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Abstract. We establish a spacetime positive mass theorem and rigidity statement for asymptotically

flat spin initial data sets with a codimension one singularity controlled by a matching Bartnik data

condition involving spacetime rotations, and discuss applications. This generalizes several previous

works on the topic, including results of Miao, Tsang, and Shi-Tam.

1. Introduction

Given a connected oriented n-dimensional manifold with boundary Mn of dimension n ≥ 3, a
Riemannian metric g, and a symmetric 2-tensor k, we refer to the triple (Mn, g, k) as an initial data
set. This terminology refers to the spacetime setting in which (Mn, g) is a spacelike hypersurface
with second fundamental form k in an (n+1)-dimensional Lorentzian manifold, and the triple plays
the role of initial position and velocity for the Einstein equations. These objects satisfy the constraint
equations

(1.1) µ =
1

2

(
Rg + (Trgk)

2 − |k|2g
)
, J = divg (k − (Trgk)g) ,

where Rg is the scalar curvature and µ, J represent the matter energy and momentum densities. It
will always be assumed that these latter quantities are integrable µ, J ∈ L1(Mn). We will consider
asymptotically flat initial data sets. This condition means that there is a compact set C ⊂ Mn

such that Mn \ C consists of a finite number of pairwise disjoint ends ∪ℓ0
ℓ=1M

n
ℓ , each of which is

diffeomorphic to the compliment of a ball in Euclidean space space Rn \B and in the coordinates x
provided by this diffeomorphism

(1.2) |∂l(gij − δij)(x)| = O(|x|−q−l), l = 0, 1, 2, |∂lkij(x)| = O(|x|−q−1−l), l = 0, 1,

for some q > n−2
2 . In this setting the ADM energy E and linear momentum P = (P1, . . . , Pn) of

each end are well-defined [1, 5] and given by

E = lim
r→∞

1

2(n− 1)ωn−1

ˆ
Sr

n∑
i=1

(gij,i − gii,j)υ
jdA,(1.3)

Pi = lim
r→∞

1

(n− 1)ωn−1

ˆ
Sr

(kij − (Trgk)gij)υ
jdA,(1.4)

where ωn−1 denotes the volume of the unit (n − 1)-dimensional sphere and υ is the unit outward

normal to the coordinate sphere Sr in the given end. The Lorentz length m =
√
E2 − |P |2 is then

referred to as the ADM mass of the end. The positive mass theorem (PMT) asserts that if (Mn, g) is
complete and the dominant energy condition (DEC) µ ≥ |J |g holds, then E ≥ |P |. Various versions
of this result were established in dimensions 3 ≤ n ≤ 7 by Schoen-Yau [28] and Eichmair [7] using
the Jang equation and by Eichmair-Huang-Lee-Schoen [8] using marginally outer trapped surfaces,
it was proven in all dimensions for spin manifolds by Witten [27,34] and Bartnik [1], and when n = 3
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spacetime harmonic functions were employed by Hirsch-Kazaras-Khuri [11]. Moreover, an alternative
approach has been put forth by Lohkamp [24] to treat the general case without dimensional or spin
restrictions.

In this work we will study the spacetime positive mass theorem for initial data sets with sin-
gularities. Let us recall previous results in this direction beginning with the time symmetric case,
when k = 0. One of the earliest such works is due to Shi-Tam [29], in the context of the their
proof of positivity for the Brown-York quasi-local mass. They consider metrics of regularity g ∈
C0(Mn) ∩ C∞(Mn \ Σn−1) where Σn−1 ⊂ Mn is a closed hypersurface bounding a precompact re-
gion Mn

−. They show that in the spin case the PMT is valid if the mean curvatures of ∂Mn
± agree

H+ = H−, where M
n
+ = Mn \Mn

− and the unit normal for both sides points out of Mn
−. Miao [26]

generalized this beyond the spin case with a local smoothing argument which only requiresH− ≥ H+,
and McFeron-Székelyhidi [25] later obtained the same result utilizing a different smoothing technique
via Ricci flow. In 3-dimensions Hirsch-Miao-Tsang [12] produce a mass formula in this context using
harmonic functions. When n < 8 or Mn is spin, Lee [18] has established a PMT for metrics of
regularity C2(Mn \ S) ∩ Lip(Mn) where the singular set S has Minkowski dimension less than n/2.
Using spinorial techniques, Lee-LeFloch [20] obtain a version of the theorem for Sobolev regularity

C0(Mn) ∩W 1,n
loc (M

n). In the nonspin case Yuqiao [23] imposed extra curvature conditions to find
a similar result. Moreover, Grant-Tassotti [9] employed a modification of the Miao smoothing tech-

nique to treat the case of metrics withW
2,n/2
loc -regularity. Working in a weaker setting, Li-Mantoulidis

[22] show mass positivity for g ∈ L∞(Mn) ∩ C2(Mn \ S) where S is a codimension 2 submanifold
satisfying a type of acute cone-angle condition, while Shi-Tam [30] obtain the result for singular

sets of codimension at least 2 for metrics having W 1,p
loc (M

n)-regularity where p > n. In the case
g ∈ L∞(Mn) ∩ C2(Mn \ S) for a closed submanifold S of codimension at least 3, the positive mass
theorem is known in dimensions 3 [22] and 4 [17].

Consider now the nontime-symmetric case, where much less is known. Utilizing spacetime har-
monic functions in the 3-dimensional setting, Tsang [32] generalized the results of Shi-Tam [29]
and Miao [26] by observing that the PMT holds if H− − H+ ≥ |π−(·, ν) − π+(·, ν)|g on Σ2, where
π± = k±−(Trg±k±)g± is the momentum tensor associated withM3

± and ν is the unit normal pointing
out of M3

−. In [31], Shibuya extended the Lee-LeFloch theorem [20] to the spacetime setting under
the assumption that the dominant energy conditions holds in the distributional sense. Furthermore,
it should be mentioned that there are rigidity statements for many of the results discussed above,
some of which will be mentioned below. To describe the results of the current paper, we begin with
two definitions.

Definition 1.1. Bartnik data is a closed orientable Riemannian (n − 1)-manifold (Σn−1, γ) with a

triple (N , H⃗, β) satisfying the following properties.

(i) N → Σn−1 is a trivial rank two vector bundle with structure group SO+(1, 1), equipped with
an invariant bundle metric ⟨·, ·⟩.

(ii) H⃗ is a section of N .
(iii) β is a 1-form on Σn−1, viewed as a connection for N .

Given Bartnik data, let {ν, τ} be a framing of N so that ν and τ have squared lengths +1 and −1.
The correspondence between β and its associated connection∇N onN is given by β(X) = −⟨∇N

X ν, τ⟩
for tangent vectors X to Σn−1. Now consider two such bundles with the same base N ,N ′ → Σn−1,
equipped with framings {ν, τ} and {ν ′, τ ′}. With respect to these frames, an isometric bundle map
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F : N → N ′ may be expressed fiberwise as a family of SO+(1, 1) matrices

(1.5) F |Nx =

[
cosh(f(x)) − sinh(f(x))
− sinh(f(x)) cosh(f(x))

]
, x ∈ Σn−1,

for some uniquely determined f ∈ C∞(Σn−1) called the hyperbolic angle of F . Two sets of Bartnik

data (N , H⃗, β) and (N ′, H⃗ ′, β′) on (Σn−1, γ) are said to be equivalent if there is an isometric bundle

map F : N → N ′, such that F ◦ H⃗ = H⃗ ′ and β′ = β+ df where f is the hyperbolic angle of rotation
induced by F .

A fundamental source of Bartnik data over (Σn−1, γ) arises from isometric embeddings into initial
data sets (Mn, g, k). If ν is a unit normal vector field to Σn−1 ⊂ Mn, then an associated set of
Bartnik data may be described as follows. Let N be the Whitney sum of the normal bundle to Σn−1

in Mn together with a trivial line bundle spanned by a vector τ which we declare to be orthogonal
to ν and of squared length −1, and set

(1.6) H⃗ = Hν − (Trγ k)τ, β(X) = k(ν,X),

where H is the mean curvature of Σn−1 with respect to ν and X ∈ TΣn−1. We will now fix the
setting of our main theorem by introducing the necessary geometric condition.

Definition 1.2. An asymptotically flat DEC-creased initial data set consists of two smooth initial
data sets with boundary, an asymptotically flat (Mn

+, g+, k+) and a compact (Mn
−, g−, k−), satisfying

the following properties.

(i) The induced boundary manifolds (∂Mn
+, g|∂Mn

+
) and (∂Mn

−, g|∂Mn
−
) are equal to a common

manifold (Σn−1, γ) which inherits Bartnik data (N±, H⃗±, β±) induced by the unit normals
ν+ pointing into (Mn

+, g+, k+) and ν− pointing out of (Mn
−, g−, k−).

(ii) There is an isometric bundle map F : N− → N+ with hyperbolic angle f so that〈
F (H⃗−)− H⃗+, ν+

〉
N+

−
√〈

F (H⃗−)− H⃗+, τ+

〉2

N+

+ |β∆|2γ ≥ 0,(1.7)

where {ν+, τ+} is an SO+(1, 1) frame for N+ and β∆ denotes the difference of connections
β∆ = β+ − β− − df .

Mn
+

Σn−1

Mn
−

τ− τ+ ν−

ν+

Figure 1. DEC-creased initial data arising from a spacetime.

In the context of a smooth spacetime, DEC-creased initial data naturally arise from a spacelike
hypersurfaceMn which is globally Lipschitz and smooth away from an embedded submanifold Σn−1,
along which M is bent. Given DEC-creased initial data (Mn

±, g±, k±), one may glue along Σn−1

to form the space Mn = Mn
− ∪Σn−1 Mn

+, which has a canonical smooth structure using collard
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neighborhoods [21, Theorem 9.29]. The metrics g− and g+ descend to a metric onMn with regularity
C0(Mn)∩C∞(Mn \Σn−1). The union of k− and k+ does not descend continuously to Mn, but may
be considered as an L∞ tensor, with generally different limits on Σn−1 as one approaches from Mn

−
and Mn

+. As will be elucidated through the proof of the main result, the crease condition (1.7)
behaves analogously to a weak version of the dominant energy condition along Σn−1. The inequality
(1.7) is, however, more general than the requirement that µ ≥ |J | holds distributionally along the

crease. We also remark that (1.7) is equivalent to the requirements that F ◦ H⃗− − H⃗+ is spacelike,
points in the ν+ direction, and satisfies

(1.8) |F (H⃗−)− H⃗+|N+ ≥ |β∆|γ .

