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The Riemannian Penrose Inequality with Charge
for Multiple Black Holes

Marcus Khuri, Gilbert Weinstein, and Sumio Yamada

Abstract. We present the outline of a proof of the Riemannian Penrose in-

equality with charge r ≤ m +
√

m2 − q2, where A = 4πr2 is the area of the
outermost apparent horizon with possibly multiple connected components, m
is the total ADM mass, and q the total charge of a strongly asymptotically
flat initial data set for the Einstein-Maxwell equations, satisfying the charged
dominant energy condition, with no charged matter outside the horizon.

1. Introduction

In a seminal paper [18], R. Penrose examined the validity of the cosmic
censorship conjecture, and outlined a heuristic argument which shows how using
also Hawking’s area theorem, [10], implies a related inequality. In [17], he gen-
eralized this heuristic argument leading to an inequality now referred to as the
Penrose inequality. Consider a strongly asymptotically flat (SAF) Cauchy surface
in a spacetime satisfying the dominant energy condition (DEC), with ADM mass
m containing an event horizon of area A = 4πr2, which undergoes gravitational
collapse and settles to a Kerr solution. Since the ADM mass m∞ of the final state
is no greater than m, and since the area radius r∞ is no less than r, and since for
the final state we must have m∞ ≥ 1

2r∞ in order to avoid naked singularities, we

must have had m ≥ 1
2r also at the beginning of the evolution. The event horizon is

indiscernible in the original slice without knowing the full evolution. However, one
may replace the event horizon by the outermost minimal area enclosure of the
apparent horizon, the boundary of the region admitting trapped surfaces, and
obtain the same inequality. A counterexample to the Penrose inequality would
therefore have suggested data which leads under the Einstein evolution to naked
singularities, while a proof of the inequality could be viewed as evidence in support
of cosmic censorship.

The inequality further simplifies in the time-symmetric case, where the
apparent horizon coincides with the outermost minimal area enclosure. The domi-
nant energy condition reduces now to non-negative scalar curvature of the Cauchy
hypersurface, leading to the Riemannian version of the inequality: the ADM mass
and the area radius of the outermost compact minimal surface in a SAF 3-manifold
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of non-negative scalar curvature satisfy m ≥ r
2 with equality if and only if the man-

ifold is a Schwarzschild slice. Note that this characterizes the Schwarzschild slice
as the unique minimizer of m among all such 3-manifolds admitting an outermost
horizon of area A = 4πr2.

This inequality was first proved by Huisken–Ilmanen [11] in the special case
where the horizon is connected using the inverse mean curvature flow, an approach
proposed by Jang–Wald [13], following Geroch [6] who had shown that the Hawking
mass is non-decreasing under this flow. The inequality was proven in full generality
by Bray [1] using a conformal flow of the initial Riemannian metric, and the positive
mass theorem [19,21].

We now turn to the charged case which is slightly more subtle. It is natural
to conjecture as above that the Reissner-Nordström spacetime (RN), the charged
analog of Schwarzschild spacetime gives rise to the unique minimizer of m, given r
and q. Since RN satisfies m = 1

2 (r + q2/r) where q is the total charge, one is thus

led to conjecture that in any SAF data satisfying Rg ≥ 2(|E|2+ |B|2), where E and
B are respectively the electric and magnetic field, and Rg is the scalar curvature of
g, we have

(1) m ≥ 1

2

(
r +

q2

r

)
with equality if and only if the initial data is RN. This is shown in [11], based on
Jang [12], but only for a connected horizon, since the proof is based on inverse
mean curvature flow. In fact, (1) can fail if the horizon is not connected, and a
counterexample based on Majumdar-Papapetrou (MP) initial data with two black
holes was constructed in [20]. This counterexample, however, does not suggest a
counterexample to cosmic censorship. This is because the right-hand side of (1)
is not monotonically increasing in r. Indeed, already Jang observed that (1) is
equivalent to two inequalities:

(2) m−
√
m2 − q2 ≤ r ≤ m+

√
m2 − q2.

Cosmic censorship suggests the upper bound always holds, while the counterexam-
ple in [20] violates the lower bound.

In this paper, we prove the upper bound in (2) for multiple black holes. By the
positive mass theorem with charge we have m ≥ |q| with equality if and only if the
data is MP [8]. Hence if r ≤ |q|, the upper bound in (2) follows immediately

r ≤ |q| ≤ m ≤ m+
√

m2 − q2.

