THE POSITIVE MASS THEOREM FOR CREASED INITIAL DATA
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ABSTRACT. We establish a spacetime positive mass theorem and rigidity statement for asymptotically
flat spin initial data sets with a codimension one singularity controlled by a matching Bartnik data
condition involving spacetime rotations, and discuss applications. This generalizes several previous
works on the topic, including results of Miao, Tsang, and Shi-Tam.

1. INTRODUCTION

Given a connected oriented n-dimensional manifold with boundary M™ of dimension n > 3, a
Riemannian metric g, and a symmetric 2-tensor k, we refer to the triple (M", g, k) as an initial data
set. This terminology refers to the spacetime setting in which (M™,g) is a spacelike hypersurface
with second fundamental form & in an (n + 1)-dimensional Lorentzian manifold, and the triple plays
the role of initial position and velocity for the Einstein equations. These objects satisfy the constraint
equations
(L.1) p= g (Ry (Trgh)? — k3), T = divy (k — (Tryk)g),
where R, is the scalar curvature and p, J represent the matter energy and momentum densities. It
will always be assumed that these latter quantities are integrable u,JJ € L*(M™). We will consider
asymptotically flat initial data sets. This condition means that there is a compact set C € M"
such that M™ \ C consists of a finite number of pairwise disjoint ends Ugolegl, each of which is
diffeomorphic to the compliment of a ball in Euclidean space space R™ \ B and in the coordinates z
provided by this diffeomorphism

(1.2) 10" (917 — 6ij) (@) = O(l=|77"), 1=0,1,2,  |8'kij(2)| = O(jz| " 171), 1=0,1,

for some g > ”T_2 In this setting the ADM energy E and linear momentum P = (Pi,..., P,) of

each end are well-defined [1,/5] and given by

(1.3) F=Ilm ———— / Z Giji — Gii,j)U JdA,

r—><>02n—1wn 1)s,

1

- L AV
(1.4) Pi= lim /5 (kiy — (Tegk)giy o/ dA,

where w,_1 denotes the volume of the unit (n — 1)-dimensional sphere and v is the unit outward
normal to the coordinate sphere S, in the given end. The Lorentz length m = /E? — |P|? is then
referred to as the ADM mass of the end. The positive mass theorem (PMT) asserts that if (M", g) is
complete and the dominant energy condition (DEC) p > |J|4 holds, then E > |P|. Various versions
of this result were established in dimensions 3 < n < 7 by Schoen-Yau [28] and Eichmair [7] using
the Jang equation and by Eichmair-Huang-Lee-Schoen [8] using marginally outer trapped surfaces,
it was proven in all dimensions for spin manifolds by Witten |27,[34] and Bartnik [1], and when n = 3
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spacetime harmonic functions were employed by Hirsch-Kazaras-Khuri [11]. Moreover, an alternative
approach has been put forth by Lohkamp [24] to treat the general case without dimensional or spin
restrictions.

In this work we will study the spacetime positive mass theorem for initial data sets with sin-
gularities. Let us recall previous results in this direction beginning with the time symmetric case,
when & = 0. One of the earliest such works is due to Shi-Tam [29], in the context of the their
proof of positivity for the Brown-York quasi-local mass. They consider metrics of regularity g €
COM™) N C®(M™\ ¥" 1) where ¥"~1 € M™ is a closed hypersurface bounding a precompact re-
gion M. They show that in the spin case the PMT is valid if the mean curvatures of MY agree
H, = H_, where M} = M™\ M" and the unit normal for both sides points out of M™. Miao [26]
generalized this beyond the spin case with a local smoothing argument which only requires H_ > H .,
and McFeron-Székelyhidi |25] later obtained the same result utilizing a different smoothing technique
via Ricci flow. In 3-dimensions Hirsch-Miao-Tsang [12] produce a mass formula in this context using
harmonic functions. When n < 8 or M™ is spin, Lee |18] has established a PMT for metrics of
regularity C?(M™\ 8) N Lip(M™) where the singular set S has Minkowski dimension less than n/2.
Using spinorial techniques, Lee-LeFloch [20] obtain a version of the theorem for Sobolev regularity
CO(M™) N W™ (M™). In the nonspin case Yugiao [23] imposed extra curvature conditions to find

loc
a similar result. Moreover, Grant-Tassotti [9] employed a modification of the Miao smoothing tech-

nique to treat the case of metrics with I/Vli:/ 2—regularity. Working in a weaker setting, Li-Mantoulidis
[22] show mass positivity for g € L>®(M™) N C?(M™\ S) where S is a codimension 2 submanifold
satisfying a type of acute cone-angle condition, while Shi-Tam [30] obtain the result for singular
sets of codimension at least 2 for metrics having VVlif (M™)-regularity where p > n. In the case
g € LX(M™")NC?*(M™\ S) for a closed submanifold S of codimension at least 3, the positive mass
theorem is known in dimensions 3 [22] and 4 [17].

Consider now the nontime-symmetric case, where much less is known. Utilizing spacetime har-
monic functions in the 3-dimensional setting, Tsang [32] generalized the results of Shi-Tam [29]
and Miao [26] by observing that the PMT holds if H_ — Hy > |7_(-,v) — 74 (-, )|, on ¥2, where
w4+ = kit —(Trg, k+)g+ is the momentum tensor associated with M3 and v is the unit normal pointing
out of M3. In [31], Shibuya extended the Lee-LeFloch theorem [20] to the spacetime setting under
the assumption that the dominant energy conditions holds in the distributional sense. Furthermore,
it should be mentioned that there are rigidity statements for many of the results discussed above,
some of which will be mentioned below. To describe the results of the current paper, we begin with

two definitions.

Definition 1.1. Bartnik data is a closed orientable Riemannian (n — 1)-manifold (X"~ !,~) with a
triple (N, H , B) satisfying the following properties.
(i) N'— ¥l is a trivial rank two vector bundle with structure group SO*(1,1), equipped with
an invariant bundle metric (-, -).
(ii) H is a section of .
(iii) B is a 1-form on X"~ ! viewed as a connection for N

Given Bartnik data, let {v, 7} be a framing of A/ so that v and 7 have squared lengths +1 and —1.
The correspondence between 3 and its associated connection VA on A is given by f(X) = —(VA v, 7)
for tangent vectors X to ¥"~!. Now consider two such bundles with the same base N, N/ — X771,
equipped with framings {v, 7} and {V/,7'}. With respect to these frames, an isometric bundle map
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F : N — N’ may be expressed fiberwise as a family of SO*(1,1) matrices

cosh(f(z)) ~ —sinh(f(z)) n-1

(1.5) FIve =1 “simn(f(2)) cosh(f@)) |°  T€F
for some uniquely determined f € C°°(X"!) called the hyperbolic angle of F. Two sets of Bartnik
data (N, H,3) and (N', H', 3') on (E" L 5) are said to be equivalent if there is an isometric bundle
map F : N'— N”, such that Fo H = H' and 8/ = B+ df where f is the hyperbolic angle of rotation
induced by F

A fundamental source of Bartnik data over (X"~!,v) arises from isometric embeddings into initial
data sets (M™, g, k). If v is a unit normal vector field to ¥*~! € M", then an associated set of
Bartnik data may be described as follows. Let A/ be the Whitney sum of the normal bundle to X7~}
in M™ together with a trivial line bundle spanned by a vector 7 which we declare to be orthogonal
to v and of squared length —1, and set

(1.6) H = Hv — (T, k), B(X) = k(v, X),

where H is the mean curvature of X"~ ! with respect to v and X € TE""!. We will now fix the
setting of our main theorem by introducing the necessary geometric condition.

Definition 1.2. An asymptotically flat DEC-creased initial data set consists of two smooth initial
data sets with boundary, an asymptotically flat (MY, g1, k) and a compact (M”, g_, k_), satisfying
the following properties.
(i) The induced boundary manifolds (OMZ, glorry) and (M, glonr) are equal to a common
manifold (£"~1,~) which inherits Bartnik data (N, Hi,A+) induced by the unit normals
v4 pointing into (M}, g4, k4 ) and v_ pointing out of (M, g_,k_).
(ii) There is an isometric bundle map F : N_ — N, with hyperbolic angle f so that

(1.7) <F(ﬁ_) — iy, V+>/\f - \/<F(ﬁ_) - ﬁ+,f+>i[+ +18212 > 0

+

where {v,,7,} is an SOT(1,1) frame for A\ and B° denotes the difference of connections

B2 =Bs —f- —df.