In Definition 1.2 there are two trivial framed SO+(1, 1)-bundles N± over Σn−1. In this situation,
there is always a canonical choice of bundle isometry F which takes ν− to ν+. We will call this
map the trivial isometry . In the special case where the bundle map F is trivial, the DEC-creased
condition (ii) in Definition 1.2 becomes the “spacetime corner” condition appearing in [32]. When
k ≡ 0 and F is trivial, then the DEC-creased condition becomes the mean curvature inequality
H− ≥ H+ that is used in [26]. Our main result is the following positive mass theorem.

Theorem 1.3. Let (Mn
±, g±, k±) be an asymptotically flat DEC-creased initial data set, creased

along a closed hypersurface Σn−1. Assume that Mn = Mn
+ ∪Σn−1 Mn

− is spin. If (Mn
±, g±, k±) both

satisfy the dominant energy condition, then the ADM 4-momentum of any end of (Mn
+, g+, k+) is

nonspacelike, that is E ≥ |P |.

The proof of Theorem 1.3 relies on a formula for the mass of (Mn
+, g+, k+) involving certain

spinors defined over Mn, stated below as Theorem 1.4. This basic strategy goes back to Witten [34],
where one constructs a twisted Dirac operator DW , and proceeds by integrating the Lichnerowicz-
Schrödinger-Weitzenböck formula applied to asymptotically constant spinors satisfying DWψ = 0.
In order to deal with the crease singularities, we introduce transmission-type boundary conditions
along Σn−1 and show that sufficiently regular solutions to the associated boundary value problem
exist. To describe this in more detail, we first define Spin+(n, 1) spinor bundles S± over Mn

± so that
the trivial isometry N− → N+ induces an isometry Φ : S−|Σn−1 → S+|Σn−1 . The volume form ϵ+ of
N+ acts as an endomorphism on S±|Σn−1 by Clifford multiplication ϵ+ = ν+τ+. On a given end Mn

ℓ1
of Mn

+, the spin structure can be identified with a trivial spin structure over Rn, giving a source of
asymptotically constant spinors defined over the end. Given a choice of such a spinor ψ∞, we seek
solutions ψ± ∈ Γ(Mn

±, S±) to the system

(1.9)



DWψ+ = 0 in Mn
+,

DWψ− = 0 in Mn
−,

Φ(ψ−) = (A+Bϵ+)ψ+ on Σn−1,

|ψ+ − ψ∞|(x) → 0 as |x| → ∞ in Mn
ℓ1
,

|ψ+|(x) → 0 as |x| → ∞ in Mn
ℓ , ℓ ̸= ℓ1,

where A = cosh(f/2), B = sinh(f/2), and f is the hyperbolic angle given by the DEC-creased
condition. A geometric interpretation of this system is provided in Remark 3.2 below. We treat (1.9)
as a system with boundary conditions, establishing the following existence and regularity statement.

Theorem 1.4. Suppose that (Mn
±, g±, k±) is an asymptotically flat DEC-creased initial data set,

such that Mn = Mn
− ∪Σn−1 Mn

+ is spin and the dominant energy condition is satisfied on Mn
±.
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Given a constant spinor ψ∞ on an asymptotically flat end of Mn
+, there exists a smooth solution

ψ± ∈ C∞(Mn
±, S±)

1 to (1.9) which satisfies

(n− 1)ωn−1

2

(
E|ψ∞|2 − ⟨ψ∞, P τψ∞⟩

)
≥
ˆ
Mn

−

(
|∇ψ−|2 +

1

2
(µ−|ψ−|2 + ⟨ψ−, J−τ−ψ−⟩)

)
dV

+

ˆ
Mn

+

(
|∇ψ+|2 +

1

2
(µ+|ψ+|2 + ⟨ψ+, J+τ+ψ+⟩)

)
dV,

(1.10)

where τ, τ± are endomorphisms of the spinor bundles which square to the identity.

The case of equality. Rigidity statements for the classical positive mass theorem characterize those
initial data sets (Mn, g, k) satisfying the dominant energy condition which have an end of vanishing
ADM mass. Generally speaking, these statements aim to conclude that (Mn, g, k) arises from an
embedding into Minkowski space, which is to say that (Mn, g) is isometrically embedded with second
fundamental form equal to k. In the time-symmetric setting when k = 0, Schoen-Yau [28] showed
that the mass of an end is zero only when the manifold is isometric to Euclidean space for n ≤ 7. In
the nontime-symmetric case, Beig-Chruściel [3] and Chruściel-Maerten [6] considered spin manifolds,
imposed additional and necessary decay assumptions, showing that E = |P | implies E = |P | = 0
and that such (Mn, g, k) must arise as a hypersurface of Minkowski space. Also assuming additional
decay assumptions, Huang-Lee [15, 16] showed that the desired rigidity statement follows from the
positive mass inequality. We also point out the work of Hirsch-Zhang [13, 14], who give the optimal
result in dimension 3 and characterize general spin initial data with vanishing ADM mass in terms of
pp-wave spacetimes. In the setting of Theorem 1.3, we show the following rigidity statement. Note
that additional decay beyond the usual asymptotic flatness assumption is imposed, using weighted
Hölder spaces (see [15]).

Theorem 1.5. Suppose that (Mn
±, g±, k±) is an asymptotically flat DEC-creased initial data set, such

that Mn = Mn
− ∪Σn−1 Mn

+ is spin and the dominant energy condition is satisfied on Mn
±. Assume

there is some α ∈ (0, 1) and ς > 0 such that

(1.11) g+ − δ ∈ C3,α
−q (M

n
+), k+ ∈ C2,α

−q−1(M
n
+), µ, J ∈ C1,α

−n−ς(M
n
+),

where the order of asymptotically flat decay satisfies q > max(1/2, n− 3). If the ADM mass of any
end vanishes, then there is Lipschitz embedding Mn → R1,n to Minkowski space which is smooth
away from Σn−1, such that the induced metric and second fundamental form agree with g− ∪ g+ and
k− ∪ k+.

There are previously known rigidity statements whenm = 0 on an asympotically flat manifold with
singularities along a hypersurface Σn−1. In the time-symmetric setting where Rg ≥ 0 and H− ≥ H+

along Σn−1, Shi-Tam [29] used spinorial methods to show that g is flat away from Σ. When n = 3
and Σ2 ∼= S2, Miao [26] showed there is a C2,1 isometry M3 → R3. In higher dimensions, using
the Ricci flow on manifolds for which mass positivity is known, McFarron-Székelyhidi [25] showed
a similar statement but with C2,α-regularity, α ∈ (0, 1). To the authors’ knowledge, the optimal
rigidity statement in this singular time-symmetric setting appears to be unknown in general. In
his study of corner singularities (where F is trivial) in dimension 3, Tsang [32] proved two rigidity
statements: if E = |P | then M3 is diffeomorphic to R3, and if E = |P | = 0 and additional regularity

1The spinors ψ± are both smooth up to the boundary of Mn
±, though they do not necessarily define a continuous

spinor over Mn.
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is imposed on k, then (M3, g, k) arises from an isometric embedding into Minkowski spacetime and
(g, k) ∈ C2,1(M3) × C1,1(M3). We also point out the recent work of Hirsch-Huang [10], concerning
further results that characterize the case of vanishing mass in the presence of matching Bartnik data.

The proof of Theorem 1.5 proceeds in three steps. First, the mass formula of Theorem 1.4 allows
us to obtain a spinor whose corresponding vector field defines a type of Killing lapse-shift pair. Then,
the work of Huang-Lee [15] is used to show that the vanishing of m implies that E = |P | = 0. This
is in turn leveraged to make stronger use of the mass formula, finding many linearly independent
Sen-parallel spinors which are used to construct a flat Killing development following Beig-Chrusciel
[3].

Extensions and fill-ins. As an application of the creased positive mass theorem, one can establish
the nonexistence of certain fill-ins or null-bordisms of given Bartnik data arising from an embedding
into Minkowski spacetime.

Corollary 1.6. Suppose (Σn−1, γ) embeds isometrically into R1,n as the boundary of an asymptot-

ically flat spacelike hypersurface with unit inward normal ν0. Let (N0, H⃗0, β0) denote the induced
Bartnik data. Assume further that (Ωn, g, k) is a compact initial data set with outward normal vector
ν satisfying the following conditions.

(i) Ωn has a spin structure extending the one induced on Σn−1 from the spacelike hypersurface
of R1,n.

(ii) µ ≥ |J | throughout Ω.
(iii) (∂Ωn, g|∂Ωn) is equal to (Σn−1, γ), inducing a second Bartnik data set (N , H⃗, β).
(iv) There is a bundle isometry F : N → N0 with hyperbolic angle f so that〈

F (H⃗)− H⃗0, ν0

〉
N0

−
√〈

F (H⃗)− H⃗0, τ0

〉2

N0

+ |β∆|2γ ≥ 0,(1.12)

where β∆ = β0 − β − df and {ν0, τ0} form an SO+(1, 1)-framing for N0.

Then the interior of (Ωn, g, k) isometrically embeds into Minkowski spacetime. In particular, there
is no (Ωn, g, k) satisfying conditions (i)–(iv) with µ(x) > |J |(x) at some point x ∈ Ωn.

Corollary 1.6 assumes that (N0, H⃗0, β0) and (Σn−1, γ) arise as the boundary of an asymptotically
flat spacelike hypersurface in Minkowski spacetime. For example, this condition is satisfied when the
spacelike hypersurface is the graph of a function over a constant time slice of R1,n. We also remark
that Corollary 1.6 may be viewed as a generalization of Miao’s result [26, Corollary 1.1] concerning
fill-ins with nonnegative scalar curvature.

Relation to quasi-local mass. In analogy with the work of Shi-Tam [29], we expect that Theorem
1.3 may be a useful tool in studying the positivity properties of the Wang-Yau [33] quasi-local
mass, though we do not pursue this idea in the present work. There is, however, a more immediate
implication to the Bartnik mass of compact initial data sets (Ωn, g, k). In Bartnik’s approach, one
takes the mass of Ωn as the infemum of the ADMmasses of asymptotically flat extensions (Mn, g, k) of
(Ωn, g, k) satisfying some admissibility conditions motivated by the positive mass theorem, including
the DEC and a ‘no horizons’ provision. Theorem 1.3 suggests that the class of admissible extensions
may be widened to include initial data sets with DEC-creases along Σn−1 = ∂Ωn.

