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We give general sufficient conditions for the existence of trapped surfaces due to concentration of

matter in spherically symmetric initial data sets satisfying the dominant energy condition. These results

are novel in that they apply and are meaningful for arbitrary spacelike slices, that is, they do not require

any auxiliary assumptions such as maximality, time symmetry, or special extrinsic foliations, and most

importantly they can easily be generalized to the nonspherical case once an existence theory for a

modified version of the Jang equation is developed. Moreover, our methods also yield positivity and

monotonicity properties of the Misner-Sharp energy.
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I. INTRODUCTION

The hoop conjecture [1] concerns the folklore belief that
if enough matter and/or gravitational energy are present in
a small enough region (small in all three spatial dimen-
sions), then the system must collapse to a black hole. This
belief is often realized by establishing a statement of the
following form. Let � be a compact spacelike hypersur-
face satisfying an appropriate energy condition in a space-
time M. There exists a universal constant C> 0 such that
if Massð�Þ>C � Sizeð�Þ, then � must contain a closed
trapped surface. Of course finding the correct notions of
Massð�Þ and Sizeð�Þ is one of the primary difficulties
with this conjecture. The conclusion of the above statement
guarantees that the spacetimeM contains a singularity (or
more precisely is null geodesically incomplete) by the
Hawking-Penrose singularity theorems [2], and assuming
cosmic censorship must, therefore, contain a black hole. It
should also be pointed out that modulo certain technical
restrictions, trapped surfaces lead to gravitational confine-
ment according to Israel’s result [3]. Therefore, in asymp-
totically flat spacetimes the existence of a trapped surface
almost certainly implies the existence of a black hole.

There have been many results realizing a version of the
hoop conjecture in this spirit. Most notable are those of
O’Murchadha, Malec, and others [4–12], which address
concentration of matter in spherical symmetry and give
necessary and sufficient conditions in some instances, but
impose auxiliary conditions on the spacelike slice such as
the condition of maximality, time-symmetry, or that it
arises from an extrinsic foliation. On the other hand, there
are the very important results of Schoen and Yau [13,14]
which also address the issue of concentration of matter, but
without extra assumptions. While their results are very
impressive in that they do not require spherical symmetry,
they suffer from the opposite problem in that they are not
meaningful for slices with small extrinsic curvature, in
particular, for maximal or time-symmetric slices. There

have been relatively fewer results on the concentration of
pure gravitational radiation, see [9,15].
In this paper we also address the topic of concentration

of matter. Our goal is to establish sufficient conditions for
the existence of trapped surfaces in spherically symmetric
initial data, which apply and are meaningful both in the
maximal and general cases. Our methods are quite general
in that they can easily be generalized to the nonspherically
symmetric case once an appropriate existence theory
(analogous to that developed by Schoen and Yau in [16])
for a modified version of the Jang equation has been
established. Moreover our techniques yield positivity and
monotonicity properties for the Misner-Sharp energy, as a
natural and interesting byproduct.
An initial data set for the gravitational field consists of a

3-manifoldM on which is defined a positive definite metric
g and symmetric 2-tensor k representing the extrinsic
curvature. The metric and extrinsic curvature must of
course satisfy the constraint equations:

16�� ¼ Rþ ðTrgkÞ2 � jkj2;
8�Ji ¼ rjðkij � ðTrgkÞgijÞ;

where R denotes scalar curvature and �, J are, respec-
tively, the energy and momentum densities for the matter
fields. If the initial data are spherically symmetric then we
may take M ’ R3 and write

g ¼ g11ðrÞdr2 þ �2ðrÞd�2;

kij ¼ ninjkaðrÞ þ ðgij � ninjÞkbðrÞ;
where

n ¼ n1@r þ n2@c 2 þ n3@c 3 ¼
ffiffiffiffiffiffiffi
g11

q
@r

is the unit normal to spheres Sr centered at the origin (the
ball enclosed by Sr will be denoted Br), and

d�2 ¼ ðdc 2Þ2 þ sin2c 2ðdc 3Þ2
is the round metric onS2. We also assume that the metric is
regular at the origin, so that �ð0Þ ¼ 0, �;rð0Þ ¼ 1, and*khuri@math.sunysb.edu
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g11ð0Þ ¼ 1. The sphere Sr is future (past) trapped if the
family of outgoing future (past) directed null geodesics,
orthogonal to Sr, is converging at each point. This is
equivalent to the following condition satisfied by the null
expansions:

�þ :¼ HSr þ TrSrk < 0 ðfuture trappedÞ;
�� :¼ HSr � TrSrk < 0 ðpast trappedÞ;

where HSr ¼ ni;i denotes the mean curvature and TrSrk ¼
ðgij � ninjÞkij. The outer boundary of a region inM which

contains future (past) trapped surfaces is called a future
(past) apparent horizon, and satisfies �þ ¼ 0 (�� ¼ 0).
Our main result is as follows.