FicUrE 1. DEC-creased initial data arising from a spacetime.

In the context of a smooth spacetime, DEC-creased initial data naturally arise from a spacelike
hypersurface M™ which is globally Lipschitz and smooth away from an embedded submanifold X"~ !,
along which M is bent. Given DEC-creased initial data (M, g+, k+), one may glue along ¥"~!
to form the space M™ = M"™ Usn-1 M, which has a canonical smooth structure using collard
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neighborhoods [21, Theorem 9.29]. The metrics g— and g4 descend to a metric on M™ with regularity
CO(M™)NC>(M™\ X" 1). The union of k_ and k does not descend continuously to M™, but may
be considered as an L> tensor, with generally different limits on X"~! as one approaches from M"
and M?. As will be elucidated through the proof of the main result, the crease condition
behaves analogously to a weak version of the dominant energy condition along ¥"~!. The inequality
is, however, more general than the requirement that g > |J| holds distributionally along the
crease. We also remark that is equivalent to the requirements that F o H_ — ﬁ+ is spacelike,
points in the v direction, and satisfies

(1.8) \F(H-) — Hi|n, > 8%,

In Definition [1.2| there are two trivial framed SO™(1,1)-bundles Ny over X"~ 1. In this situation,
there is always a canonical choice of bundle isometry F which takes v_ to v;. We will call this
map the trivial isometry. In the special case where the bundle map F' is trivial, the DEC-creased
condition (éi) in Definition becomes the “spacetime corner” condition appearing in [32]. When
k = 0 and F is trivial, then the DEC-creased condition becomes the mean curvature inequality
H_ > H that is used in [26]. Our main result is the following positive mass theorem.

Theorem 1.3. Let (M}, g+,ky) be an asymptotically flat DEC-creased initial data set, creased
along a closed hypersurface X1, Assume that M™ = M Usgn—1 M is spin. If (M2, g+,k+) both
satisfy the dominant energy condition, then the ADM 4-momentum of any end of (M}, gy, ky) is
nonspacelike, that is E > |P].

The proof of Theorem relies on a formula for the mass of (MY, g;,ky) involving certain
spinors defined over M", stated below as Theorem This basic strategy goes back to Witten [34],
where one constructs a twisted Dirac operator Dy, and proceeds by integrating the Lichnerowicz-
Schrodinger-Weitzenbock formula applied to asymptotically constant spinors satisfying Dy = 0.
In order to deal with the crease singularities, we introduce transmission-type boundary conditions
along Y™ ! and show that sufficiently regular solutions to the associated boundary value problem
exist. To describe this in more detail, we first define Spin™(n, 1) spinor bundles Sy over M so that
the trivial isometry N_ — A, induces an isometry ® : S_|sn-1 — Sy|sn-1. The volume form e, of
N acts as an endomorphism on S4 |sn—1 by Clifford multiplication e, = v 7. On a given end M, 0
of M, the spin structure can be identified with a trivial spin structure over R", giving a source of
asymptotically constant spinors defined over the end. Given a choice of such a spinor ¥, we seek
solutions ¢4 € I'(M%,S1) to the system

Dy =0 in MY,
Dwy_ =0 in M™,
(1.9) D(¢p-) = (A+ Beyp)py  on X"
[y — Yool(z) =0 as || — oo in M},
|Yy|(z) =0 as |z| — oo in M, € # {1,

where A = cosh(f/2), B = sinh(f/2), and f is the hyperbolic angle given by the DEC-creased
condition. A geometric interpretation of this system is provided in Remark below. We treat (1.9))
as a system with boundary conditions, establishing the following existence and regularity statement.

Theorem 1.4. Suppose that (MY, g+, ky) is an asymptotically flat DEC-creased initial data set,
such that M"™ = M" Uyxn-1 MY is spin and the dominant energy condition is satisfied on MZE.
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Given a constant spinor Vs, on an asymptotically flat end of MT, there exists a smooth solution

Py € C°(MY, Si)ﬂ to (1.9) which satisfies

Vet g P oo, Prisoc)) = /

= 1
(196-+ oo+ (o L) ) av
(1.10) 1
b (V0 4 310+ i Tumsi)) ) av,
+
where T, 7+ are endomorphisms of the spinor bundles which square to the identity.

The case of equality. Rigidity statements for the classical positive mass theorem characterize those
initial data sets (M™, g, k) satisfying the dominant energy condition which have an end of vanishing
ADM mass. Generally speaking, these statements aim to conclude that (M", g, k) arises from an
embedding into Minkowski space, which is to say that (M™, g) is isometrically embedded with second
fundamental form equal to k. In the time-symmetric setting when k& = 0, Schoen-Yau [28] showed
that the mass of an end is zero only when the manifold is isometric to Euclidean space for n < 7. In
the nontime-symmetric case, Beig-Chrusciel [3] and Chrusciel-Maerten [6] considered spin manifolds,
imposed additional and necessary decay assumptions, showing that F = |P| implies £ = |P| = 0
and that such (M", g, k) must arise as a hypersurface of Minkowski space. Also assuming additional
decay assumptions, Huang-Lee [15/16] showed that the desired rigidity statement follows from the
positive mass inequality. We also point out the work of Hirsch-Zhang [13}/14], who give the optimal
result in dimension 3 and characterize general spin initial data with vanishing ADM mass in terms of
pp-wave spacetimes. In the setting of Theorem we show the following rigidity statement. Note
that additional decay beyond the usual asymptotic flatness assumption is imposed, using weighted
Holder spaces (see [15]).

Theorem 1.5. Suppose that (MY, g+, k+) is an asymptotically flat DEC-creased initial data set, such
that M™ = M" Usgn—1 MY is spin and the dominant energy condition is satisfied on M. Assume
there is some o € (0,1) and ¢ > 0 such that

(1.11) gy =0 € CEN(MY),  kp e ChE (MY),  p,J e Ch (MD),

where the order of asymptotically flat decay satisfies ¢ > max(1/2,n — 3). If the ADM mass of any
end vanishes, then there is Lipschitz embedding M™ — RY™ to Minkowski space which is smooth

away from "1, such that the induced metric and second fundamental form agree with g_ U g, and
k- Uk,.

There are previously known rigidity statements when m = 0 on an asympotically flat manifold with
singularities along a hypersurface "1, In the time-symmetric setting where Ry>0and H_ > H
along "1, Shi-Tam [29] used spinorial methods to show that g is flat away from ¥. When n = 3
and ¥2 = §2 Miao [26] showed there is a C?! isometry M? — R3. In higher dimensions, using
the Ricci flow on manifolds for which mass positivity is known, McFarron-Székelyhidi [25] showed
a similar statement but with C?“-regularity, a € (0,1). To the authors’ knowledge, the optimal
rigidity statement in this singular time-symmetric setting appears to be unknown in general. In
his study of corner singularities (where F' is trivial) in dimension 3, Tsang [32] proved two rigidity
statements: if £ = |P| then M3 is diffeomorphic to R3, and if E = |P| = 0 and additional regularity

IThe spinors ¥4 are both smooth up to the boundary of M, though they do not necessarily define a continuous
spinor over M™".
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is imposed on k, then (M3, g, k) arises from an isometric embedding into Minkowski spacetime and
(g,k) € C*1(M3) x CHL(M3). We also point out the recent work of Hirsch-Huang [10], concerning
further results that characterize the case of vanishing mass in the presence of matching Bartnik data.

The proof of Theorem proceeds in three steps. First, the mass formula of Theorem allows
us to obtain a spinor whose corresponding vector field defines a type of Killing lapse-shift pair. Then,
the work of Huang-Lee [15] is used to show that the vanishing of m implies that £ = |P| = 0. This
is in turn leveraged to make stronger use of the mass formula, finding many linearly independent
Sen-parallel spinors which are used to construct a flat Killing development following Beig-Chrusciel

3]-

Extensions and fill-ins. As an application of the creased positive mass theorem, one can establish
the nonexistence of certain fill-ins or null-bordisms of given Bartnik data arising from an embedding
into Minkowski spacetime.

Corollary 1.6. Suppose (X1, 7) embeds isometrically into R¥™ as the boundary of an asymptot-
ically flat spacelike hypersurface with unit inward normal vy. Let (Ng,ﬁo,ﬁo) denote the induced
Bartnik data. Assume further that (Q", g, k) is a compact initial data set with outward normal vector
v satisfying the following conditions.
(i) Q" has a spin structure extending the one induced on X"~ ' from the spacelike hypersurface
of Rbm™,

(i) p > |J| throughout Q.