Organization. In Section 2, we introduce notation and basic facts related to initial data sets, Bart-
nik data, and the associated spinor bundles. Section 3 contains the main geometric computation
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of the boundary terms encountered when integrating the Lichnerowicz-Schrödinger-Weitzenböck for-
mula by parts, where the DEC-creased condition appears. The existence of weak solutions to (1.9)
is established in Section 4, and concludes with the proof of Theorem 1.4. This proof relies on a
regularity result which is postponed to Section 5, where we verify that (1.9) can be interpreted as a
elliptic boundary value problem in the formalism of Bär-Ballman [4]. Finally, Section 6 carries out
the proof of the rigidity result Theorem 1.5.

Aknowledgements. The authors would like to thank Hubert Bray for many influential discussions
and suggestions. We would also like to thank Sven Hirsch and Yiyue Zhang for explaining their work
[14].

2. Bartnik Data and Spinor Bundles

2.1. Bartnik data. Throughout this section, we adhere to the context of Theorem 1.3. In particular,
suppose (Mn

+, g+, k+) and (Mn
−, g−, k+) are n-dimensional initial data sets, with Mn

+ asymptotically
flat and Mn

− compact, and that the boundaries ∂Mn
+, ∂M

n
− are equal to a common closed manifold

(Σn−1, γ). Let (N±, H⃗±, β±) be the Bartnik data on (Σn−1, γ) arising from (Mn
±, g±, k±) using unit

normals ν+ pointing intoMn
+ and ν− pointing out ofMn

−. In particular, N± has the SO+(1, 1)-frame
{τ±, ν±} and

H⃗± = H±ν± − (Trγk±)τ±, β±(X) = −⟨∇N±
X ν±, τ±⟩ = k±(ν±, X), X ∈ TΣn−1,(2.1)

where H± denotes the mean curvature of Σn−1 as a submanifold of Mn
± computed using ν±.

Using the frames {ν±, τ±}, any bundle isometry F : N− → N+ can be uniquely described using
its hyperbolic angle f , viewed as a function on Σn−1 and given by

F (ν−) = cosh(f)ν+ − sinh(f)τ+, F (τ−) = − sinh(f)ν+ + cosh(f)τ+.(2.2)

Given such an F , the connection coefficients of∇N− can be expressed in the frame {F−1(ν+), F
−1(τ+)}

in the following way〈
∇N−

X F−1(ν+), F
−1(τ+)

〉
=

〈
∇N−

X (cosh(f)ν− + sinh(f)τ−) , sinh(f)ν− + cosh(f)τ−

〉
= −β−(X)− df(X).

(2.3)

The difference of connections is frame independent and becomes

β∆(X) :=
〈
∇N−

X F−1(ν+), F
−1(τ+)

〉
−
〈
∇N+

X ν+, τ+

〉
= β+(X)− β−(X)− df.(2.4)

For convenience, we record the components of H⃗± in the {τ+, ν+} frame〈
H⃗+, ν+

〉
= H+,

〈
H⃗−, F

−1(ν+)
〉
= cosh(f)H− + sinh(f) Trγ k−,〈

H⃗+, τ+

〉
= Trγ k+,

〈
H⃗−, F

−1(τ+)
〉
= sinh(f)H− + cosh(f) Trγ k−.

(2.5)

2.2. Spin structures. Let PSO
± denote be the bundle of oriented orthonormal frames over (Mn

±, g±).
Define a map ϕ0 : TMn

−|Σn−1 → TMn
+|Σn−1 sending ν− to ν+ and acting by the identity on TΣn−1.

We also regard ϕ0 as a map PSO
− |Σn−1 → PSO

+ |Σn−1 . Since we assume that the smooth manifold

Mn = Mn
− ∪Σn−1 Mn

+ is spin, there are Spin(n)-reductions P Spin
− → PSO

− and P Spin
+ → PSO

+ which
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agree over Σn−1 in the sense that there is a bundle map Φ0 making the following diagram commute

(2.6)

P Spin
− |Σn−1 P Spin

+ |Σn−1

PSO
− |Σn−1 PSO

+ |Σn−1

Φ0

ϕ0

.

Making use of the spin representation, we obtain associated spinor bundles S±
0 overMn

±, equipped
with Clifford multiplication, a hermitian metric ⟨·, ·⟩0, and a compatible spin connection ∇0. Inter-

preting P Spin
± as the bundle of orthonormal frames of S±

0 , Φ0 induces an isometry S−
0 |Σn−1 → S+

0 |Σn−1

which we continue to denote by Φ0. By (2.6), the map Φ0 respects Clifford multiplication in the sense
that Φ0(vψ) = ϕ0(v)Φ0(ψ) for all v ∈ TMn

−|Σn−1 and spinors ψ. In particular, Φ0(ν−ψ) = ν+Φ0(ψ)
and Φ0(Xψ) = XΦ0(ψ) for X ∈ TΣn−1.

Following [19, Section 8.3], we construct the spacetime spinor bundle S± := S±
0 ⊕ S±

0 . Recall
that the bundles N± are defined as the Whitney sum of the normal bundle from the embedding
Σn−1 ⊂Mn

± with a trivial bundle spanned by τ±. Extend the trivial bundle spanned by τ± over Mn
±,

and equip the sum span(τ±)⊕TMn
± with a Lorentzian bundle metric h± defined by declaring τ± to be

orthogonal to TMn
± and have square norm −1. The associated Clifford bundle Cl(span(τ±)⊕ TMn

±)
acts on sections ψ = ψ1 ⊕ ψ2 of S± as follows:

Xψ = Xψ1 ⊕−Xψ2 for X ∈ TMn
±, τ±ψ = ψ2 ⊕ ψ1.(2.7)

In our convention, Clifford multiplication satisfies VW +WV = −2h±(V,W ). Note that τ± satisfies
τ2± = 1, and anticommutes with Clifford multiplication by elements of TMn

±.
The spinor bundles S± carry two inner products, namely ⟨·, ·⟩ and (·, ·). The former is positive

definite and satisfies

(2.8) ⟨Xψ,Xψ′⟩ = |X|2⟨ψ,ψ′⟩ for X ∈ TMn
± ⟨τ±ψ, τ±ψ′⟩ = ⟨ψ,ψ′⟩.

The pairing (·, ·) satisfies the first equality of (2.8) and the second equality with a minus sign on the
right-hand side. Along Σn−1, the bundle map Φ0 induces an bundle isometry Φ : S−|Σn−1 → S+|Σn−1

with respect to the pairing ⟨·, ·⟩. In what follows, it is useful to introduce local framings for S±.
Given a local orthonormal frame {ei}ni=1 for (Mn

±, g±), the spin structure on Mn
± allows one to lift

{ei}ni=1 to a local orthonormal frame of S±
0 . Duplicating this frame gives rise to a framing {ψl}Il=1

of S± where I = dim(S±). In this case, we we refer to {ψl}Il=1 as induced by {ei}ni=1.

Connections and Dirac operators. There are several natural connections on the spinor bundles
S± and S±|Σn−1 which we will now identify and describe:

• the Mn
± Riemannian connections ∇± on S± from the spin connections induced by the Levi-

Civita connection of g± on S±
0 ,

• the Sen (or spacetime) connections ∇±
on S± defined in a local frame by

(2.9) ∇±
i ψ = ∇±

i ψ +
1

2
(k±)

j
iejτ±ψ,

• the boundary spin connection ∇Σ,± on S±|Σn−1 induced by the Levi-Civita connection of γ.

It will be convenient to have a local formula for ∇Σ,±. Fix a local frame {ψ±
l }

I
l=1 of S±|Σn−1 induced

by a frame {e1, . . . , en−1, ν±}, where {eα}n−1
α=1 is an orthonormal frame for Σn−1. If ψ =

∑I
l=1 c

±
l ψ

±
l
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is a section of S±|Σn−1 , then we have

∇Σ,±
X ψ =

I∑
l=1

X(c±l )ψ
±
l − 1

4

I∑
l=1

n−1∑
α,η=1

c±l ωαη(X)eαeηψ
±
l(2.10)

for any X ∈ TΣn−1, where ωαη(X) = ⟨eα,∇Xeη⟩. The following result summarizes the relevant
properties used in subsequent computations.

Proposition 2.1. The connections ∇±, ∇±
, ∇Σ,±, the pairings ⟨·, ·⟩, (·, ·), the bundle isometry Φ,

and the endormophisms τ± defined above satisfy the following properties.

(i) ∇± is compatible with ⟨·, ·⟩ and ∇±
is compatible with (·, ·).

(ii) For any ψ ∈ S−|Σn−1, we have

Φ(Xψ) = XΦ(ψ) for X ∈ TΣn−1,

Φ(ν−ψ) = ν+Φ(ψ), Φ(τ−ψ) = τ+Φ(ψ).
(2.11)

(iii) Φ and τ± are parallel with respect to ∇Σ,± and ∇±, that is ∇Σ,+ ◦ Φ = Φ ◦ ∇Σ,− and
∇± ◦ τ± = τ± ◦ ∇±.

Proof. Item (i) and the statement ∇± ◦ τ± = τ± ◦∇± of item (iii) are standard, see for instance [2].
Item (ii) follows from the fact that ϕ0 acts by the identity on TΣn−1, and rotates the frame {ν−, τ−}
into {ν+, τ+}.

To prove the statement ∇Σ,+ ◦ Φ = Φ ◦ ∇Σ,− of item (iii), let {ψ±
l }

I
l=1 be spin frames induced

by an orthonormal frame {e1, . . . , en−1, ν±} for TMn
±|Σn−1 . The diagram (2.6) implies that {ψ+

l }
I
l=1

can be chosen as {Φ(ψ−
l )}

I
l=1, so that if ψ =

∑I
l=1 c

−
l ψ

−
l then Φ(ψ) =

∑I
l=1 c

−
l ψ

+
l . Hence we have

Φ
(
∇Σ,−

X ψ
)
= Φ

 I∑
l=1

X(c−l )ψ
−
l − 1

4

I∑
l=1

n−1∑
α,η=1

c−l ωαη(X)eαeηψ
−
l


=

I∑
l=1

X(c−l )Φ(ψ
−
l )−

1

4

I∑
l=1

n−1∑
α,η=1

c−l ωαη(X)eαeηΦ(ψ
−
l )

= ∇Σ,+
X Φ(ψ).

