝ − K̂ +

1

2
ĥ2 − 1

2
|Â|2ĝ,
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where K̂ is the Gaussian curvature of Sρh and the first vacuum constraint equation from (1.1) has

been used in the second equality. Since on the boundary ĥ = k̂n̂n̂ = ϕ−6k′nnϵ, and

(7.43) Â =
1

2
hgS2 +O(ϵ) = O(ϵ), K̂ = ρ−2

h +O(ϵ),

we find that

(7.44) ∂n̂ĥ(ρh) = |Λ|+ ρ−2
h +O(ϵ).

Let t̂(ρ) denote the function on Sρ which indicates the ĝ-distance to ∂M , then

(7.45) c−1
2

√
ρ− ρh ≤ t̂(ρ) =

∫ ρ

ρh

ϕ2ds√
1− 2m

s + |Λ|
3 s2

≤ c2
√
ρ− ρh

for some constant c2 > 0 when ρ ∈ [ρh, ρh + 1]. It follows that

ĥ(ρ) =ĥ(ρh) + ∂n̂ĥ(ρh)t̂(ρ) +O
(
t̂(ρ)2

)
≥ϕ−6k′nn(ρh)ϵ+ c−1

2 (|Λ|+ ρ−2
h )

√
ρ− ρh

(
1− c3ϵ− c4

√
ρ− ρh

)
,

(7.46)

where the positive constants c3 and c4 are independent of ϵ and ρ. We then find that

(7.47) ĥ(ρ) ≥ ϕ−6k′nn(ρh)ϵ > 0 if ρ < ρh +min{1, c2
4/2},

when ϵ is sufficiently small. Since c4 does not depend on ϵ, the desired result follows from the
combination of (7.40) and (7.47). □
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[9] H. Bray, and P. Chruściel, The Penrose inequality, The Einstein equations and the large scale behavior of gravita-

tional fields, 39–70, Birkhäuser, Basel, 2004.
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