(iii) (0", glaqn) is equal to ("1, %), inducing a second Bartnik data set (N, H, ).

(iv) There is a bundle isometry F : N — Ny with hyperbolic angle f so that

(112 (P~ o) (PG~ Hom), +185 20,

where B = By — B — df and {vy, 70} form an SOT(1,1)-framing for Nj.
Then the interior of (Q",g,k) isometrically embeds into Minkowski spacetime. In particular, there
is no (Q", g, k) satisfying conditions (i)—(iv) with u(x) > |J|(z) at some point x € Q™.

Corollary assumes that (N, Ho, 80) and (X!, ~) arise as the boundary of an asymptotically
flat spacelike hypersurface in Minkowski spacetime. For example, this condition is satisfied when the
spacelike hypersurface is the graph of a function over a constant time slice of R»™. We also remark
that Corollary may be viewed as a generalization of Miao’s result |26, Corollary 1.1] concerning
fill-ins with nonnegative scalar curvature.

Relation to quasi-local mass. In analogy with the work of Shi-Tam [29], we expect that Theorem
m may be a useful tool in studying the positivity properties of the Wang-Yau [33] quasi-local
mass, though we do not pursue this idea in the present work. There is, however, a more immediate
implication to the Bartnik mass of compact initial data sets (Q", g, k). In Bartnik’s approach, one
takes the mass of 2" as the infemum of the ADM masses of asymptotically flat extensions (M™, g, k) of
(Q", g, k) satisfying some admissibility conditions motivated by the positive mass theorem, including
the DEC and a ‘no horizons’ provision. Theorem suggests that the class of admissible extensions
may be widened to include initial data sets with DEC-creases along X"~ ! = Q™.

Organization. In Section 2, we introduce notation and basic facts related to initial data sets, Bart-
nik data, and the associated spinor bundles. Section 3 contains the main geometric computation
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of the boundary terms encountered when integrating the Lichnerowicz-Schrodinger-Weitzenbock for-
mula by parts, where the DEC-creased condition appears. The existence of weak solutions to
is established in Section 4, and concludes with the proof of Theorem This proof relies on a
regularity result which is postponed to Section 5, where we verify that can be interpreted as a
elliptic boundary value problem in the formalism of Bar-Ballman [4]. Finally, Section 6 carries out
the proof of the rigidity result Theorem [I.5]

Aknowledgements. The authors would like to thank Hubert Bray for many influential discussions
and suggestions. We would also like to thank Sven Hirsch and Yiyue Zhang for explaining their work
[14].

2. BARTNIK DATA AND SPINOR BUNDLES

2.1. Bartnik data. Throughout this section, we adhere to the context of Theorem|[I.3] In particular,
suppose (MY, g4, ky) and (M”, g_, k4) are n-dimensional initial data sets, with M} asymptotically
flat and M"™ compact, and that the boundaries OM?, OM™ are equal to a common closed manifold
(271 4). Let (N, Hs, B+) be the Bartnik data on (X", ~) arising from (M7, g+, k+) using unit
normals v pointing into M? and v_ pointing out of M™. In particular, Ny has the SO* (1, 1)-frame
{T +, Vi} and

(2.1)  Hy = Hyvy — (Tryky)7s, B+(X) = _<Vj)\(fiVi,7'i> = ki (vg, X), X eTs" !,

where Hy denotes the mean curvature of X"~ ! as a submanifold of M7} computed using v .
Using the frames {vy, 71}, any bundle isometry F' : N_ — N can be uniquely described using
its hyperbolic angle f, viewed as a function on X"~ ! and given by

(2.2) F(v_) = cosh(f)vy — sinh(f)74, F(r_) = —sinh(f)v4 + cosh(f)7y.

Given such an F, the connection coefficients of VA~ can be expressed in the frame {F~ (v ), F~'(7,)}
in the following way

<VJ)\(LF’1(V+), F*1(7+)> - <v§¥* (cosh(f)v— + sinh(f)7_ ), sinh(f)v_ + cosh( f)7_>
— B (X) — df(X).

The difference of connections is frame independent and becomes

(24) A= (VX F ) Pl ) ) = (Ve ) = B4(X) = B-(X) — df.

(2.3)

For convenience, we record the components of Hy in the {7y,v} frame

25) <ﬁ+,l/+> =H,, <ﬁ_,F_1(1/+)> = cosh(f)H_ + sinh(f) Tr k_,
' (Hyrio)=Teky, (A, F\(r.)) =sinh(f)H_ + cosh(f) Tr, k_.

2.2. Spin structures. Let Pfo denote be the bundle of oriented orthonormal frames over (MY, g+).
Define a map ¢g : TM™|gn-1 — TM7|sn-1 sending v_ to vy and acting by the identity on TX" 1.
We also regard ¢g as a map PC|gn1 — Pf0|2n_1. Since we assume that the smooth manifold
M"™ = M Ugn-1 M7 is spin, there are Spin(n)-reductions PSPty pSO and prin — P29 which
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agree over Y"1 in the sense that there is a bundle map ®; making the following diagram commute

P, B, i

(2.6) l l

Pfo‘zn—l ﬂ) Pfo‘znfl

Making use of the spin representation, we obtain associated spinor bundles S(jf over M equipped
with Clifford multiplication, a hermitian metric (-,-),, and a compatible spin connection V. Inter-
preting Pjstpin as the bundle of orthonormal frames of SSE, ®( induces an isometry S; |gn-1 — SO+ lsn—1
which we continue to denote by ®q. By , the map ®q respects Clifford multiplication in the sense
that ®o(vY)) = ¢o(v)Pg(¢)) for all v € TM™|sn—1 and spinors . In particular, ®o(v_1) = v Py(v))
and ®o(Xv)) = XPg(¢)) for X € TE" 1L,

Following [19, Section 8.3], we construct the spacetime spinor bundle Sy := SSE <) Sgc. Recall
that the bundles Ny are defined as the Whitney sum of the normal bundle from the embedding
yn=! ¢ MP with a trivial bundle spanned by 7. Extend the trivial bundle spanned by 7. over MY,
and equip the sum span(74 ) @7 MZ with a Lorentzian bundle metric i+ defined by declaring 7+ to be
orthogonal to TM¥ and have square norm —1. The associated Clifford bundle Cl(span(7+) & TM2Y)
acts on sections 1) = 11 @B Y9 of Sy as follows:

(2.7) X=Xy & —Xtpy for X € TM?, T = by B 1.

In our convention, Clifford multiplication satisfies VW + WV = —2h(V,W). Note that 71 satisfies
72 =1, and anticommutes with Clifford multiplication by elements of T M.

The spinor bundles Sy carry two inner products, namely (-,-) and (-,-). The former is positive
definite and satisfies

(2.8) (X, X¢') = |X[*(¢,¢)  for X € TM] (20, 729) = (¥, 4).

The pairing (-, -) satisfies the first equality of and the second equality with a minus sign on the
right-hand side. Along ¥"!, the bundle map ®( induces an bundle isometry ® : S_|s;m-1 — Sy [yn-1
with respect to the pairing (-,-). In what follows, it is useful to introduce local framings for Si.
Given a local orthonormal frame {e;}}*; for (M%,g+), the spin structure on M} allows one to lift
{e;}_; to a local orthonormal frame of SSE. Duplicating this frame gives rise to a framing {wl}{zl
of Sy where I = dim(S). In this case, we we refer to {¢;}/_, as induced by {e;}" ;.

Connections and Dirac operators. There are several natural connections on the spinor bundles
S+ and Si|ywn—1 which we will now identify and describe:

e the MP Riemannian connections V¥ on Sy from the spin connections induced by the Levi-
Civita connection of g+ on SSE,
e the Sen (or spacetime) connections V" on S+ defined in a local frame by

_ 1 .
(2.9) Vi = Viy + 5 (ke)le;mets,

e the boundary spin connection V>** on S |sn-1 induced by the Levi-Civita connection of 7.

It will be convenient to have a local formula for V>**. Fix a local frame {wli}llzl of Si|sn—1 induced
by a frame {ej,...,e,—1, v+ }, where {e, Z;% is an orthonormal frame for ¥7~ 1. If ¢ = 21121 Cl:tl/}l:t
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is a section of Sy |xn-1, then we have

I 1 I n-—1
(2.10) VIR = Y X (@ - D0 D rwan(Xeacy
=1

=1 a,n=1

for any X € TY" !, where way(X) = (eq, Vxey). The following result summarizes the relevant
properties used in subsequent computations.