(2.12)

□

The various connections give rise to certain Dirac operators. Fix local orthonormal frame {ei}ni=1

for (Mn
±, g±), with en = ν± on Σn−1. Roman indicies will run over i = 1, . . . , n and Greek indices

will run over α = 1, . . . , n− 1. The Dirac-Witten operator is given by

(2.13) DW = ei∇i,

and the boundary Dirac operator is given by

(2.14) D± = ∓ν±eα∇Σ,±
α ,

where the covectors ei, eα act by Clifford multiplication after lowering the index. Note the above
sign change, which adheres to the convention that ∓ν± points out of Mn

±.



10 KAZARAS, KHURI, AND LIN

2.3. The Lichnerowicz-Schrödinger-Weitzenböck formula. To properly introduce the funda-
mental geometric identity, fix a general smooth compact spin initial data set (Ωn, g, k). We consider
a section ψ of the spacetime spinor bundle with timelike endomorphism τ , the Sen connection ∇,
Dirac-Witten operator DW , outward normal ν, boundary mean curvature H, and boundary Dirac
operator D∂Ω. By integrating the Lichnerowicz-Schrödinger-Weitzenböck formula by parts for a
spinor ψ, one may obtain [2, (11.13)] the identityˆ

Ωn

(
|∇ψ|2 − |DWψ|2 +

1

2
⟨ψ, (µ+ Jτ)ψ⟩

)
dV

=

ˆ
∂Ωn

〈
ψ,D∂Ωψ − 1

2
Hψ − 1

2
[(Tr∂Ω k) ν − k(ν, eα)e

α] τψ

〉
dA

(2.15)

where {eα}n−1
α=1 is an orthonormal frame for ∂Ωn.

Constant spinors at infinity and mass. Here and throughout, let q∗ =
n−2
2 . For an n-dimensional

asymptotically flat spin initial data set (Mn, g, k) with spacetime spinor bundle S, define a weighted

Sobolev space W 1,2
−q∗(S) as the completion of C∞

c (S) with respect to the norm

∥ψ∥2
W 1,2

−q∗ (S)
:= ∥∇ψ∥2L2(S) + ∥ψ/r∥2L2(S),(2.16)

where r is a positive extension to all Mn of the radial coordinate r = |x| in the asymptotically flat
end.

Fix an orthonormal frame {ei}ni=1 for (Mn, g) over an asymptotically flat endMn
ℓ which is asymp-

totic to the coordinate vector fields {∂i}ni=1 in the sense that |ei−∂i| = O(r−q∗) for all i. Let {ψl}Il=1

denote an associated frame for the spacetime spinor bundle over Mn
ℓ . A spacetime spinor ψ∞ is

called a constant spinor at infinity if ψ∞ =
∑I

l=1 clψl for constant functions cl. We say a spacetime

spinor ψ is asymptotic to such a constant spinor at infinity if ψ − ψ∞ ∈ W 1,2
−q∗(S|Mn

ℓ
). In this case,

we use the notation ψ → ψ∞ on Mn
ℓ . The ADM energy and momenta can be computed in terms of

asymptotically constant spacetime spinors. In particular, Witten [34] observed the following.

Proposition 2.2 ([3]). Suppose (Mn, g, k) is a spin asymptotically flat initial data set with a space-
time spinor ψ asymptotic to a constant spinor ψ∞. Then

lim
r→∞

ˆ
Sr

〈
ψ∞, DSrψ∞ − 1

2
Hψ∞ − 1

2
[(TrSr k) υ − k(υ, ·)] τψ∞

〉
dA

=
(n− 1)ωn−1

2

(
E|ψ∞|2 −

〈
ψ∞, Pie

iτψ∞
〉)
,

(2.17)

where DSr and H denote the boundary Dirac operator and mean curvature of the coordinate sphere
Sr with respect to the outward unit normal υ.

3. Spinor Calculations

Suppose (Mn
±, g±, k±) is an asymptotically flat DEC-creased initial data set. Let f be the hyper-

bolic angle associated to the bundle isometry F : N− → N+, set

a = cosh(f), b = sinh(f), A = cosh(f/2), B = sinh(f/2),(3.1)

and let ϵ± = ν±τ±. Acting by Clifford multiplication, ϵ± is an isometry of (S±|Σn−1 , ⟨·, ·⟩) due to
(2.8), and satisfies the following properties which are frequently used below.
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Proposition 3.1. The endomorphism ϵ± and functions a, b, A,B defined above satisfy

ϵ2± = 1, ϵ±ν± = −ν±ϵ± = τ±, ϵ±τ± = −τ±ϵ±, ϵ± ◦ ∇Σ,± = ∇Σ,± ◦ ϵ±,(3.2)

and

(A−Bϵ±)(A+Bϵ±) = 1, (A+Bϵ±)
2 = a+ bϵ±.(3.3)

Proof. The identities (3.2) follow from the Clifford relations and part (iii) of Proposition 2.1. To
establish (3.3), one applies the hyperbolic identity a2 − b2 = A2 − B2 = 1 and the double angle
formulas A2 +B2 = a, 2AB = b. □

Remark 3.2. To explain the boundary condition Φ(ψ−) = (A+Bϵ+)ψ+, suppose (M
n
±, g±, k±) arises

as a spacelike Lipschitz-embedded hypersurface Mn in a spacetime (Nn+1, h). Hyperbolic rotation
by f on TNn+1|Σn+1 taking {ν−, τ−} to {ν+, τ+} induces the rotation (A+Bϵ+) on S+|Σn−1 , which
can be seen using (3.3). With this in mind, the boundary condition requires that the identification
Φ : S−|Σn−1 → S+|Σn−1 takes ψ− to the the rotation of ψ+ by f . This condition implies that the
piecewise defined spinor ψ− ∪ ψ+ is a continuous section of Nn+1’s spinor bundle restricted to Mn.

3.1. Boundary term computation. Given spacetime spinors ψ±, denote the boundary terms
along Σn−1 in the Lichnerowicz-Schrödinger-Weitzenböck formula (2.15) by

I− :=

ˆ
Σn−1

〈
ψ−, D−ψ− − 1

2
H−ψ− − 1

2
[(Trγ k−) ν− − k−(ν−, ·)] τ−ψ−

〉
dA,

I+ :=

ˆ
Σn−1

〈
ψ+, D+ψ+ +

1

2
H+ψ+ +

1

2
[(Trγ k+) ν+ − k+(ν+, ·)] τ+ψ+

〉
dA.

(3.4)

We will show that I− + I+ has a favorable sign under appropriate boundary conditions for ψ± and
the DEC-creased condition.

Proposition 3.3. Let (Mn
±, g±, k±) and F be as in Theorem 1.3. Suppose ψ± are spacetime spinors

satisfying Φ(ψ−) = (A+Bϵ+)ψ+ along Σn−1. Then

I− + I+ ≤ 1

2

ˆ
Σn−1

|ψ+|2
[〈
H⃗+ − F (H⃗−), ν+

〉
+

√〈
F (H⃗−)− H⃗+, τ+

〉2
+ |β∆|2γ

]
dA.(3.5)

In particular, the DEC-creased condition ensures I− + I+ ≤ 0.

Proof. We will show that I− + I+ takes the form

1

2

ˆ
Σn−1

(
|ψ+|2

〈
H⃗+ − F (H⃗−), ν+

〉
+
〈
ψ+,

(〈
H⃗+ − F (H⃗−), τ+

〉
ν+ − β∆

)
τ+ψ+

〉)
dA,(3.6)

which implies inequality (3.5) with the help of Cauchy-Schwartz. The computation proceeds by
computing each term in the integrand of I− entirely in terms of (Mn

+, g+, k+) data.
For the the boundary Dirac operator term note that

Φ(D−ψ−) = Φ(ν−e
α∇Σ,−

α ψ−) = ν+e
α∇Σ,+

α Φ(ψ−) = −D+Φ(ψ−),(3.7)

where we have used Proposition 2.1. Since Φ is an isometry, it follows that

(3.8) ⟨ψ−, D−ψ−⟩ = −⟨Φ(ψ−), D+Φ(ψ−)⟩ .

Before continuing, note the elementary computations dA = 1
2Bdf , dB = 1

2Adf , and ⟨ϕ, (s+ tϵ±)ψ⟩ =
⟨(s+ tϵ±)ϕ, ψ⟩ for any numbers s, t, where we have used that ϵ2± = 1. By employing the boundary
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conditions (1.9) and Proposition 3.1, it holds that

⟨Φ(ψ−), D+Φ(ψ−)⟩ = ⟨(A+Bϵ+)ψ+, D+(A+Bϵ+)ψ+⟩

= −
〈
(A+Bϵ+)ψ+, ν+e

α∇Σ,+
α (A+Bϵ+)ψ+

〉
= −⟨(A+Bϵ+)ψ+, ν+(dA+ dBϵ+)ψ+ − (A−Bϵ+)D+ψ+⟩

= −1

2
⟨(A+Bϵ+)ψ+, ν+(A+Bϵ+)dfψ+⟩+ ⟨ψ+,D+ψ+⟩

= −1

2
⟨(A+Bϵ+)ψ+, (B −Aϵ+)ν+dfψ+⟩+ ⟨ψ+, D+ψ+⟩

=
1

2

〈
(A2 −B2)ϵ+ψ+, ν+dfψ+

〉
+ ⟨ψ+, D+ψ+⟩

=
1

2
⟨ψ+, ϵ+ν+dfψ+⟩+ ⟨ψ+, D+ψ+⟩

=
1

2
⟨ψ+, τ+dfψ+⟩+ ⟨ψ+, D+ψ+⟩ ,

(3.9)

and hence together with (3.8) we have

⟨ψ−, D−ψ−⟩+ ⟨ψ+, D+ψ+⟩ =
1

2
⟨ψ+, dfτ+ψ+⟩ .(3.10)

Next, consider the boundary terms involving the connection 1-form. Similar manipulations pro-
duce

⟨ψ−, k−(ν−, ·)τ−ψ−⟩ = ⟨Φ(ψ−), Φ (k−(ν−, ·)τ−ψ−)⟩
= ⟨Φ(ψ−), k−(ν−, ·)τ+Φ(ψ−)⟩
= ⟨(A+Bϵ+)ψ+, k−(ν−, ·)τ+(A+Bϵ+)ψ+⟩
= ⟨(A+Bϵ+)ψ+, (A−Bϵ+)k−(ν−, ·)τ+ψ+⟩
= ⟨ψ+, k−(ν−, ·)τ+ψ+⟩ ,

(3.11)

where we have used the fact that τ+ anti-commutes with ϵ+. The change of gauge formula (2.4) now
implies

1

2
⟨ψ−, k−(ν−, ·)τ−ψ−⟩ −

1

2
⟨ψ+, k+(ν+, ·)τ+ψ+⟩ =

1

2
⟨ψ+, (k−(ν−, ·)− k+(ν+, ·)) τ+ψ+⟩

= −1

2

〈
ψ+, β

∆τ+ψ+

〉
− 1

2
⟨ψ+, dfτ+ψ+⟩ .