It thus only remains to prove the upper bound under the additional hypothesis
|q| ≤ r. Under this hypothesis, it is the lower bound that follows immediately

m ≤ |q|+
√
m2 − q2 ≤ r +

√
m2 − q2.

We note that the stability of the outermost horizon in fact implies |q| ≤ r, provided
the horizon is connected [7,14]. In view of the above, the upper bound in (2) is
equivalent to (1) under the additional hypothesis |q| ≤ r. The proof of this latter
statement will be based on an adaptation of Bray’s conformal flow; see also [4].

We now introduce a few definitions and state our main theorem and a corol-
lary. A time-symmetric initial data set (M, g,E,B) consists of a 3-manifold M , a
Riemannian metric g, and vector fields E and B. We assume that the data satisfies
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the Maxwell constraints with no charges outside the horizon divg E = divg B = 0,
and the charged DEC

(3) μ = Rg − 2(|E|2 + |B|2) ≥ 0.

We assume that the data is SAF, meaning that the complement of a compact set
in M is the finite union of disjoint ends, and on each end the fields decay according
to

g − δ = O2(|x|−1), E = O1(|x|−2), B = O1(|x|−2),

and Rg is integrable. This guarantees that the ADM mass and the total electric
and magnetic charges

m =
1

16π

∫
S∞

(gij,j − gjj,i)ν
i dA,

qE =
1

4π

∫
S∞

Eiν
i dA, qB =

1

4π

∫
S∞

Biν
i dA,

are well-defined. Here, ν is the outer unit normal, and the limit is taken in a
designated end. Without loss of generality, we assume that the magnetic charge
qB = 0, and from now on denote q = qE . This can always be achieved by a fixed
rotation in the (E,B)-space. Conformally compactifying all but the designated end,
we can now restrict our attention to surfaces which bound compact regions, and
define S2 to enclose S1 to mean S1 = ∂Ω1, S2 = ∂Ω2 and Ω1 ⊂ Ω2. An outermost
horizon is a compact minimal surface not enclosed in any other compact minimal
surface.

Theorem 1. Let (M, g,E,B) be a SAF initial data set satisfying the chargeless
Maxwell constraints, the charged DEC, with ADM mass m, total charge q, and
admitting an outermost horizon of area A = 4πr2. Then the upper bound in (2)
holds with equality if and only if the data is RN. Suppose that |q| ≤ r, then (1)
holds with equality if and only if the data is RN.

As noted above, the first statement follows from the second.

Corollary 1. Given m and q, satisfying m ≥ |q|, RN is the unique maximizer
of A. Given A and q, satisfying 4πq2 ≤ A, RN is the unique minimizer of m.

We point out that the hypothesis of no charges outside the horizon seems
necessary. On the one hand, our proof uses the divergence-free character of E and
B in the final stage once we switch to inverse mean curvature flow. Indeed, we
suspect that our conformal flow would not converge to Reissner-Nordström when
charges are present outside the horizon. In fact, in [15], the authors conjecture
that one could construct spherically symmetric counterexamples in this case. On
the other hand, the heuristic argument based on cosmic censorship would not apply
since matter can carry charges out to infinity leading to a final state with a total
charge different from the initial state. Thus, without additional hypotheses, one is
not able to say how the upper bound in (2) for the final state compares to the same
expression for the initial state.

In what follows, a brief outline of the main elements in the proof of Theorem 1
is given. Full details will appear in a forthcoming paper.
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2. The conformal flow

Consider a SAF initial data set (M0, g0, E0, B0) satisfying the Maxwell con-
straints and the charged DEC. We define the conformal flow

(4) gt = u4
t g0, Ei

t = u−6
t Ei

0, Bi
t = u−6

t Bi
0, u0 = 1.