Proposition 2.1. The connections V*, ﬁi, V% the pairings (-,-), (-,-), the bundle isometry ®,
and the endormophisms 7+ defined above satisfy the following properties.
(i) VT is compatible with (-,-) and Vs compatible with (-,-).
(ii) For any ¢ € S_|sn-1, we have
d(X9) = XO(v) for X e TS 1)
D(v_y) = v @(¢), D(r-v) =71 2(¥).

(ii) ® and T4+ are parallel with respect to V% and VE, that is V¥ o ® = & o V¥~ and
ViOTi:TiOVi.

(2.11)

Proof. Ttem (i) and the statement V¥ o 7 = 7 o V¥ of item (iii) are standard, see for instance [2].
Item (i4) follows from the fact that ¢g acts by the identity on TX"~! and rotates the frame {v_,7_}
into {vy, 74}

To prove the statement V% o ® = & o V7~ of item (i), let {1/Jli}l[:1 be spin frames induced
by an orthonormal frame {ey,...,e,—1,v+} for TM¥|s;n-1. The diagram implies that {¢;"}/_,
can be chosen as {®(¢; )}_,, so that if ¢ = Z{zl ¢, 1, then ®(¢) = lezl ¢; ;. Hence we have

I I n—1
1
5,— - -
® (VX ¢> Z (¢ ) - 42 > ¢ wan(X)eaent;
=1 I=1 a,n=1
(2.12) 1 1L
X0 1Y T e (Xeaentep)
=1 =1 an=1
St
=V ().
0
The various connections give rise to certain Dirac operators. Fix local orthonormal frame {e;}7" ,
for (M2}, g+), with e, = v+ on ¥"!. Roman indicies will run over i = 1,...,n and Greek indices
will run over a = 1,...,n — 1. The Dirac- Witten operator is given by
(2.13) Dy = €%,

and the boundary Dirac operator is given by
X+
(2.14) 'Di = :Fljieava s

where the covectors e’, e* act by Clifford multiplication after lowering the index. Note the above
sign change, which adheres to the convention that Fv4 points out of M.
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2.3. The Lichnerowicz-Schrodinger-Weitzenbock formula. To properly introduce the funda-
mental geometric identity, fix a general smooth compact spin initial data set (2", g, k). We consider
a section ) of the spacetime spinor bundle with timelike endomorphism 7, the Sen connection V,
Dirac-Witten operator Dyy, outward normal v, boundary mean curvature H, and boundary Dirac
operator D%, By integrating the Lichnerowicz-Schrodinger-Weitzenbock formula by parts for a
spinor 1, one may obtain |2, (11.13)] the identity

(196 = 1wk + 5 . et amien ) av
(2.15)

= / <¢,Df’% — 1H¢ 1 [(Traq k) v — k(v, eq)e?] T¢> dA
oan 2 2

where {e,}"Z1 is an orthonormal frame for Q™.

Constant spinors at infinity and mass. Here and throughout, let g, = "T_Q For an n-dimensional
asymptotically flat spin initial data set (M™, g, k) with spacetime spinor bundle S, define a weighted
Sobolev space Wiq?* (S) as the completion of C2°(S) with respect to the norm

(2.16) kuivi,;*(s) = Vel Las) + 190/7172s),

where r is a positive extension to all M™ of the radial coordinate r = |z| in the asymptotically flat
end.

Fix an orthonormal frame {e;}?_; for (A", g) over an asymptotically flat end M;* which is asymp-
totic to the coordinate vector fields {9;}7; in the sense that |e; —9;| = O(r~%) for all i. Let {¢;}/_,
denote an associated frame for the spacetime spinor bundle over M;'. A spacetime spinor 9, is
called a constant spinor at infinity if Yoo = ZZI:I ¢y for constant functions ¢;. We say a spacetime
spinor 1 is asymptotic to such a constant spinor at infinity if ¢ — ¢ € Wi’qQ*(S \ M;L). In this case,
we use the notation 1) — ¥, on M. The ADM energy and momenta can be computed in terms of
asymptotically constant spacetime spinors. In particular, Witten [34] observed the following.

Proposition 2.2 ([3]). Suppose (M™, g, k) is a spin asymptotically flat initial data set with a space-
time spinor i asymptotic to a constant spinor . Then

lim <¢Oo, D5 hoe — %me — % [(Trg, k)v — k(v,-)] T¢Oo> dA
(2.17) e Srl
= (71_2)‘*)71—1 (E‘woo|2 - <¢o<>af)iei7—woo>) )

where D5 and H denote the boundary Dirac operator and mean curvature of the coordinate sphere
Sy with respect to the outward unit normal v.

3. SPINOR CALCULATIONS

Suppose (M2, g+, k+) is an asymptotically flat DEC-creased initial data set. Let f be the hyper-
bolic angle associated to the bundle isometry F': N_ — N set

(3.1) a = cosh(f), b=sinh(f), A=cosh(f/2), B =sinh(f/2),

and let ex = vy7y. Acting by Clifford multiplication, ey is an isometry of (Si|yn-1,(:,-)) due to
(2.8]), and satisfies the following properties which are frequently used below.
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Proposition 3.1. The endomorphism e+ and functions a,b, A, B defined above satisfy

(3.2) ei =1, €1VL = —Vi€4 = T4, €4TH = —T4€4, €4 O VEE = Rt €+,
and
(3.3) (A—Bey)(A+ Bey) =1, (A+ Bei)?=a+ bes.

Proof. The identities (3.2)) follow from the Clifford relations and part (iii) of Proposition To
establish (3.3), one applies the hyperbolic identity a? — > = A2 — B2 = 1 and the double angle
formulas A% + B2 = a, 2AB = b. g

Remark 3.2. To explain the boundary condition ®(¢)_) = (A+Be )1, suppose (MY, g+, k) arises
as a spacelike Lipschitz-embedded hypersurface M™ in a spacetime (N"*!, h). Hyperbolic rotation
by f on TN™ ! |sxni1 taking {v_,7_} to {vy, 7} induces the rotation (A + Bey) on Sy |s;n—1, which
can be seen using . With this in mind, the boundary condition requires that the identification
D S_|yn-1 — Sy|sn-1 takes ¥_ to the the rotation of ¢4 by f. This condition implies that the
piecewise defined spinor 1)_ U1 is a continuous section of N"*!’s spinor bundle restricted to M".

3.1. Boundary term computation. Given spacetime spinors 4, denote the boundary terms
along X" ! in the Lichnerowicz-Schrédinger-Weitzenbock formula (2.15) by

I_:= /Zn_l <1p_, D_yp_ — %H_w_ — % (Try k_)v- —k_(v_,")] 7'_1/1_> dA,
(3.4)
I = /an <1/1+7 Dty + %me + % [(Try by ) vy — by (vg, )] T+¢+> dA.

We will show that I_ + I has a favorable sign under appropriate boundary conditions for ¥+ and
the DEC-creased condition.

Proposition 3.3. Let (MY, g+,k+) and F be as in Theorem . Suppose Vi are spacetime spinors
satisfying ®(¢_) = (A + Bey )Yy along X" 1. Then

(35 L+L<g /E P [<ﬁ+ P )+ J (PUH)~ Hyry) o+ 1950 | da.

In particular, the DEC-creased condition ensures I_ + 1, < 0.

Proof. We will show that I_ + I takes the form
(3.6) ;/En_l (WHQ <ﬁ+ ~ F(H), V+> + <7/1+, <<ﬁ+ - F(ﬁ—)77+> vy — 5A) T+¢+>) dA,

which implies inequality (3.5) with the help of Cauchy-Schwartz. The computation proceeds by
computing each term in the integrand of I_ entirely in terms of (M7}, g4, k1) data.
For the the boundary Dirac operator term note that

(3.7) O(D_¢p_) = S(v-e" Vi ¢) = v3 eVt o(y) = =D 8(y-),
where we have used Proposition Since ® is an isometry, it follows that
(3.8) (b, Do) = —(D(_), Dyd(y)).