(3.12)

Consider now the terms involving the mean curvatures, and observe that Proposition (3.1) yields

⟨ψ−, (H− + (Trγ k−) ν−τ−)ψ−⟩ = ⟨Φ(ψ−), Φ((H− + (Trγ k−) ν−τ−)ψ−)⟩
= ⟨Φ(ψ−), (H− + (Trγ k−) ν+τ+)Φ(ψ−)⟩
= ⟨(A+Bϵ+)ψ+, (H− + (Trγ k−) ϵ+)(A+Bϵ+)ψ+⟩
= ⟨(A+Bϵ+)ψ+, (A+Bϵ+)(H− + (Trγ k−) ϵ+)ψ+⟩
=

〈
ψ+, (A+Bϵ+)

2(H− + (Trγ k−) ϵ+)ψ+

〉
= ⟨ψ+, (a+ bϵ+)(H− + (Trγ k−) ϵ+)ψ+⟩
= ⟨ψ+, (aH− + bTrγ k− + (bH− + aTrγ k−) ϵ+)ψ+⟩ .

(3.13)
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It follows that

−
〈
ψ−,

1

2
(H− + (Trγ k−) ν−τ−)ψ−

〉
+

〈
ψ+,

1

2
(H+ + (Trγ k+) ν+τ+)ψ+

〉
=

1

2
|ψ+|2 [H+ − (aH− + b (Trγ k−))] +

1

2
⟨ψ+, ϵ+ψ+⟩ [Trγ k+ − (bH− + a (Trγ k−))]

=
1

2
|ψ+|2

〈
H⃗+ − F (H⃗−), ν+

〉
+

1

2
⟨ψ+, ϵ+ψ+⟩

〈
H⃗+ − F (H⃗−), τ+

〉
=

1

2
|ψ+|2

〈
H⃗+ − F (H⃗−), ν+

〉
+

1

2

〈
ψ+,

〈
H⃗+ − F (H⃗−), τ+

〉
ν+τ+ψ+

〉
,

(3.14)

where we have used (2.5). Summing (3.10), (3.12), and (3.14) gives the desired formula (3.6). □

4. Existence of Solutions to the Transmission Boundary Value Problem

In this section we will study the system (1.9), where (Mn
±, g±, k±) are as in Theorem 1.3. Weighted

spaces and associated Poincaré inequalities play an important role in the existence theory of Dirac
harmonic spinors in the asymptotically flat setting, see [2] and [27]. For convenience we will set
M ′ = Mn

+ ⊔Mn
− to be the disjoint union of Mn

+ and Mn
−, so that ∂M ′ = Σn−1 ⊔ Σn−1. We write

W 1,2
−q∗(M

′) for spinors ψ overM ′ consisting of pairs ψ± ∈W 1,2
−q∗(S±), and similarly for other functions

spaces such as C∞
c (M ′). To incorporate the boundary conditions, define the Hilbert space

H :=
{
ψ ∈W 1,2

−q∗(M
′)
∣∣∣ (A+Bϵ+)ψ+|Σn−1 = Φ(ψ−|Σn−1)

}
,(4.1)

where q∗ = n−2
2 . Since the trace operation T : W 1,2(M ′) → H

1
2 (∂M ′) is continuous, H is indeed

a closed subspace of W 1,2
−q∗(M

′) and hence a Hilbert space. This space admits approximation by
smooth spinors with compact support.

Lemma 4.1. H ∩ C∞
c (M ′) is dense in H.

Proof. Take ψ ∈ H, and let ψ′ ∈ C∞
c (M ′) be close to ψ in W 1,2

−q∗(M
′). The approximation ψ′ may

not satisfy the desired boundary conditions, and thus ψ′ may not lie in H. To rectify this situation,

consider a bounded right-inverse E : H
1
2 (∂M ′) → W 1,2

−q∗(M
′) for the trace operator T ; this may be

constructed to send smooth spinors on ∂M ′ to smooth spinors on M ′ which vanish on the ends of

Mn
+. Define K : H

1
2 (∂M ′) → H

1
2 (∂M ′) by

φ+ ⊕ φ− 7→ 1

2
(φ+ − (A−Bϵ+)Φ(φ−))⊕

1

2

(
φ− − (A+Bϵ−)Φ

−1(φ+)
)
.(4.2)

Note that KT φ = 0 if and only if φ ∈ H, and that K2 = K. Set ψ′′ = ψ′ −EKT ψ′, and observe that
this spinor is smooth, vanishes on the ends of Mn

+, and lies within H since

KT ψ′′ = KT ψ′ −K2T ψ′ = 0.(4.3)

Furthermore, using that EKT ψ = 0 and the boundedness of the maps involved yields

∥EKT ψ′∥
W 1,2

−q∗ (M
′) = ∥EKT (ψ′ − ψ)∥

W 1,2
−q∗ (M

′) ≤ C∥ψ′ − ψ∥
W 1,2

−q∗ (M
′)(4.4)

for some constant C, and thus the triangle inequality gives

∥ψ − ψ′′∥
W 1,2

−q∗ (M
′) ≤ (1 + C)∥ψ′ − ψ∥

W 1,2
−q∗ (M

′).(4.5)

The spinor ψ′′ is the desired approximation to ψ. □
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Continuing with the development of the technical tools needed for the proof of existence, we will
next establish Poincaré-type estimates for spinors in the function space H.

Lemma 4.2. Let (Mn
±, g±, k±) be initial data sets with Mn

− compact and Mn
+ asymptotically flat.

Then there exists a constant C depending on the geometry of the initial data such that:

(i) ∥ψ∥2
W 1,2

−q∗ (S+)
≤ C∥∇+

ψ∥2L2(S+) for ψ ∈W 1,2
−q∗(S+),

(ii) ∥ψ∥2W 1,2(S−) ≤ C
(
∥∇−

ψ∥2L2(S−) + ∥ψ∥2L2(S−|Σn−1 )

)
for ψ ∈W 1,2(S−).

Proof. Since Mn
+ is connected and contains an asymptotically flat end, the result [2, Theorem 9.5]

implies that there exists C1 such that the weighted Poincaré inequality

∥ψ/r∥2L2(S+) ≤ C1∥∇
+
ψ∥2L2(S+)(4.6)

holds for all ψ ∈W 1,2
−q∗(S+). Therefore, there exists a constant C2 so that

∥ψ∥
W 1,2

−q∗ (S+)
≤ ∥∇+ψ∥L2(S+) + ∥ψ/r∥L2(S+)

≤ ∥∇+
ψ∥L2(S+) + ∥|k+|g+ψ∥L2(S+) + ∥ψ/r∥L2(S+)

≤ ∥∇+
ψ∥L2(S+) + (sup(r|k+|) + 1) ∥ψ/r∥L2(S+)

≤ C2∥∇
+
ψ∥L2(S+),

(4.7)

where the last inequality follows from the asymptotic decay of k+ and (4.6). This yields part (i).
Consider now part (ii). We will first demonstrate the following Poincaré-type inequality

∥ψ∥2L2(S−) ≤ C3

(
∥∇−

ψ∥2L2(S−) + ∥ψ∥2L2(S−|Σn−1 )

)
,(4.8)

for ψ ∈ W 1,2(S−). Suppose the inequality does not hold, then there exists a sequence of spinors ψi

such that ∥ψi∥L2(S−) = 1 and ∥∇−
ψi∥2L2(S−) + ∥ψi∥2L2(S−|Σn−1 )

→ 0. As in (4.7), this shows that the

sequence is bounded in W 1,2(S−). By Rellich’s theorem, after passing to a subsequence, ψi strongly
converges in L2(S−) and weakly converges in W 1,2(S−). Let ψ = limi→∞ ψi. Then by weak lower

semi-continuity of the norm and the trace theorem, it follows that ∇−
ψ = 0 and ψ|Σn−1 = 0. In

particular, the limit spinor satisfies

∇−
i ψ = −1

2
(k−)

j
iejτ−ψ.(4.9)

Hence ψ is smooth, and integrating along curves connecting interior points to the boundary where
ψ = 0, we find that ψ vanishes everywhere. This contradicts ∥ψ∥L2(S−) = 1, yielding the desired
result. □

The two Poincaré inequalities of Lemma 4.2 may be pasted together using the boundary conditions,
producing a global weighted Poincaré inequality for spinors in H.

Corollary 4.3. The inner product ⟨⟨f, g⟩⟩ :=
´
M ′

〈
∇f,∇g

〉
dV is equivalent to the W 1,2

−q∗(M
′)-inner

product on H. In particular, there is a constant C such that

(4.10) ∥ψ∥
W 1,2

−q∗ (M
′) ≤ C∥∇ψ∥L2(M ′)

for all ψ ∈ H.
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Proof. Using that (A + Bϵ+) ◦ Φ is a bounded invertible map from L2(S−|Σn−1) → L2(S+|Σn−1),
together with Lemma 4.2, and continuity of the trace produces

∥ψ∥2W 1,2(S−) ≤ C
(
∥∇−

ψ∥2L2(S−) + ∥ψ∥2L2(S−|Σn−1 )

)
≤ C1

(
∥∇−

ψ∥2L2(S−) + ∥ψ∥2
W 1,2

−q∗ (S+)

)
≤ C2

(
∥∇−

ψ∥2L2(S−) + ∥∇+
ψ∥2L2(S+)

)
,

(4.11)

for any ψ ∈ H. Applying part (i) of Lemma 4.2 again yields

∥ψ∥2
W 1,2

−q∗ (M
′)
≤ C3∥∇ψ∥2L2(M ′).(4.12)

The inequality ∥∇ψ∥2L2(M ′) ≤ C4∥ψ∥2W 1,2
−q∗ (M

′)
holds by the decay of k. □

To proceed, we establish a mass inequality for spinors that lie in H after subtracting a constant
model spinor. This inequality will then be used to show that DW : H → L2(M ′) is an isomorphism.