This immediately yields that the Maxwell constraints divgt Et = divgt Bt = 0 are
preserved under the flow and that the charge qt is constant. The logarithmic velocity
of the flow vt = u̇t/ut is determined by the following elliptic problem

(5) Δgtvt − (|Et|2 + |Bt|2)vt = 0, vt → −1 at ∞, vt|Σt
= 0,

where Σt is the outermost horizon in gt. We point out that by the maximum
principle, −1 < v < 0; and by the Hopf boundary Lemma, the outward normal
derivative of v on Σt is negative. In particular, this guarantees that the surfaces
Σt always move outward. Using the covariance Lg(vu) = u5Lu4gv of the conformal

Laplacian Lg = Δg − 1
8Rg, we have

1

8

d(u5
tRgt)

dt
= −Lg0 u̇t = −u5

t

(
|Et|2 + |Bt|2 −

1

8
Rgt

)
vt;

hence, from (3), u4
tμt is constant, and in particular μt ≥ 0 for all t provided μ0 ≥ 0.

Thus the charged DEC is preserved. The proof of the existence of solutions to (4)–
(5) follows [1] closely, and it is easily checked that At is constant. The remaining
two ingredients of the proof are to show that the mass mt is non-increasing, and
the inequality (1) holds at some final time T ∈ (0,∞], implying that (1) holds also
at the initial time t = 0.

3. Monotonicity

As in [1], the proof of monotonicity of mt for our flow is based on a clever
doubling argument by Bunting–Masood-Ul-Alam first introduced in [2]. However
here a more judicious choice of conformal factor, inspired by [16], is required before
we can apply the positive mass theorem. First, we note that since the flow (4)–(5)
is autonomous, it is enough to show that ṁt ≤ 0 at t = 0. For convenience we drop
the subscript 0.

We take two copies M± of the exterior of Σ, attach them at Σ, and equip them

with conformal metrics g± = w4
±g, where w± = 1

2

√
(1± v)2 − φ2 and φ satisfies

the differential inequality

(6) φ

(
Δgφ− ∇v · ∇φ

v

)
≥ Λ

∣∣∣∣|E|2 + |B|2 − |∇φ|2
v2

∣∣∣∣ ,
for some Λ > 0 large enough, with boundary conditions ∂νφ = 0 on Σ, φ → 0
as |x| → ∞. From the asymptotic expansion, it turns out that |x|φ → |q| at
infinity. Inequalities (3) and (6) guarantee that Rg± ≥ 0 if Λ ≥ 12, and the
boundary conditions guarantee that mean curvatures on both sides of the gluing
agree. Furthermore the maximum principle, m ≥ |q|, and the asymptotics of φ
guarantee that (1 ± v)2 − φ2 > 0, and the asymptotics of w± guarantee that the
M+ end is compactified while the mass of the M− end is given by m̃ = m−γ, where
γ is determined by v = −1 + γ/|x|+ O(|x|−2). Since v > −1, we have γ > 0. The
positive mass theorem [19,21] can now be applied to conclude that m̃ ≥ 0 with
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equality if and only if (M̃, g±) is the Euclidean space. Since, as in [1] ṁ = 2(γ−m),

we get monotonicity with equality if and only if (M̃, g±) is flat.
It remains to show that (6) has a positive solution satisfying the required bound-

ary conditions. Since this part is very technical, we leave the details to our forth-
coming article. The main idea is to solve (6) with equality replacing inequality on
the exterior of a small neighborhood of the boundary Ω = {x ∈ M | dist(x,Σ) > τ}.
We use the Leray-Schauder fixed point theorem [9, Theorem 11.6] to accomplish
this, with appropriately chosen Dirchlet boundary conditions on ∂Ω. Using such
a domain avoids the difficulty of singular coefficients that occurs at Σ due to the
vanishing of v. Finally φ is then extended across ∂Ω while preserving the inequal-
ity (6). Although the regularity of the extended solution is only C1,1 across ∂Ω,
this is enough for an application of the positive mass theorem as described in the
preceding paragraph.

4. Exhaustion

Considerable effort is spent in [1] to show that the exterior of Σt converges
as t → ∞ to a Schwarzschild slice. We circumvent these difficulties and instead
obtain (1) at a late time T . As in [1], we prove in two steps that the surface
Σt eventually encloses any given compact surface. First, we show that no compact
surface in M can enclose Σt for all t. Then we show that Σt must eventually enclose
any given compact surface. It is here that the hypothesis |q| ≤ r is used. Recall that
this inequality is necesary for the connectedness of the outermost horizon. Thus
at late times, ΣT is connected, and hence the inverse mean curvature flow can be
applied to obtain (1) for (MT , gT , ET , BT ), where MT is the exterior of ΣT .