Before continuing, note the elementary computations dA = %Bdf, dB = %Adf, and (¢, (s+tex)y) =
(s +tex)g, 1) for any numbers s, t, where we have used that €2 = 1. By employing the boundary
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conditions (1.9 and Proposition it holds that

(@(¢-), D1 @(¢-)) = ((A+ Bey )y, Dy(A+ Bey)py)
—((A+ Bep vy, vie®Vy T (A+ Bey )y )
—((A+ Bey )Yy, vi(dA+dBey )y — (A — Bey)Diyy)

(A+ Bep )iy, vi(A+ Bep)df ) + (g, Ditby)
(A+ Bey vy, (B—Aep)vidfioy) + (4, Dithy)
(A% = B)ertpy, vydftr) + (Yr, Ditpy)

(i, exvidfios) + (4, Dithy)

= (s THdfs) + (Y, Ditdy),

DO | l—‘[\D\)—‘l\D\H
~ [\g\n—nww—n/\

and hence together with (3.8]) we have

(3.10) (o Do) + (s, Do) = 5 (W, dfretrs).

Next, consider the boundary terms involving the connection 1-form. Similar manipulations pro-
duce

O(y-), @ (k-(v, )T-9-))
O(¢-), k(v )71 2(4-))

Wy k(v )T—tp—) = (
= (
((A+ Bep )y, k—(v—, )T (A+ Bey)y)
(
= (

(3.11)
(A4 Bep)vy, (A= Beg)k_(v—,)T4tby)
Vg, ko (vo, )Tatby)

where we have used the fact that 7, anti-commutes with €. The change of gauge formula (2.4]) now
implies

S (o YT = o (b, B, Vet = 5 (o, (ko) — R, ) T

2
= —% (V4 BETLY4) — % (Vg dfTytpy).

DN | =

(3.12)

Consider now the terms involving the mean curvatures, and observe that Proposition (3.1)) yields

(o) (Ho 4 (Try b )vr ) ) = (2(¢-), S((H- + (Try k) v_7_)Y_))

(=), (Ho+ (Tey ko) vymy )@ (¥-))
(A+ Bep)yy, (Ho 4 (Tryk-) et )(A+ Beg)vy)
(A+ Bep)yy, (A4 Bep)(Ho + (Try ko) e)vy)

= (@
=
(
= (Y1, (A+ Ber)*(H- + (Tryk-) ey )iy )
=
=

(3.13)

Uy, (a+bey)(Ho + (Tey ko) e )vy)
Vi, (aH-+0Tryk_ + (bH- +aTryk_)ey) ).
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It follows that
1
—<w_, & (4 (T ko) o7 ) >+<w+, H++(Tr7k+)V+T+)w+>
(4, e404) [Try by — (bH- + a (Try k)]
1 . . . .
= §W+\2 <H+ - F(H—)7V+> +5 W erty) <H+ - F(H—)77+>
1 . _ 1 . .
= 5W’+|2 <H+ - F(H—)7V+> + ) <¢+, <H+ - F(H—)77'+> V+T+¢+> )
where we have used (2.5). Summing (3.10)), (3.12)), and (3.14) gives the desired formula ((3.6]). O

4. EXISTENCE OF SOLUTIONS TO THE TRANSMISSION BOUNDARY VALUE PROBLEM

In this section we will study the system , where (MY, g1, k) are as in Theorem Weighted
spaces and associated Poincaré inequalities play an important role in the existence theory of Dirac
harmonic spinors in the asymptotically flat setting, see |2] and [27]. For convenience we will set
M’ = M? U M™ to be the disjoint union of M7 and M™, so that M’ = X"~ L X"~1. We write
Wiq2 (M) for spinors ¥ over M’ consisting of pairs ¢4 € Wiqz* (S+), and similarly for other functions
spaces such as C°(M’). To incorporate the boundary conditions, define the Hilbert space

(4.1) Hi={w e WhE (M) | (A+ Be)ilgnm = O]}

l\D\H

511 = S P [H — (0B +b(Te k)] +

where ¢, = 32, Since the trace operation 7 : Wh3(M') — H%((?M') is continuous, H is indeed

a closed subspace of Wi’qZ*(M "} and hence a Hilbert space. This space admits approximation by
smooth spinors with compact support.

Lemma 4.1. HNCX(M') is dense in H.

Proof. Take 1 € H, and let ¢/ € C°(M’) be close to ¢ in Wiqi(M "). The approximation ¢’ may
not satisfy the desired boundary conditions, and thus 7' may not lie in H. To rectify this situation,
consider a bounded right-inverse £ : H %(8M " — Wqu* (M') for the trace operator T; this may be
constructed to send smooth spinors on M’ to smooth spinors on M’ which vanish on the ends of
M?™. Define K : Hz2(dM') — H2(OM’) by

(4.2) 1 ® o 3 — (A= Be)B(p )@ 2 (¢ — (A+ Be )2 (p1))

Note that KT ¢ = 0 if and only if ¢ € H, and that K? = KC. Set ¢" =1’ — EKT1)’, and observe that
this spinor is smooth, vanishes on the ends of M7, and lies within H since

(4.3) KTy" = KTy — K*Ty' = 0.

Furthermore, using that EXT % = 0 and the boundedness of the maps involved yields
(44) ||8K:Tw/HWi’qi (M’) = HgICT(w/ - ¢)ngq2* (M’) S C"¢, - w”W}qQ* (M’)
for some constant C', and thus the triangle inequality gives

(4.5) 1 =" llyr2 < A+ OV =D llyyr2 a0y

The spinor 1" is the desired approximation to . O
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Continuing with the development of the technical tools needed for the proof of existence, we will
next establish Poincaré-type estimates for spinors in the function space H.

Lemma 4.2. Let (M2, g+,k+) be initial data sets with M"™ compact and MY asymptotically flat.
Then there exists a constant C depending on the geometry of the initial data such that:

. =+
() 1612 ) < CIV Bl3ags, ) Jor v € WEE(S)),

—Qqx

(”) Hd’HIQ/Vlv?(S_) <C (IWWH%Z)(S_) + ||¢||%2(s_|2n71)) Jory € W1’2(S—)-

Proof. Since M? is connected and contains an asymptotically flat end, the result [2, Theorem 9.5]
implies that there exists C'; such that the weighted Poincaré inequality

(4.6) /1225,y < C1lIV )12 s,
holds for all ¥ € Wi’(i(SJr). Therefore, there exists a constant Cy so that
!’¢”W1»§*(S+) <NVl r2syy + 10/7l 2sy)

< IV Wllzasy) + kelo llzzs,) + lo/rlzes,)

=+

<V 9l 2(s,y + (sup(rlkr]) + 1) 190/ L2(s,y )
=+

< CollV 25,

(4.7)

where the last inequality follows from the asymptotic decay of k4 and (4.6]). This yields part (7).
Consider now part (ii). We will first demonstrate the following Poincaré-type inequality

(48) 10325 < Ca (IV $lEaqsy + IllEacs ) -

for p € W12(S_). Suppose the inequality does not hold, then there exists a sequence of spinors 1);
such that |[¢i]|2(s_y = 1 and Hv‘wiuiz(&) + H%HQLQ(SJEn_I) — 0. As in ([4.7)), this shows that the
sequence is bounded in W12(S_). By Rellich’s theorem, after passing to a subsequence, 1; strongly
converges in L?(S_) and weakly converges in W12(S_). Let ¢ = lim;_,00%;. Then by weak lower
semi-continuity of the norm and the trace theorem, it follows that V ¢ = 0 and 9|yn-1 = 0. In
particular, the limit spinor satisfies

(4.9) V= % (k=) ej7—9.

Hence v is smooth, and integrating along curves connecting interior points to the boundary where
¢ = 0, we find that ¢ vanishes everywhere. This contradicts [|¢)||2(s_y = 1, yielding the desired
result. g

The two Poincaré inequalities of Lemma[f.2)may be pasted together using the boundary conditions,
producing a global weighted Poincaré inequality for spinors in H.

Corollary 4.3. The inner product ((f,g)) := [,,, (Vf,Vg)dV is equivalent to the Wi’qi(M')—mner
product on H. In particular, there is a constant C such that

(4.10) 1122 ey < CIFB 20y

for all Y € H.
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Proof. Using that (A + Bey) o ® is a bounded invertible map from L?(S_|sn-1) — L?(Sy|sn-1),
together with Lemma and continuity of the trace produces

11105y < € (IF 61200 + 19012251 ))
(a.11) < (IF 0By + 1B )

= =+
< Oy <HV DlIF2gsy + IV 1/1\|%2(s+)) ;
for any ¢ € H. Applying part (i) of Lemma again yields
(412) ||¢||%}V1»q2* (M") < C3||ﬁw||%2(M’)

The inequality HﬁwH%Q(M/) < CMWH%}VLQ o) holds by the decay of k. O
—Qqx

To proceed, we establish a mass inequality for spinors that lie in A after subtracting a constant
model spinor. This inequality will then be used to show that Dy : H — L2(M’) is an isomorphism.