Proposition 4.4. Let ψ0 be a smooth spacetime spinor onM ′ that is asymptotic to a constant spinor
ψ∞. For any spinor ψ satisfying ψ − ψ0 ∈ H, we haveˆ

M ′

(
|∇ψ|2 − |DWψ|2 +

1

2
⟨ψ, (µ+ Jτ)ψ⟩

)
dV ≤ −1

2

ˆ
Σn−1

B|ψ|2dA

+
(n− 1)ωn−1

2

(
E|ψ∞|2 − ⟨ψ∞, P τψ∞⟩

)
,

(4.13)

where

B =
〈
F (H⃗−)− H⃗+, ν+

〉
−

√〈
F (H⃗−)− H⃗+, τ+

〉2
+ |β∆|2γ .(4.14)

Proof. If ψ − ψ0 ∈ H ∩ C∞
c (M ′), then ψ is a smooth spinor satisfying the boundary conditions and

is asymptotic to ψ∞. By (2.15) as well as Propositions 2.2 and 3.3, the inequality holds for such
ψ. The general inequality is established by approximating ψ − ψ0 with smooth spinors. To carry
this out, note that the first two terms of the left-hand side of (4.13) are continuous on {H + ψ0}
in the W 1,2

−q∗(M
′)-topology, due to the fall-off of k. For the third term on the left side, we have

µ + Jτ = O(r−q−2) = O(r−2), so this term is continuous as well. Moreover, the boundary term
involving B is a continuous functional on {H + ψ0} by the trace theorem. Thus, the density result
Lemma 4.1 implies that the mass inequality holds for all spinors in {H+ ψ0}. □

Theorem 4.5. Assume that (Mn
±, g±, k±) are as in Theorem 1.3. Then DW : H → L2(M ′) is an

isomorphism.

Proof. Since k = O
(
|x|−q−1

)
, it follows that DW is a bounded linear operator from H to L2(M ′).

We will first establish injectivity. Applying the mass formula of Proposition 4.4 to a spinor ψ ∈ H
and noting that ψ is asymptotic to ψ∞ = 0, the mass term vanishes and we have

∥∇ψ∥2L2(M ′) − ∥DWψ∥2L2(M ′) ≤ −1

2

ˆ
Σn−1

B|ψ|2dA ≤ 0,(4.15)

by the DEC-creased condition and the dominant energy condition. Combining this with the weighted
Poincaré inequality of Corollary 4.3, we obtain

∥ψ∥2
W 1,2

−q∗
≤ C∥∇ψ∥2L2(M ′) ≤ C∥DWψ∥2L2(M ′),(4.16)
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from which injectivity follows.
Consider now surjectivity of DW . Let η ∈ L2(M ′), then ψ 7→ ⟨η,DWψ ⟩L2(M ′) defines a bounded

linear functional on H. By (4.16), ⟨DW · , DW · ⟩L2(M ′) is equivalent to the inner product on H.

The Riesz representation theorem then provides the existence of a unique ω ∈ H such that

⟨DWω,DWψ⟩L2(M ′) = ⟨η,DWψ⟩L2(M ′)(4.17)

for every ψ ∈ H. Then setting φ = DWω − η ∈ L2(M ′) produces

⟨φ,DWψ⟩L2(M ′) = 0(4.18)

for all ψ ∈ H. In particular, DWφ = 0 weakly, however we do not yet know its regularity at the
boundary. Proposition 5.1 below implies that φ ∈ W 1,2

loc (M
′) and satisfies the boundary conditions

that define H.
To show (−q∗)-weighted Sobolev space decay of φ, we argue via approximation. Let χj be a

nondecreasing sequence of cut-off functions such that for large j, χj ≡ 1 inside the coordinate sphere
S2j , χj = 0 outside S2j+1 , and |∇χk| ≤ 21−j . Observe that

DW (χjφ) = χjDWφ+ (∇χj)φ = (∇χj)φ,(4.19)

where (∇χk)φ denotes Clifford multiplication of ∇χj on φ. Furthermore, this and (4.16) imply

∥χjφ− χj+1φ∥W 1,2
−q∗ (M

′) ≤ C∥DW (χjφ− χj+1φ)∥L2(M ′)

≤ C∥∇(χk − χj+1)φ∥L2(M ′)

≤ 22−jC∥φ∥L2(M ′),

(4.20)

and therefore χjφ converges to φ in W 1,2
−q∗(M

′). Hence φ lies in H and is a solution to DWφ = 0.
By the injectivity of DW we must have φ = 0, showing that DWω = η. This establishes surjectivity.
Finally, by the bounded inverse theorem we find that the inverse is a bounded, thus establishing the
isomorphism property. □

We now arrive at the main existence statement and integral inequality.

Proof of Theorem 1.3 and 1.4. Note that Theorem 1.3 follows from Theorem 1.4. To prove the latter
result, fix a smooth spinor ψ0 on M ′ with ψ0 ≡ 0 away from a neighborhood of the distinguished
end Mn

ℓ and ψ0 = ψ∞ on Mn
ℓ . Since ψ∞ is constant, DWψ0 decays at the same order as k+

and the connection coefficients of g+, which is O(|x|−q−1) = O(|x|−n/2−ϵ) for some ϵ > 0. So
DWψ0 ∈ L2(M ′) ∩ C∞(M ′). By Theorem 4.5, we obtain a solution ω ∈ H to

DWω = −DWψ0.(4.21)

The regularity statement ω ∈ C∞(M ′) follows from Proposition 5.2 demonstrated in the next section.
Then ψ = ω+ψ0 is the desired spinor. Now apply Proposition 4.4 to ψ together with the DEC-creased
condition to obtain the desired result. □

5. Ellipticity of the Boundary Conditions

The goal of this section is to establish the regularity result Proposition 5.2 for weak solutions to
(1.9), which is used in the proof of Theorem 1.4 above. Doing so requires us to understand (1.9) as
a type of elliptic boundary value problem. In [4], elliptic boundary conditions are defined for Dirac
operators, which we will now briefly review. Let S be the spacetime spinor bundle on a spin initial
data set (Mn, g, k) with compact boundary. Let DW : H1(S) → L2(S) be the Dirac-Witten operator,
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and recall it is formally self-adjoint. Let Dmax be the extension of DW to dom(Dmax) ⊂ L2(Mn)
defined by: φ ∈ dom(Dmax) whenever there exists η ∈ L2(Mn) such that

⟨φ,DWψ⟩L2(Mn) = ⟨η, ψ⟩L2(Mn)(5.1)

for all smooth spinors ψ compactly supported in the interior of Mn. This equation indicates that φ
is an L2-weak solution of DWφ = η with no boundary conditions imposed, and thus in this case we
define Dmaxφ := η. Note that dom(Dmax) is complete with the graph norm

∥φ∥dom(Dmax) = ∥φ∥L2(Mn) + ∥Dmaxφ∥L2(Mn),(5.2)

and standard elliptic theory implies that φ is H1 in the interior. A first-order operator A on S|∂Mn

is an adapted operator if the principal symbol σA of A satisfies

σA(ξ, x) = νσDW
(ξ, x)(5.3)

for all x ∈ ∂Mn, ξ ∈ T ∗
x (∂M

n), where ν is Clifford multiplication by the outward unit normal to
∂Mn. In particular, the boundary Dirac operator D∂Mn

= νeα∇∂Mn

α is an adapted operator.

Now let us return to the setting where M ′ = Mn
+ ⊔ Mn

−. Let Hs
≥0(D∂M ′

) (resp. Hs
<0(D∂M ′

))

be subspaces of Hs(S|∂M ′) spanned by the eigenspaces of the boundary Dirac operator D∂M ′
of

nonnegative (resp. negative) eigenvalues. Define the hybrid Sobolev space

Ȟ(D∂M ′
) := H

1
2
<0(D

∂M ′
)⊕H

− 1
2

≥0 (D
∂M ′

).(5.4)

As M ′ is a complete Riemannian manifold with boundary, the result [4, Theorem 6.7] asserts that

the trace map uniquely extends to a surjective bounded linear map T : dom(Dmax) → Ȟ(D∂M ′
),

that φ ∈ dom(Dmax) ∩H1
loc(M

′) if and only if both φ ∈ dom(Dmax) and T (φ) ∈ H
1
2 (∂M ′), and the

integration by parts formula

⟨Dmaxφ,ψ⟩L2(M ′) − ⟨φ,Dmaxψ⟩L2(M ′) = ⟨νT φ, T ψ⟩L2(∂M ′)(5.5)

holds for φ,ψ ∈ dom(Dmax). The paring on the right side of (5.5) is well-defined since Clifford

multiplication by ν swaps the positive and negative eigenspaces from Ȟ(D∂M ′
). We begin with a

preliminary regularity result for weak solutions to the boundary value problem.

Proposition 5.1. If φ, η ∈ L2(M ′) are such that

⟨φ,DWψ⟩L2(M ′) = ⟨η, ψ⟩L2(M ′) for all ψ ∈ H,(5.6)

then φ ∈ H1
loc(M

′) and φ satisfies the boundary conditions defining H.

Proof. SinceH contains smooth spinors compactly supported on the interior ofM ′, we haveDmaxφ =
η. Using (5.5), for all ψ ∈ H it holds that

0 = ⟨νT φ, T ψ⟩L2(∂M ′)

= ⟨ν−T φ, T ψ⟩L2(∂Mn
−) − ⟨ν+T φ, T ψ⟩L2(∂Mn

+)

= ⟨ν+Φ(T φ),Φ(T ψ)⟩L2(∂Mn
+) − ⟨ν+T φ, T ψ⟩L2(∂Mn

+)

= ⟨ν+Φ(T φ), (A+Bϵ+)T ψ⟩L2(∂Mn
+) − ⟨ν+T φ, T ψ⟩L2(∂Mn

+)

= ⟨ν+[(A−Bϵ+)Φ(T φ)− T φ], T ψ)⟩L2(∂Mn
+) .