After a perturbation, it may be assumed that the initial data set (M, g,E,B)
has charged harmonic asymptotics [3]. That is, in the asymptotic end, g = U4

0 δ,
E = U−6

0 Eδ, Eδ = q∇r−1 where δ is the Euclidean metric, Rg = −8U−5
0 ΔδU0 =

2|E|2, and B = 0.

Lemma 1. If |q| < r, then Σt cannot be entirely enclosed by the coordinate
sphere Sr(t) for all t, where r(t) = εre2t for some sufficiently small ε.

Assume by contradiction that Σt is entirely enclosed by Sr(t) for all t. We
show that for some large T , ΣT is not the outermost minimal area enclosure of Σ0,
yielding a contradiction.

Writing Ut = utU0 and Vt = vtutU0, then we have

ΔδUt = −1

4
|Eδ|2U−3

t , ΔδVt =
3

4
U−4
t |Eδ|2Vt.

Let Ṽt be the unique solution of the second equation above with Ut replaced by

Ũt, and satisfying Ṽt = 0 on Sr(t), and Ṽt → −e−t as |x| → ∞, where Ũt is the
conformal factor Ut in the conformal flow of the Reissner-Nordström initial data.
Note that Ṽt is the velocity ṽtŨt in the conformal flow of the Reissner-Nordström
initial data, where ṽt is obtained from (9) by setting m2 = 4e−4tr(t)2 + q2, and
thus from (8)

Ũt =

(
e−2t +

√
4e−4tr(t)2 + q2

|x| + e−2t r(t)
2

|x|2

)1/2

.
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The idea is to compare Vt and Ṽt to obtain estimates on Ut in terms of Ũt.

However, we only need to estimate
∫
Sr(t)

U4
t dσδ. Thus, let Ût be the unique solution

of

ΔδÛt = −1

4
|Eδ|2Û−3

t , Ût → e−t as |x| → ∞,

Ût|Sr(t)
=

(
1

4πr(t)2

∫
Sr(t)

U4
t

)1/4

.

This radial function can be computed explicitly
(7)

Û4
t (x) = e−4t+

e−2t
√

8
3

(
α+ 1

2q
2
)

|x| +
α

|x|2+
e2t

√
8
3

(
α+ 1

2q
2
)
(α− q2)

6|x|3 +
e4t(α− q2)2

36|x|4 ,

where α is a positive constant depending on
∫
Sr(t)

U4
t . The assumption |q| ≤ r

guarantees that α ≥ q2 + 6e−4tr(t)2, and hence Ût(x) ≥ Ũt(x) for |x| ≥ r(t).

Now Wt = Ṽt − V̂t satisfies

ΔδWt =
3

4
Û−4
t |Eδ|2Wt +

3

4
(Ũ−4

t − Û−4
t )Ṽt|Eδ|2,

Wt → 0 as |x| → ∞, and Wt > 0 on Sr(t) because V̂t(r(t)) = d
dt Ût(r(t)) < 0 =

Ṽt(r(t)). Therefore, since Ũ
−4
t − Û−4

t ≥ 0 the maximum principle gives that Wt ≥ 0
outside Sr(t).

This yields the upper bound V̂t ≤ Ṽt, and hence since V̂t =
d
dt Ût it also gives an

estimate of Ût from above in terms of Ṽt. This gives an upper bound on
∫
Sr(t)

U4
t ,

and it then follows as in [1] that |Sr(t)| ≤ ε2A[2 + O(ε−1e−t)]4. Hence, for ε
sufficiently small and T sufficiently large, we have |Sr(T )| < A, and ΣT is not outer
area minimizing, in contradiction to its definition.

5. Rigidity

In the case of equality, the mass m̃ of the doubled manifold (M̃, g±) in the

monotonicity proof must be zero, hence M̃ is R3 and consequently Σ is connected.
Thus, we can use Disconzi-Khuri’s definition of the charged Hawking mass

mCH(S) =
r

2

(
1− q2

r2
− 1

16π

∫
S

H2 dA

)
,

and its monotonicity under the inverse mean curvature to show that if equality
holds when the horizon is connected, then the initial data set is RN. Although
B is assumed to vanish in [5, Theorem 1], the argument carries through in the
time-symmetric case even if B 	= 0.