Theorem 1.—Let ðM;g; kÞ be a spherically symmetric
initial data set satisfying the dominant energy condition
� � jJj. If

min
Br

ð�� JðnÞÞ þ 3

32�
�þ��ðrÞ> 3

2

RadðBrÞ
VolðBrÞ ; (1.1)

where the radius and volume are given by

Rad ðBrÞ ¼
Z r

0

ffiffiffiffiffiffiffi
g11

p
; VolðBrÞ ¼ 4�

Z r

0

ffiffiffiffiffiffiffi
g11

p
�2;

then Br contains a future (past) trapped surface.
The first term on the left-hand side of (1.1) shows the

intuitively obvious fact, that formation of trapped surfaces
depends not only on matter concentration but also on the
direction that the matter is flowing. Namely, inward flow-
ing material hastens (delays) the formation of future (past)
trapped surfaces, whereas outgoing material delays (has-
tens) formation. More interesting is the second term on the
left-hand side, which indicates that the bending of light
rays at the boundary of Br, can by itself cause surfaces to
be trapped on the interior. This phenomenon was first
observed by Yau [14]. However as we have pointed out,
the result of [14] as well as the earlier version of Schoen
and Yau [13] are not meaningful when Trgk is small. To be

more precise let us recall their result, which states that if

min
B

ð�� jJjÞ> 3�2

2

1

RadSYðBÞ ;

then B contains a trapped surface. Here spherical symme-
try is not assumed and RadSYðBÞ is the square of a ‘‘ho-
motopy radius.’’ Thus their result requires matter density to
be large on a ‘‘large region.’’ However our basic intuition
suggests that this is not the ideal situation which results in
collapse, that is, as the hoop conjecture asserts we would
rather like to show that if matter density is large on a
‘‘small region’’ then trapped surfaces exist. So it is not
surprising that their result is only meaningful for a fairly
restricted class of initial data (as pointed out by Bizon,
Malec, and O’Murchadha [4]). They show (Theorem 1 of

their paper) that one cannot have a large set with large
positive scalar curvature. Since the matter density is related
to the scalar curvature via the Hamiltonian constraint, the
only way we can have a large matter density and small
scalar curvature (which is required from their Theorem 1)
is that the trace of the extrinsic curvature Trgk is large; in

fact the trace must be not only large but significantly larger
than jkj. This means that it may be difficult to find data
which satisfy their condition, and, in particular, their result
can say nothing about the time-symmetric or maximal
cases. On the other hand, our result compares nicely with
that of Malec and O’Murchadha [17] who showed that
under the assumption of spherical symmetry and maximal-
ity (Trgk ¼ 0),

4�
Z r

0
ð�� JðnÞÞ�2 > RadðBrÞ

implies that Br contains a future (past) trapped surface.
Unfortunately, it is difficult to see how their arguments
might generalize to the nonspherically symmetric case.

II. THE GENERALIZED JANG EQUATION

Our methods are based in large part on the generalized
Jang equation [18], which we now explain. Many of the
difficult issues and questions involving initial data are
easier to express and solve if it happens that the scalar
curvature of the given metric g is nonnegative, R � 0.
Unfortunately there is no guarantee that this will be the
case for an arbitrary set of initial data, except under the
added assumptions of maximality and the dominant energy
condition. It is for this reason that Jang [19] introduced the
quasilinear elliptic equation for a scalar f depending on g
and k, which bears his name:

H� � Tr�K ¼ 0; (2.1)

where � denotes the graph t ¼ fðxÞ inside the product
manifold ðM� R; gþ dt2Þ, H� is the mean curvature,
and K is a trivially extended version of k (extended to all
ofM� R). That is, he showed that if f solves (2.1) then the
scalar curvature of the related metric �g ¼ gþ df2 (this is
the induced metric on the graph �) has nice positivity
properties. In fact, Schoen and Yau [16] successfully em-
ployed the Jang equation in their solution of the positive
energy conjecture, to reduce the general case to the case of
time symmetry. Moreover they developed a full existence
theory for this equation, and showed that regular solutions
always exist if the initial data do not contain apparent
horizons. The converse statement, that if a regular solution
does not exist then the data must contain an apparent
horizon, naturally led to their result [13] concerning the
hoop conjecture.
These successful applications of the Jang equation led