(5.7)

Since T ψ is an arbitrary function in H
1
2 (∂Mn

+), it follows that

(A−Bϵ+)Φ(T φ) = T φ on ∂Mn
+(5.8)
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in the sense of distributions, justifying the second claim of the proposition.
We know that T φ is in Ȟ(D∂M ′

) by [4, Theorem 6.7 (ii)]. It remains to show that T φ fully lies

within H
1
2 (∂M ′), which by virtue of (iii) from the same theorem will imply that φ ∈ H1

loc(M
′). To do

this, we revisit the proof of [4, Theorem 7.20] that equates certain pseudolocal boundary conditions
with the well-studied notion of an elliptic boundary value problem. Although the current boundary
conditions (1.9) are a form of transmission conditions, making them neither local nor pseudolocal,
they can be recast as pointwise boundary conditions in an axillary bundle over the boundary. The

space of sections on the boundary is H
1
2 (∂M ′) = H

1
2 (S+|Σn−1 ⊕S−|Σn−1), and we define an isometry

with H
1
2
+ := H

1
2 (S+|Σn−1 ⊕ S+|Σn−1) via

φ+ ⊕ φ− 7→ φ+ ⊕ Φ(φ−).(5.9)

The boundary Dirac operator on H
1
2 (S+|Σn−1)⊕H

1
2 (S−|Σn−1) is given by

D∂M ′
= D+ ⊕D−.(5.10)

Moreover, (3.7) yields

D+φ+ ⊕ Φ(D−φ−) = D+φ+ ⊕−D+Φ(φ−),(5.11)

which implies that D∂M ′
acts as D+ ⊕−D+ on H

1
2
+.

In what follows we will work on H
1
2
+. Define K : H

1
2
+ → H

1
2
+ via

K(ψ1 ⊕ ψ2) =
1

2
(ψ1 − (A−Bϵ+)ψ2)⊕

1

2
(ψ2 − (A+Bϵ+)ψ1) ,(5.12)

whose kernel defines the boundary conditions. Let Q<0 be the L2-projection onto the negative
eigenspace of D+ ⊕−D+. We claim that K−Q<0 is an elliptic pseudo-differential operator of order
0. It is known that the principal symbol σQ<0(ξ) of Q<0 is the orthogonal projection onto the negative
eigenspace of i(σD+(ξ) ⊕ σ−D+(ξ)) = i(−ν+ξ ⊕ ν+ξ); for details see the proof of [4, Theorem 7.20].
Without loss of generality we may assume that |ξ| = 1. Then the symmetric operator iν+ξ squares
to 1, so it has eigenvalues ±1, and hence

σQ<0(ξ) =
1

2
(1 + iν+ξ)⊕

1

2
(1− iν+ξ) .(5.13)

We now check that the principal symbol σK(ξ) − σQ<0(ξ) is injective, and consequently an isomor-
phism. Suppose that (σK(ξ)− σQ<0(ξ))(ψ1 ⊕ ψ2) = 0, and observe that this implies

(5.14) (A−Bϵ+)ψ2 = −iν+ξψ1, (A+Bϵ+)ψ1 = iν+ξψ2.

Solving for ψ1 in the second equation and inserting it into the first yields

(A−Bϵ+)ψ2 = −iν+ξ(A−Bϵ+)iν+ξψ2.(5.15)

It follows that (A−Bϵ+)ψ2 = 0. Therefore ψ2 = 0, and (5.14) then gives ψ1 = 0. This verifies that
σK−Q<0

(ξ) is an isomorphism for ξ ̸= 0, so that K −Q<0 is an elliptic pseudo-differential operator.

In particular, there is a zeroth order parametrix R such that R(K − Q<0) = I + S where S is a
smoothing operator. Due to the boundary condition KT φ = 0, we have

T φ+ ST φ = R(K −Q<0)T φ = RQ<0T φ.(5.16)

Furthermore, observe that T φ ∈ Ȟ(D∂M ′
) implies Q<0T φ ∈ H

1
2 (∂M ′), and therefore RQ<0T φ ∈

H
1
2 (∂M ′). Since S is a smoothing operator ST φ ∈ C∞(∂M ′), thus (5.16) implies the desired

outcome that T φ ∈ H
1
2 (∂M ′). □
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The following proposition describes the required higher-order regularity of solutions to the bound-
ary value problem.

Proposition 5.2. Assume that (M±, g±, k±) are as in Theorem 1.3. If η ∈ Hs
loc(M

′) for s ≥ 0 and
φ ∈ H satisfies

DWφ = η,(5.17)

then φ ∈ Hs+1
loc (M ′).

Proof. The result is a consequence of [4, Theorem 7.17], provided that K satisfies the so-called
(s+ 1/2)-regular property [4, Definition 7.15] for all s ≥ 0. This property was demonstrated in the
the proof of Proposition 5.1 for s = 0, and the proof is identical for s > 0. □

Remark 5.3. We note that the spinor PDE boundary value problem can be shown to satisfy the
ellipticity conditions of Shapiro-Lopatinski (or Agmon-Douglis-Nirenberg). This gives an alternative
route to proving the above regularity results.

6. Rigidity

To investigate the case ofm = 0 and establish Theorem 1.5, we adopt the strategy of Beig-Chruściel
[3]. First, some preliminary notions and facts are needed. Given an initial data set (Mn, g, k), a
lapse-shift pair (u, Y ) consists of a function u and a vector field Y on Mn.

Definition 6.1. Given a lapse-shift pair (u, Y ) onMn with u > 0, the Killing development associated
with (u, Y ) is the Lorentzian manifold (R×Mn, ḡ) where

ḡ = −u2dt2 + gij(dx
i + Y idt)(dxj + Y jdt)

= −(u2 − |Y |2)dt2 + 2Y dt+ g.
(6.1)

Since (u, Y ) are independent of t, the new vector field ∂t is Killing for ḡ. Moreover, (Mn, g)
isometrically embeds into the Killing development as {t = 0} ×Mn. If τ denotes the unit timelike
normal to this embedding, notice that ∂t decomposes into the orthogonal sum uτ +Y . The following
describes when the second fundamental form of {t = 0} agrees with k.

Proposition 6.2. [3, Section 2] Suppose (Mn, g, k) is an initial data set with a lapse-shift pair (u, Y )
satisfying u > 0. If

(6.2) LY g + 2uk = 0, du+ k(Y, ·) = 0,

where L denotes Lie differentiation, then (Mn, g, k) isometrically embeds into the Killing development
associated with (u, Y ) as {t = 0} with induced second fundamental form k.

To implement the Killing development construction, we need a source of lapse-shift pairs (u, Y ).
The next proposition produces such pairs from spacetime spinors, and describes the algebraic prop-
erties induced by the boundary conditions (1.9).

Proposition 6.3. Suppose that (Mn
±, g±, k±) is a DEC-creased initial data set such that Mn is spin.

Let ψ± be spacetime spinors on Mn
± satisfying the boundary condition Φ(ψ−) = (A + Bϵ+)ψ+ on

Σn−1. Consider the lapse-shift pair (u±, Y±) defined by

u± = |ψ±|2, ⟨Y±,W ⟩ = ⟨τ±Wψ±, ψ±⟩, W ∈ TMn
±.(6.3)
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Then Y± is real and the following equations along Σn−1 hold

⟨Y−, V ⟩ = ⟨Y+, V ⟩, V ∈ TΣn−1,

⟨Y−, ν−⟩ = a⟨Y+, ν+⟩ − bu+, u− = au+ − b⟨Y+, ν+⟩.
(6.4)

Moreover if ∇ψ± = 0, then ∇Y± is a symmetric tensor and the corresponding lapse-shift pair (u±, Y±)
defined by (6.3) satisfies

LY±g± + 2u±k± = 0, du± + k±(Y±, ·) = 0.(6.5)

Proof. To see that Y± is real, simply note that

(6.6) ⟨τ±Wψ±, ψ±⟩ = ⟨ψ±, τ±Wψ±⟩ = ⟨τ±Wψ±, ψ±⟩.

For V ∈ TΣn−1 we have

⟨Y−, V ⟩ = ⟨τ−V ψ−, ψ−⟩
= ⟨τ+V (A+Bϵ+)ψ+, (A+Bϵ+)ψ+⟩
= ⟨τ+(A+Bϵ+)V ψ+, (A+Bϵ+)ψ+⟩
= ⟨(A−Bϵ+)τ+V ψ+, (A+Bϵ+)ψ+⟩ = ⟨τ+V ψ+, ψ+⟩ = ⟨Y+, V ⟩ .

(6.7)

To verify the remaining identities we compute

⟨Y−, ν−⟩ = ⟨τ−ν−ψ−, ψ−⟩
= ⟨τ+ν+(A+Bϵ+)ψ+, (A+Bϵ+)ψ+⟩
= ⟨τ+(A−Bϵ+)ν+ψ+, (A+Bϵ+)ψ+⟩
= ⟨(A+Bϵ+)τ+(A−Bϵ+)ν+ψ+, ψ+⟩
=

〈
τ+(A−Bϵ+)

2ν+ψ+, ψ+

〉
= ⟨τ+(a− bϵ+)ν+ψ+, ψ+⟩
= a ⟨τ+ν+ψ+, ψ+⟩ − b ⟨τ+ϵ+ν+ψ+, ψ+⟩
= a ⟨τ+ν+ψ+, ψ+⟩ − b ⟨ψ+, ψ+⟩ = a ⟨Y+, ν+⟩ − bu+,

(6.8)

and

u− = ⟨Φ(ψ−),Φ(ψ−)⟩ = ⟨(A+Bϵ+)ψ+, (A+Bϵ+)ψ+⟩
=

〈
(A+Bϵ+)

2ψ+, ψ+

〉
= ⟨(a+ bϵ+)ψ+, ψ+⟩
= a ⟨ψ+, ψ+⟩+ b ⟨ϵ+ψ+, ψ+⟩ = au+ − b⟨Y+, ν+⟩.

(6.9)

To see that ∇Y± is symmetric when ∇ψ± = 0 observe that by differentiating the second equation of
(6.3) (foregoing the ± notation) produces

⟨∇XY,W ⟩ = ⟨τW∇Xψ,ψ⟩+ ⟨τWψ,∇Xψ⟩

= −1

2
(⟨τWk(X, ·)τψ, ψ⟩+ ⟨τWψ, k(X, ·)τψ⟩)

= −1

2
⟨(Wk(X, ·) + k(X, ·)W )ψ,ψ⟩ = −k(X,W )|ψ|2.

(6.10)

The final assertion in the proposition is contained in the proof of [6, Theorem 3.1]. □
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Before proceeding to the proof of the main rigidity result, we describe here a construction that will
be used frequently. Let (Mn

±, g±, k±) be an asymptotically flat DEC-creased initial data set. Given
a vector v ∈ Rn, take a constant spacetime spinor ψ0 on Rn such that v ·W = ⟨τWψ0, ψ0⟩ for all
W ∈ Rn. Let ψ0 then be the constant spinor at infinity for a designated end Mn

ℓ1
in boundary value

problem (1.9). The solution of this problem provided by Theorem 1.4 will be denoted by ψ±[v], and
the corresponding lapse-shift pair defined by (6.3) will be denoted (u±[v], Y±[v]).