Proposition 4.4. Let 1oy be a smooth spacetime spinor on M' that is asymptotic to a constant spinor
Yoo. For any spinor i satisfying v — o € H, we have

[ (0 = 1owet 4 oo+ Y av < =5 [ sopaa
(4.13) ’ f"*l
+ % (l?|woo|2 - <¢00ap7—woo>) )
where
= = = = 2
(4.14) B=(F(-)~ fis,vi) - J (F(A-) — Hyry ) + 1822,

Proof. If ) — 1o € H N C°(M’), then v is a smooth spinor satisfying the boundary conditions and
is asymptotic to ¥o. By as well as Propositions and the inequality holds for such
1. The general inequality is established by approximating ¥ — ¥y with smooth spinors. To carry
this out, note that the first two terms of the left-hand side of are continuous on {H + o}
in the Wti(M "-topology, due to the fall-off of k. For the third term on the left side, we have
p+ Jr = O(r~72) = O(r=2), so this term is continuous as well. Moreover, the boundary term
involving B is a continuous functional on {H + 1} by the trace theorem. Thus, the density result
Lemma implies that the mass inequality holds for all spinors in {H + g} O

Theorem 4.5. Assume that (M2, g+, ky) are as in Theorem . Then Dy : H — L*(M') is an
isomorphism.

Proof. Since k = O (|z|~971), it follows that Dy is a bounded linear operator from H to L*(M’).
We will first establish injectivity. Applying the mass formula of Proposition [£.4] to a spinor ¢ € H
and noting that v is asymptotic to 1o, = 0, the mass term vanishes and we have

_ 1
(4.15) IVl = IDW G20y < =5 /Z  BlpPda <o,
by the DEC-creased condition and the dominant energy condition. Combining this with the weighted
Poincaré inequality of Corollary we obtain

(4.16) 1l < CIVY T2y < ClIIDWYIT2010),
—aqx
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from which injectivity follows.

Consider now surjectivity of Dy. Let n € L%(M’), then ¢ — (n, Dw) ) 2 (v defines a bounded
linear functional on H. By , (Dw - ,Dw - ) r2(ary 18 equivalent to the inner product on #.
The Riesz representation theorem then provides the existence of a unique w € H such that

(4.17) (Dww, Dw) po ey = (1, Dwb) poagry
for every 1 € H. Then setting ¢ = Dyyw —n € L?(M’) produces
(4.18) (&, D) 2 apn = 0

for all ¢ € H. In particular, Dy ¢ = 0 weakly, however we do not yet know its regularity at the
boundary. Proposition below implies that ¢ € I/Vlicz(M "} and satisfies the boundary conditions
that define H.

To show (—g.)-weighted Sobolev space decay of ¢, we argue via approximation. Let x; be a
nondecreasing sequence of cut-off functions such that for large j, x; = 1 inside the coordinate sphere
Sai, Xj = 0 outside Syj+1, and Vx| < 21-3. Observe that
(4.19) Dw (xj) = xiDwe + (Vxj)e = (VX;)e,
where (V)¢ denotes Clifford multiplication of Vy; on ¢. Furthermore, this and (4.16]) imply

X3 = Xg+10llwrz (apry < ClIDW (59 = Xg+10) 22 ()
(4.20) < CIV(xk = x40l L2 (arr)
< 227JCHWHL2(M’)7
and therefore x ;¢ converges to ¢ in Wiqi(M "). Hence ¢ lies in H and is a solution to Dy = 0.
By the injectivity of Dy we must have ¢ = 0, showing that Dyw = 1. This establishes surjectivity.

Finally, by the bounded inverse theorem we find that the inverse is a bounded, thus establishing the
isomorphism property. 0

We now arrive at the main existence statement and integral inequality.

Proof of Theorem and[1.4. Note that Theorem [I.3]follows from Theorem|[I.4 To prove the latter
result, fix a smooth spinor ¢y on M’ with ¢y = 0 away from a neighborhood of the distinguished
end M and ¢¥g = 1o on M;'. Since 1) is constant, Dy decays at the same order as k

and the connection coefficients of g, which is O(|z|~9"') = O(|z|~"/?7¢) for some € > 0. So
Dy € L2(M') N C>®(M"). By Theorem we obtain a solution w € H to
(4.21) Dyww = —Dyribo.

The regularity statement w € C>°(M’) follows from Proposition [5.2]demonstrated in the next section.
Then 1) = w+1y is the desired spinor. Now apply Proposition[d.4]to 1 together with the DEC-creased
condition to obtain the desired result. g

5. ELLIPTICITY OF THE BOUNDARY CONDITIONS

The goal of this section is to establish the regularity result Proposition for weak solutions to
, which is used in the proof of Theorem above. Doing so requires us to understand as
a type of elliptic boundary value problem. In [4], elliptic boundary conditions are defined for Dirac
operators, which we will now briefly review. Let S be the spacetime spinor bundle on a spin initial
data set (M™, g, k) with compact boundary. Let Dy, : H*(S) — L?(S) be the Dirac-Witten operator,
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and recall it is formally self-adjoint. Let Dyay be the extension of Dy to dom(Dyay) C L2(M™)
defined by: ¢ € dom(Dpyax) whenever there exists n € L2(M™) such that

(5.1) <(P,DW¢>L2(MH) = <77:T/1>L2(M")

for all smooth spinors ¢ compactly supported in the interior of M™. This equation indicates that ¢
is an L2-weak solution of Dyr¢ = n with no boundary conditions imposed, and thus in this case we
define Dpaxe := 1. Note that dom(Dyax) is complete with the graph norm

(5.2) HSOHdom(Dmax) = ”<PHL2(Mn) + ||Dmax<P||L2(Mn),

and standard elliptic theory implies that ¢ is H' in the interior. A first-order operator A on S|gpsn
is an adapted operator if the principal symbol o4 of A satisfies

(5.3) oa(§,x) =vopy (£ )

for all x € OM™, & € T;(OM™), where v is Clifford multiplication by the outward unit normal to
OM™. In particular, the boundary Dirac operator DM" = I/eanM " is an adapted operator.
Now let us return to the setting where M’ = M7 LI M™. Let Hgo(DaM/) (resp. HiO(DaM/))

be subspaces of H*(S|sy) spanned by the eigenspaces of the boundary Dirac operator DM " of
nonnegative (resp. negative) eigenvalues. Define the hybrid Sobolev space

. , 1 ' 1 /
(5.4) H(DM) .= H2\(D?M") @ H ¢ (D).

As M’ is a complete Riemannian manifold with boundary, the result [4, Theorem 6.7] asserts that
the trace map uniquely extends to a surjective bounded linear map 7 : dom(Dyax) — H(D?M"),
that ¢ € dom(Dyax) N HE (M') if and only if both ¢ € dom(Dpax) and T (p) € H%((?M’), and the

loc
integration by parts formula

(5.5) <Dmax%¢>L2(M/) — (e, Dmax¢>L2(M/) = (vTe, TT/’M?(@M/)

holds for ¢,1 € dom(Dpax). The paring on the right side of (5.5)) is well-defined since Clifford
multiplication by v swaps the positive and negative eigenspaces from H (DaM /). We begin with a
preliminary regularity result for weak solutions to the boundary value problem.

Proposition 5.1. If ¢,n € L?>(M’) are such that
(56) <907 DWI/)>L2(M’) = <77)1/)>L2(M’) fOT’ all ¢ € Ha
then p € H} (M') and ¢ satisfies the boundary conditions defining H.

Proof. Since H contains smooth spinors compactly supported on the interior of M’, we have Dy =
n. Using (5.5)), for all 1/1 € H it holds that

= (T, TV) 2007
= W-To, TY) reomamy = W+ T, TY) p2(onrm)
(5.7) = (W (T), 2(TV)) L2000y = W+ TP, T) 120007
= W+ @(T), (A+ Be)TY) p2onrny — v+ T, TV) 200m)
= (+[(A = Be)@(T) = Tol, TY)) r2(onr) -

Since T is an arbitrary function in H > (OM?), it follows that
(5.8) (A= Be )®(Tp)=T¢ on oM}



18 KAZARAS, KHURI, AND LIN

in the sense of distributions, justifying the second claim of the proposition.