many to suggest that it could also be used to study the
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Penrose inequality. However as pointed out by Malec and
O’Murchadha [10], serious and immediate difficulties arise
when attempting such an application. These difficulties
motivated the author, together with H. Bray [18], to pro-
pose a modified version of the Jang equation, specifically
designed for the Penrose inequality. This generalized Jang
equation has the same geometric structure as that of (2.1),
however the mean curvature of the graph � is now calcu-
lated inside the warped product manifold ðM� R; gþ
�2dt2Þ where � is a nonnegative scalar, and the extended
tensor K is now a nontrivial extension of k (see [20]). An
important feature of the generalized Jang equation, like the
original, is that it yields nice positivity properties for the
scalar curvature of the induced metric on �. More pre-
cisely, if �R denotes the scalar curvature of �g ¼ gþ�2df2

then we find [18] that

�R ¼ 16�ð�� JðwÞÞ þ jh� Kj�j2�g þ 2jqj2�g
� 2��1div �gð�qÞ; (2.2)

where h is the second fundamental form of �, and the 1-
forms w and q are given by

wi ¼ f;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ jrgfj2

q ; qi ¼ wjðh� Kj�Þij:

According to the dominant energy condition this expres-
sion shows that �R is almost nonnegative, with only a
divergence term standing in the way. In fact, the extra
degree of freedom given by the scalar � will be used to
remove the problematic divergence term in the next sec-
tion. Moreover we have shown in our investigation of the
Penrose inequality [20], in analogy with the theory devel-
oped by Schoen and Yau [16] for the classical Jang equa-
tion, that regular solutions of the modified Jang equation
exist in spherical symmetry away from apparent horizons if
we choose

� ¼ �;s (2.3)

where

@s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
ffiffiffiffiffiffiffi
g11

p @r; v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2g11

p
f;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�2g11f;r

q :

Note that

s ¼
Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
ffiffiffiffiffiffiffi
g11

p ¼
Z r

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11 þ�2f2;r

q

is the radial arclength parameter for the �g metric. In
particular we have the following result.

Theorem 2—Let ðM;g; kÞ be a spherically symmetric
initial data set satisfying the dominant energy condition
� � jJj. If a ball Br centered at the origin does not contain
an apparent horizon, then there exists a regular solution f
in Br of the modified Jang equation with the scalar� given
by (2.3).

III. EXISTENCE OFAPPARENT HORIZONS

Here we shall give the proof of Theorem 1, which will
proceed by contradiction. Assume that the ball Br does not
contain an apparent horizon. Then Theorem 2 guarantees
the existence of a regular solution to the generalized Jang
equation with � given by (2.3). In particular we must have
vð0Þ ¼ 0, and �1< v< 1. Therefore � and �;r are

strictly positive on Br since

4
ffiffiffiffiffiffiffi
g11

q �;r

�
¼ 2HSr ¼ �þ þ �� > 0;

as �þ > 0 and �� > 0 when Br contains no horizons. Let

mðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A �gðSrÞ
16�

s �
1� 1

16�

Z
Sr

H2
Sr; �g

�

¼ 1

2
�ðrÞð1� �2

;sðrÞÞ

denote the Geroch energy [21] of a sphere Sr inside the
Jang surface �. A well-known calculation shows that

m;s ¼ 1
4�;s�

2 �R;

so that the formula (2.2) for �R yields

mðrÞ ¼ mðrÞ �mð0Þ ¼
Z r

0
m;sds ¼

Z r

0

1

4
�;s�

2 �Rds

¼ 1

16�

Z
Br

�;s
�Rd! �g

�
Z
Br

�;sð�� JðwÞ � ð8��Þ�1div �gð�qÞÞd! �g;

(3.1)

where d! �g is the volume element on the Jang surface �.

We may then apply the divergence theorem [as a result of
the special choice of � given by (2.3)] and the calculation
(see [20])

� �gðq; n �gÞd� �g ¼ �2
�;rvffiffiffiffiffiffiffi
g11

p
� ffiffiffiffiffiffiffi

g11
q �;r

�
v� kb

�
d�g;

where n �g is the unit outer normal to Sr in the �g metric and

d� �g, d�g are area elements, to obtain
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mðrÞ � 4�
Z r