Proof of Theorem 1.5. The first step is to show that E = |P | implies that E = |P | = 0. Suppose
P ̸= 0. In the notation above, we find solutions ψP

± := ψ±[−P/|P |] to (1.9) and apply Theorem 1.4
to find

0 =

ˆ
Mn

−

(
|∇ψP

−|2 +
1

2

〈
ψP
−, (µ+ Jτ−)ψ

P
−
〉)

dV +

ˆ
Mn

+

(
|∇ψP

+|2 +
1

2

〈
ψP
+, (µ+ Jτ+)ψ

P
+

〉)
dV.(6.11)

Using the dominant energy condition, we immediately conclude that |∇ψP
±| ≡ 0. At this point we

may apply the proof of [6, Theorem 3.2] to obtain E = |P | = 0. Strictly speaking, [6] works with
a smooth complete initial data set, however the computation [6, Theorem 2.5] of E = |P | = 0 only
relies on the existence of a nontrivial ∇-parallel spinor in the asymptotic end. As a consequence, the
mass formula Theorem 1.4 implies that any solution to (1.9) with ψ0 ̸= 0 is parallel with respect to
∇.

Next, we construct an asymptotically time-like lapse-shift pair. Solving (1.9) three times yields
the following combination of lapse-shift pairs:

Y ±
0 = −Y±[12(e1 + e2)] + Y±[

1
2(−e1 + e2)] + Y±[e1],

u±0 = −u±[12(e1 + e2)] + u±[
1
2(−e1 + e2)] + u±[e1],

(6.12)

where {ei}ni=1 denote the standard basis of Rn. Note that Y +
0 → 0 and u+0 → 1 as |x| → ∞. Since

the underlying spinors are ∇-parallel, we may apply the final statement of Proposition 6.3 to find

(6.13) LY ±
0
g± + 2u±0 k± = 0, du±0 + k±(Y

±
0 , ·) = 0.

We claim that u±0 > 0. To see this, first consider a curve σ : [0, s0] →Mn
+ connecting an arbitrary

point σ(0) ∈ Mn
+ to a point σ(T ) far out in the end so that u+0 (σ(T )) > 0 from the asymptotics.

Observe that (6.13) and the symmetry of ∇Y +
0 imply

(6.14)
d

ds
((u+0 )

2 − |Y +
0 |2) = 2(−u+0 k+(Y

+
0 , σ̇) + u+0 k+(Y

+
0 , σ̇)) = 0.

It follows that the squared Lorentz length −(u+0 )
2 + |Y +

0 |2 remains negative throughout Mn
+ and

so u+0 > 0. In particular, −(u+0 )
2 + |Y +

0 |2 < 0 holds on Σn−1. According to Proposition 6.3, the
pairs (u±0 , Y

±
0 ) are related by an SO+(n, 1)-transformation along Σn−1, and we may conclude that

−(u−0 )
2 + |Y −

0 |2 < 0 is also satisfied along Σn−1. The above ODE argument may then be applied on
Mn

− to conclude that u−0 > 0, proving the claim.

The Killing developments of (Mn
±, g±, k±) associated to (u±0 , Y

±
0 ) have a common time-like bound-

ary R×Σn−1, and we denote the union of these developments along this boundary by (Nn+1, g) with
Killing vector ∂t. Evidently, g is smooth away from R× Σn−1, and Proposition 6.2 implies that the
original initial data sets (Mn

±, g±, k±) embed isometrically as {t = 0} ×Mn
± with induced second

fundamental forms k±. We further claim that g is continuous across R× Σn−1, which is to say that
the metrics

(6.15) −((u±0 )
2 − |Y ±

0 |2)dt2 + 2Y ±
0 |Σn−1dt+ gΣn−1
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are equal along Σn−1. Indeed, Proposition 6.3 implies that Y +
0 |Σn−1 = Y 0

−|Σn−1 . Furthermore, as

discussed above the squared Lorentz lengths −(u±0 )
2 + |Y ±

0 |2 also agree at the crease.
To show that g is flat where it is smooth, a collection of asymptotically linearly independent

lapse-shift pairs is needed. Consider the collection of pairs {(u±[ei], Y±[ei])}ni=1, which we extend to
all of Nn+1 in a t-independent manner. Let τττ± denote the unit timelike normal to the constant time
slices {t} ×Mn

± in Nn+1, and consider the spacetime vector fields

(6.16) X±
0 = u±0 τττ± + Y ±

0 , X±
i = (u±[ei]− u±0 )τττ± + Y±[ei]− Y ±

0 , i = 1, . . . , n.

Notice that X+
a converges to ea in the asymptotic end for a = 0, . . . , n. Well-known calculations

[3, (4.22)] show that ∇Nn+1
X±

a = 0. Since {X+
a }na=0 are orthonormal at infinity and X−

a and X+
a are

related by a Lorentz transformation along R × Σn−1, they remain orthonormal throughout Nn+1.
We conclude that (Nn+1, g) is flat away from R× Σn−1.

We will now show that Nn+1 is Lipschitz homeomorphic to R1,n, via a local isometry away from
R×Σn−1. We first claim that the components of X±

a tangent to R×Σn−1 agree. To see this, notice
that τττ± = (u±0 )

−1(∂t − Y ±
0 ) and compute

⟨u±[ei]τττ± + Y±[ei], ∂t⟩ = −u±[ei]u±0 + ⟨Y±[ei], Y ±
0 ⟩,

⟨u±[ei]τττ± + Y±[ei], V ⟩ = ⟨Y±[ei], V ⟩, V ∈ TΣn−1.
(6.17)

It follows that the Lorentz invariance of Proposition 6.3 provided by (6.4) implies

(6.18) α+
a |R×Σn−1 = α−

a |R×Σn−1 , a = 0, . . . , n,

where α±
a are the dual 1-forms to the vector fields X±

a . Furthermore, if ν± denote the spacelike
normals to R× Σn−1 pointing into R×Mn

+, we have

⟨u±[ei]τττ± + Y±[ei], ν±⟩ = ⟨u±[ei]τττ± + Y±[ei], u
±
0 ν± + ⟨Y ±

0 , ν±⟩τττ±⟩
= −u±[ei]⟨Y ±

0 , ν±⟩+ u±0 ⟨Y±[ei], ν±⟩.
(6.19)

Therefore, with the help of (6.4) and a2 − b2 = 1 it follows that

(6.20) α+
a (ν+) = α−

a (ν−).

Next, pass to the universal cover M̃n ofMn, and lift the data g±, k±, and (u±0 , Y
±
0 ). We will work

on the Killing development Ñn+1 of M̃n, which may be identified with the universal cover of Nn+1.

Denote the Levi-Civita connection of Ñn+1 by ∇̃ and write Σ̂n for the preimage of R×Σn−1. Let Ñn+1
±

be the preimage of the Killing developments of Mn
± and consider the corresponding pullback 1-forms

α̃±
a , which are closed since they are ∇̃-parallel. Fix an anchor point p ∈ Ñn+1 and define functions
va(x) as the integral of α̃−

a ∪ α̃+
a along a path γ joining x to p. To see that this is independent of γ,

consider two such choices γ1 and γ2. Then there is a disc D ⊂ Ñn+1 bounded by the concatenation

γ1 ∗(−γ2), which may be assumed to meet Σ̂n transversely. Letting D± = D∩Ñn+1
± and σ = D∩Σ̂n,

we may apply Stoke’s theorem to findˆ
γ1

(α̃−
a ∪ α̃+

a )−
ˆ
γ2

(α̃−
a ∪ α̃+

a ) =

ˆ
D
d(α̃−

a ∪ α̃+
a ) +

ˆ
σ
α̃−
a −
ˆ
σ
α̃+
a

=

ˆ
D−

dα̃−
a +

ˆ
D+

dα̃+
a

= 0,

(6.21)
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where in the penultimate line we used (6.18). This shows that va is well-defined on Ñn+1. We note

that these functions are globally Lipschitz, and smooth away from Σ̂n.

Let V : Ñn+1 → R1,n be given by V(x) = (v0(x), . . . , vn(x)), and note this map is globally Lipschitz.

The map is also smooth away from Σ̂n, and at such points it gives a local diffeomorphism since the
collection of 1-forms dva = α̃±

a are orthonormal. We claim that V is also a local homeomorphism

near Σ̂n. To see this, approximate V with its linearizations on either side of Σ̂n and note that this
piecewise-linear map is bijective due to (6.18) and (6.20). Next consider a level set Mn of v0, and

note that it is globally Lipschitz and smooth away from Σ̂n, while having a transverse intersection

with Σ̂n+1 since

(6.22) ⟨∂t, ∇̃v0⟩ = ⟨∂t, u±0 τττ± + Y ±
0 ⟩ = −(u±0 )

2 + |Y ±
0 |2 < 0.

Due to the continuity expressions (6.18) and (6.20) for α̃±
0 , and the fact that |∇̃v0|2 = −1, the flow

of ∇̃v0 splits the spacetime homeomorphically as Ñn+1 = R × Mn. Since the ∇̃vi are tangent to

Mn away from Σ̂n ∩Mn for i = 1, . . . , n and satisfy

(6.23) ⟨∇̃vi, ∇̃vj⟩ = δij ,

the restriction V|Mn is a local isometry into a constant time slice of Minkowski space away from Σ̂n,

and is a local homeomorphism across Σ̂n. This in particular implies that Mn is a complete metric
space. The local homeomorphism property combined with completeness can be used to show that
V|Mn is a covering map. Since its target is simply connected, we find that Mn is homeomorphic to

Rn, and hence Ñn+1 is Lipschitz homeomorphic to R1,n via the map V. Since this manifold has a

single end it follows that Ñn+1 = Nn+1, and so Nn+1 is Lipschitz homeomorphic to R1,n.
This homeomorphism Nn+1 → R1,n may fail to be smooth with respect to a generic smooth

structure on Nn+1. However, if we consider the differentiable structure in which the map V becomes
a chart, then this map is tautologically smooth and thus yields a diffeomorphism between Nn+1

and R1,n. Furthermore, since ⟨∇̃va, ∇̃vb⟩ = ηab holds throughout Nn+1 where η is the canonical
expression for the Minkowski metric, we find that Nn+1 is isometric to R1,n. □
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