We know that T is in H(D?M") by [4, Theorem 6.7 (#4)]. It remains to show that T fully lies
within H2 (OM’), which by virtue of (i) from the same theorem will imply that ¢ € H} (M’). To do
this, we revisit the proof of [4, Theorem 7.20] that equates certain pseudolocal boundary conditions
with the well-studied notion of an elliptic boundary value problem. Although the current boundary
conditions are a form of transmission conditions, making them neither local nor pseudolocal,
they can be recast as pointwise boundary conditions in an axillary bundle over the boundary. The

space of sections on the boundary is H> (OM') = H> (S4|sin-1 ® S_|sn-1), and we define an isometry
1
with Hj = H%(S+|En71 D S+|E"*1) via

(5.9) P+ Do o1 @ B(p-).

The boundary Dirac operator on H%(S+|Zn—l) ® H%(S’,\Enq) is given by
(5.10) DM — D, oD_.

Moreover, yields

(5.11) Dipy ©@ (D) =Dyt ® =Dy P(p-),

’ 1
which implies that D" acts as Dy @ —D on H.
1

1 1 1
In what follows we will work on Hj Define K : Hj — Hj via

(5.12) K1 ®92) = 5 (91— (A — Be ) © 3 (s — (A + Bey)un),

whose kernel defines the boundary conditions. Let Q- be the L?-projection onto the negative
eigenspace of D & —D,. We claim that K — Q)¢ is an elliptic pseudo-differential operator of order
0. It is known that the principal symbol og_,(§) of Q<o is the orthogonal projection onto the negative
eigenspace of i(op (§) ® 0_p, (§)) = i(—v4& © vi&); for details see the proof of [4, Theorem 7.20].
Without loss of generality we may assume that |{| = 1. Then the symmetric operator iv;§ squares
to 1, so it has eigenvalues £1, and hence

(5.13) 0006 = 3 (1 +i,€) & 5 (1~ insE).

We now check that the principal symbol ox(§) — og_, () is injective, and consequently an isomor-
phism. Suppose that (oxc(§) — og_,(£))(11 ® 1¥2) = 0, and observe that this implies

(5.14) (A= Bey)s = —ivs &, (A+ Bey)y = iv .
Solving for 7 in the second equation and inserting it into the first yields
(515) (A - B€+)w2 = —ZV+€(A - B€+)Z'I/+£w2.

It follows that (A — Be4 )Yy = 0. Therefore 19 = 0, and ([5.14)) then gives ¢y = 0. This verifies that
oK-Q_, (€) is an isomorphism for £ # 0, so that K — Q¢ is an elliptic pseudo-differential operator.
In particular, there is a zeroth order parametrix R such that R( — Q<¢) = I + S where S is a
smoothing operator. Due to the boundary condition K7 ¢ = 0, we have
(5.16) To+S8Te=R(K—-Q<0)Ty=RQ«Te.

Furthermore, observe that Ty € H(D?M") implies QoT¢ € H %(8M "), and therefore RQoT ¢ €
H%(ﬁM’). Since S is a smoothing operator STy € C®(dM'), thus (5.16) implies the desired
outcome that T € H%(GM’). O
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The following proposition describes the required higher-order regularity of solutions to the bound-
ary value problem.

Proposition 5.2. Assume that (Mx, g+, k+) are as in Theorem[1.3 If n € Hi (M) for s >0 and
@ € H satisfies

(5.17) Dwe =,
then o € HETY (M),

loc

Proof. The result is a consequence of [4, Theorem 7.17], provided that K satisfies the so-called
(s + 1/2)-regular property [4, Definition 7.15] for all s > 0. This property was demonstrated in the
the proof of Proposition [5.1] for s = 0, and the proof is identical for s > 0. O

Remark 5.3. We note that the spinor PDE boundary value problem can be shown to satisfy the
ellipticity conditions of Shapiro-Lopatinski (or Agmon-Douglis-Nirenberg). This gives an alternative
route to proving the above regularity results.

6. RiGcipIiTY

To investigate the case of m = 0 and establish Theorem 1.5 we adopt the strategy of Beig-Chrusciel
[3]. First, some preliminary notions and facts are needed. Given an initial data set (M", g, k), a
lapse-shift pair (u,Y’) consists of a function u and a vector field Y on M™.

Definition 6.1. Given a lapse-shift pair (u,Y) on M"™ with u > 0, the Killing development associated
with (u,Y’) is the Lorentzian manifold (R x M", g) where

g = —uldt® + g;j(da’ + Y'dt)(da? + Ydt)

6.1
(6.1) = —(u? — |YP)dt* + 2V dt + g.

Since (u,Y’) are independent of t, the new vector field 9, is Killing for g. Moreover, (M",g)
isometrically embeds into the Killing development as {t = 0} x M™. If 7 denotes the unit timelike
normal to this embedding, notice that 0; decomposes into the orthogonal sum u7r 4 Y. The following
describes when the second fundamental form of {¢ = 0} agrees with k.

Proposition 6.2. |3 Section 2] Suppose (M™, g, k) is an initial data set with a lapse-shift pair (u,Y)
satisfying u > 0. If

(6.2) Ly g+ 2uk =0, du+k(Y,) =0,

where L denotes Lie differentiation, then (M™, g, k) isometrically embeds into the Killing development
associated with (u,Y') as {t = 0} with induced second fundamental form k.

To implement the Killing development construction, we need a source of lapse-shift pairs (u,Y).
The next proposition produces such pairs from spacetime spinors, and describes the algebraic prop-
erties induced by the boundary conditions (1.9)).

Proposition 6.3. Suppose that (M}, g+, ks) is a DEC-creased initial data set such that M™ is spin.
Let 1y be spacetime spinors on ML satisfying the boundary condition ®(1p_) = (A + Bey)y on
¥n=1. Consider the lapse-shift pair (ux,Yy) defined by

(6.3) us = [P, (Yo, W) = (meWeps, 1), W eTML.
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Then Yy is real and the following equations along X"~ hold

(6.4) (Y_, V) = (Y, V), Verytt
' (Yo,vo) = a(Yy,vq) — bug, u— = auy — b(Yy,vp).

Moreover if Vi = 0, then VYx is a symmetric tensor and the corresponding lapse-shift pair (u+, Yy )

defined by satisfies

(6.5) Ly, g+ + 2us ks =0, duy + ki (Yy, ) =0.
Proof. To see that Y is real, simply note that

(6.6) (TeWips, ¥ha) = (Y, e Wehs) = (e Wb, b1 ).

For V € TY" 1 we have
v, V) =

TV, 1)
T+ V(A + Bey)py, (A+ Bey)yy)
T+(A+ Bep)Vipy, (A+ Bey)hy)
(A Bep )y Vipy, (A+ Beyp)py) = (ry Vipy, pg) = (Y4, V).
To verify the remaining identities we compute
(Yo,vo) = (r-v_tp_,9-)
= (T1vi(A+ Bep )y, (A+ Beg)y)
= (T+(A = Bey)vathy, (A+ Bey)y)
= ((A+ Beg )4 (A — Bey vy, ihy)

(6.7)

o~ o~~~

©8) = (7+(A = Bey vy, 0y
= (r4(a = bep ) thy, thy)
= a(Tpv s, ¥p) — b(Thepvity, vy)
= a (T s, ¥p) — b (U4, ¥4) = a (Yy,vq) — buy,
and
u— = (P(¢-), 2(¥-)) = ((A+ Bey)vs, (A+ Beg)yy)
(6.9) = ((A+ Bep)*y,94)

((a+ be )by, thy)
=a (Y4, ¥4) +b(ex¥q,¥p) = auy — b(Yy,vy).

To see that VY4 is symmetric when Vi) = 0 observe that by differentiating the second equation of
(6.3) (foregoing the + notation) produces

(VxY, W) = (tWVx,9) + (tW, Vxi)
(6.10) = 2 (PWR(X, 7, 0) + (W, KX, )
SOV, ) k(X W) = —k(X, )

The final assertion in the proposition is contained in the proof of |6 Theorem 3.1]. O
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Before proceeding to the proof of the main rigidity result, we describe here a construction that will
be used frequently. Let (MY, g4, k+) be an asymptotically flat DEC-creased initial data set. Given
a vector v € R”, take a constant spacetime spinor 1y on R™ such that v - W = (W1, 1) for all
W e R™. Let ¢ then be the constant spinor at infinity for a designated end M} in boundary value
problem . The solution of this problem provided by Theorem will be denoted by 94 [v], and
the corresponding lapse-shift pair defined by will be denoted (u4[v], Yi[v]).