Finally, we note that if the initial data set is RN, then the conformal flow defined
by (4) and (5) simply yields a rescaling of RN as indeed it must by rigidity. The
RN metric can be written in isotropic coordinates as −V 2dt2 + g, where g = U4δ,

(8) U(x) =

(
1 +

m

|x| +
m2 − q2

4|x|2

)1/2

,
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and the electric fields is Ei = U−2∂i(q/|x|). The conformal flow given by rescaling
the coordinates x 
→ e−2tx has logarithmic flow velocity

(9) vt =
−e−2t + e2t(m2 − q2)/4|x|2

e−2t +m/|x|+ e2t(m2 − q2)/4|x|2 .

It is now straightforward to verify that vt satisfies (4)–(5).
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[15] Edward Malec and Niall Ó Murchadha, Trapped surfaces and the Penrose inequality in
spherically symmetric geometries, Phys. Rev. D (3) 49 (1994), no. 12, 6931–6934, DOI
10.1103/PhysRevD.49.6931. MR1278625 (95b:83071)

[16] A. K. M. Masood-ul-Alam, Uniqueness proof of static charged black holes revisited, Classical
Quantum Gravity 9 (1992), no. 5, L53–L55. MR1163879 (93f:83059)

[17] R. Penrose, Some unsolved problems in classical general relativity, Seminar on Differential
Geometry, 1982, pp. 631–668.

[18] Roger Penrose, Naked Singularities, Annals of the New York Academy of Sciences 224 (1973),
no. 1, 125–134.

[19] Richard Schoen and Shing Tung Yau, On the proof of the positive mass conjecture in general
relativity, Comm. Math. Phys. 65 (1979), no. 1, 45–76. MR526976 (80j:83024)

[20] Gilbert Weinstein and Sumio Yamada, On a Penrose inequality with charge, Comm. Math.
Phys. 257 (2005), no. 3, 703–723, DOI 10.1007/s00220-005-1355-0. MR2164949 (2007c:83016)

http://www.ams.org/mathscinet-getitem?mr=1908823
http://www.ams.org/mathscinet-getitem?mr=1908823
http://www.ams.org/mathscinet-getitem?mr=876598
http://www.ams.org/mathscinet-getitem?mr=876598
http://www.ams.org/mathscinet-getitem?mr=3002957
http://www.ams.org/mathscinet-getitem?mr=1697098
http://www.ams.org/mathscinet-getitem?mr=1697098
http://www.ams.org/mathscinet-getitem?mr=701918
http://www.ams.org/mathscinet-getitem?mr=701918
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.ams.org/mathscinet-getitem?mr=0424186
http://www.ams.org/mathscinet-getitem?mr=0424186
http://www.ams.org/mathscinet-getitem?mr=1916951
http://www.ams.org/mathscinet-getitem?mr=1916951
http://www.ams.org/mathscinet-getitem?mr=0523907
http://www.ams.org/mathscinet-getitem?mr=0523907
http://www.ams.org/mathscinet-getitem?mr=1278625
http://www.ams.org/mathscinet-getitem?mr=1278625
http://www.ams.org/mathscinet-getitem?mr=1163879
http://www.ams.org/mathscinet-getitem?mr=1163879
http://www.ams.org/mathscinet-getitem?mr=526976
http://www.ams.org/mathscinet-getitem?mr=526976
http://www.ams.org/mathscinet-getitem?mr=2164949
http://www.ams.org/mathscinet-getitem?mr=2164949


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

226 MARCUS KHURI, GILBERT WEINSTEIN, AND SUMIO YAMADA

[21] Edward Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981),
no. 3, 381–402. MR626707 (83e:83035)

Department of Mathematics, Stony Brook University, Stony Brook, New York

11794

E-mail address: khuri@math.sunysb.edu

Department of Physics and Department of Computer Sciences and Mathematics,

Ariel University, Ariel 40700, Israel

E-mail address: gilbertw@ariel.ac.il

Department of Mathematics, Gakushuin University, Tokyo 171-8588, Japan

E-mail address: yamada@math.gakushuin.ac.jp

http://www.ams.org/mathscinet-getitem?mr=626707
http://www.ams.org/mathscinet-getitem?mr=626707

	The Riemannian Penrose Inequality with Charge for Multiple Black Holes
	1. Introduction
	2. The conformal flow
	3. Monotonicity
	4. Exhaustion
	5. Rigidity
	References