Proof of Theorem[1.5. The first step is to show that F = |P| implies that F = |P| = 0. Suppose
P # 0. In the notation above, we find solutions 1{ := 14 [~P/|P|] to (1.9) and apply Theorem
to find

(6.11) 0= /Mn<|vwf|2 - % (WF, (u+ JT)T/)I_D>> dv + /Mn<|v¢§|2 - % (Wf, (n+ Jr+)¢f>> dv.

Using the dominant energy condition, we immediately conclude that |ViY| = 0. At this point we
may apply the proof of |6, Theorem 3.2] to obtain E = |P| = 0. Strictly speaking, [6] works with
a smooth complete initial data set, however the computation [6, Theorem 2.5] of E' = |P| = 0 only
relies on the existence of a nontrivial V-parallel spinor in the asymptotic end. As a consequence, the
mass formula Theorem implies that any solution to with g # 0 is parallel with respect to
V.

Next, we construct an asymptotically time-like lapse-shift pair. Solving three times yields
the following combination of lapse-shift pairs:

Yy = —Yi[3(er +e2)] + Ye[3(—er +e2)] + Yi[ea],

(6.12) uF = —ug[i(er +e2)] +us[d(—er + e2)] + usle],

where {e;}"; denote the standard basis of R™. Note that Y5~ — 0 and ug — 1 as |z| — oo. Since
the underlying spinors are V-parallel, we may apply the final statement of Proposition to find

(6.13) Lyge +2ui ke =0, dug + k+(Yg",-) = 0.

We claim that ugt > 0. To see this, first consider a curve o : [0, s9] — M} connecting an arbitrary
point ¢(0) € M} to a point o(T) far out in the end so that ug (¢(T)) > 0 from the asymptotics.
Observe that and the symmetry of VY0+ imply
d
ds
It follows that the squared Lorentz length —(ud)? + |Y;'|? remains negative throughout M7 and
so ug > 0. In particular, —(ug)? + |Y57|? < 0 holds on X"~!. According to Proposition the
pairs (uﬁ, Yoi) are related by an SO™(n,1)-transformation along ¥"~!, and we may conclude that

—(ug )? + |Yy |? < 0 is also satisfied along X"~ 1. The above ODE argument may then be applied on
M?™ to conclude that uy > 0, proving the claim.

(6.14) ()2 = Vg 2) = 2(—uihy (YyF,6) + ud ki (YT, 6)) = 0.

The Killing developments of (M, g+, k+) associated to (uZ, ;") have a common time-like bound-
ary R x "1, and we denote the union of these developments along this boundary by (N"*!,g) with
Killing vector 0;. Evidently, g is smooth away from R x ¥"~!, and Proposition implies that the
original initial data sets (MY, g+, k+) embed isometrically as {t = 0} x M¥ with induced second
fundamental forms k4. We further claim that g is continuous across R x ¥"~! which is to say that
the metrics

(6.15) —((uE)? — |Y§E|?)dt? + 2V |gn1dt + gsn
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are equal along ¥"~!. Indeed, Proposition implies that }/E)+’En—l = Y%|gn-1. Furthermore, as
discussed above the squared Lorentz lengths —(uf)? + |Y;5|? also agree at the crease.

To show that g is flat where it is smooth, a collection of asymptotically linearly independent
lapse-shift pairs is needed. Consider the collection of pairs {(u+[e;], Yi[e;])}™ ;, which we extend to
all of N™*1 in a t-independent manner. Let 74 denote the unit timelike normal to the constant time
slices {t} x MZ in N"*! and consider the spacetime vector fields

(6.16) XF =udry + Y, XE = (ugfe)] —ui)Te + Yale] - Y55, i=1,...,n.

)

Notice that X converges to e, in the asymptotic end for a = 0,...,n. Well-known calculations
[3, (4.22)] show that VNnHXét = 0. Since {X}"_, are orthonormal at infinity and X, and X are
related by a Lorentz transformation along R x ¥"~!, they remain orthonormal throughout N"*+1.
We conclude that (N"*1,g) is flat away from R x X771,

We will now show that N™*! is Lipschitz homeomorphic to R", via a local isometry away from
R x ¥"~1. We first claim that the components of X tangent to R x £"~! agree. To see this, notice
that 72 = (uf) (0 — Y55) and compute

(urlei)rs + Yile], 0) = —usleluy + (Yiles], Y5),

(6.17) "
(ui[ei]'ri + Yy [ei], V) = <Y:|:[€i], V), VerTyh .

It follows that the Lorentz invariance of Proposition provided by (6.4) implies

(618) Oé;_hRXEn—l = Oé;hRinfl, a = O, ey,

where a(f are the dual 1-forms to the vector fields Xai. Furthermore, if 74 denote the spacelike

normals to R x £"~! pointing into R x M, we have

(usledrs + Yiled], 7x) = (uslei|T+ + Yale], ugva + (Y55, va)Ts)

(6.19) = —us[e (Y55, va) + ui (Yales], va).

Therefore, with the help of (6.4) and a? — b? = 1 it follows that
(6.20) ot (74) = ag (7).

Next, pass to the universal cover M" of M ™ and lift the data g, ki, and (uoi, Yoi). We will work
on the Killing development N™*1 of M™, which may be identified with the universal cover of N"*1.
Denote the Levi-Civita connection of N**! by V and write £ for the preimage of Rx £, Let Nyt
be the preimage of the Killing developments of M and consider the corresponding pullback 1-forms
&, which are closed since they are ﬁ—parallel. Fix an anchor point p € N"+1 and define functions
va() as the integral of &, Ua/ along a path v joining = to p. To see that this is independent of v,
consider two such choices v; and 3. Then there is a disc D C N bounded by the concatenation
~1 * (—72), which may be assumed to meet Sin transversely. Letting Dy = DN ~$+1 and o = Dﬁf]”,
we may apply Stoke’s theorem to find

/ﬁ(aauaj)—/%(aauaj)zfl)d(aaua;H/gaa_/Ua:

(6.21) :/ d&;+/ dat
Dy
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where in the penultimate line we used . This shows that v, is well-defined on N™*1. We note
that these functions are globally Lipschitz, and smooth away from .

Let V : N*t1 — RL™ be given by V(x) = (vo(x),...,v,(x)), and note this map is globally Lipschitz.
The map is also smooth away from f]”, and at such points it gives a local diffeomorphism since the
collection of 1-forms dv, = & are orthonormal. We claim that V' is also a local homeomorphism
near $". To see this, approximate V with its linearizations on either side of $" and note that this
piecewise-linear map is bijective due to and . Next consider a level set M™ of vy, and
note that it is globally Lipschitz and smooth away from f)”, while having a transverse intersection
with $7*! since

(6.22) (81, Vivg) = (O, utTo + YiE) = —(ud)? + Y5512 < 0.

Due to the continuity expressions (6.18) and ([6.20) Nfor 623[, and the fact that |€1@|2 = —1, the flow
of Vg splits the spacetime homeomorphically as N**1 = R x M™. Since the Vv; are tangent to
M™ away from X" N M™ for i = 1,...,n and satisfy

(6.23) (Vvi, Vug) = 63,

the restriction V| is a local isometry into a constant time slice of Minkowski space away from i",
and is a local homeomorphism across S, This in particular implies that M™ is a complete metric
space. The local homeomorphism property combined with completeness can be used to show that
V|mn is a covering map. Since its target is simply connected, we find that M™ is homeomorphic to
R™, and hence Nt g Lipschitz homeomorphic to RY™ via the map V. Since this manifold has a
single end it follows that N"*t1 = N"+1 and so N"*! is Lipschitz homeomorphic to R1™.

This homeomorphism N1 — R may fail to be smooth with respect to a generic smooth
structure on N1, However, if we consider the differentiable structure in which the map V becomes
a chart, then this map is tautologically smooth and thus yields a diffeomorphism between N7*1
and RY™. Furthermore, since (%va,ﬁvw = 14 holds throughout N™*! where n is the canonical
expression for the Minkowski metric, we find that N"*! is isometric to R1™. O
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