0
�;sð�� JðwÞÞ�2ds� 1

8�

Z
Sr

� �gðq; n �gÞd� �g

� 4�

3

Z r

0
ð�3Þ;rdrmin

Br

ð�� JðwÞÞ þ 1

4�

Z
Sr

�;rvffiffiffiffiffiffiffi
g11

p
� ffiffiffiffiffiffiffi

g11
q �;r

�
v� kb

�
d�g

¼ 4�

3
�3ðrÞmin

Br

ð�� JðwÞÞ þ �;rvffiffiffiffiffiffiffi
g11

p
� ffiffiffiffiffiffiffi

g11
q �;r

�
v� kb

�
�2ðrÞ: (3.2)

However since

mðrÞ ¼ 1

2
�ðrÞ � 1

2

�
1� v2

g11

�
�2
;r�ðrÞ;

it follows that

1

2
�ðrÞ � 4�

3
�3ðrÞmin

Br

ð�� JðwÞÞ þ 1

2
ð1þ v2Þg11�2

;r�ðrÞ � �;rffiffiffiffiffiffiffi
g11

p kb�
2vðrÞ

¼ 4�

3
�3ðrÞmin

Br

ð�� JðwÞÞ þ 1

2
�3

�
g11

�2
;r

�2
� k2b

�
þ 1

2
�3

�
kb �

ffiffiffiffiffiffiffi
g11

q �;r

�
v

�
2

� 4�

3
�3ðrÞmin

Br

ð�� JðwÞÞ þ 1

8
�3ðrÞðH2

Sr
� ðTrSrkÞ2Þ: (3.3)

Lastly, because �;r > 0 we have

�2ðrÞ �
R
r
0

ffiffiffiffiffiffiffi
g11

p
�2R

r
0

ffiffiffiffiffiffiffi
g11

p ¼ 1

4�

VolðBrÞ
RadðBrÞ ;

and hence

3

2

RadðBrÞ
VolðBrÞ � min

Br

ð�� JðwÞÞ þ 3

32�
�þ��ðrÞ:

We conclude that if (1.1) holds, then Br must contain an
apparent horizon.

IV. PROPERTIES OF THE MISNER-SHARP
ENERGY

The Misner-Sharp energy [22] is widely regarded as the
correct measure of quasilocal energy contained in centered
spacelike 2-spheres in spherically symmetric spacetimes.
When evaluated on a sphere Sr it takes the form

Er ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
AðSrÞ
16�

s �
1� 1

16�

Z
Sr

�þ��
�
;

which also happens to be the expression for the Hawking
energy [23] of a spacelike 2-surface in an arbitrary space-
time. Here we would merely like to point out that the
arguments of the previous section immediately imply pos-
itivity and monotonicity properties for the Misner-Sharp
energy. To see this, let Br1r2 denote the region between two

concentric spheres Sr1 and Sr2 with r2 > r1. We will refer

to this region as untrapped if �þ�� > 0 throughout. For
definiteness let us assume that both �þ > 0 and �� > 0.
Then HSr1

� 0 implies that jH�1
Sr1

TrSr1
kj � 1, so in anal-

ogy with Theorem 2 there exists a regular solution of the

modified Jang equation with� given by (2.3) and such that
vðr1Þ ¼ H�1

Sr1
TrSr1

k (see [20]). Note that this does not

exclude the possibility that Sr1 and/or Sr2 are apparent

horizons, and if this is the case then we impose the re-
striction that they can be either future or past but not both,
which ensures that HSr1

� 0. Therefore we may follow

precisely the same arguments presented in (3.1), (3.2), and
(3.3) while keeping the two middle terms of (2.2), to find
that

Er2 � Er1 ¼
1

16�

Z
Br1r2

�;sð16�ð�� JðwÞÞ

þ jh� Kj�j2�g þ 2jqj2�gÞd! �g

þ 1

8
�3ðr2ÞðTrSr2k� vðr2ÞHSr2

Þ2

� 1

8
�3ðr1ÞðTrSr1k� vðr1ÞHSr1

Þ2:

But since vðr1Þ ¼ H�1
Sr1

TrSr1
k we obtain

Er2 � Er1 :

Conversely, if both �þ < 0 and �� < 0 then the same
arguments with vðr2Þ ¼ H�1

Sr2
TrSr2

k give

Er2 � Er1 :

We have thus found the following result.
Theorem 3.—Let ðM;g; kÞ be a spherically symmetric

initial data set satisfying the dominant energy condition
� � jJj. Then the Misner-Sharp energy is always mono-
tonic on untrapped regions. In particular, the Misner-Sharp
energy of a centered 2-sphere not enclosing any apparent
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horizon is nonnegative Er � 0, and the Misner-Sharp en-
ergy of a centered two-sphere enclosing the outermost

apparent horizon Sr0 satisfies the lower bound Er �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðSr0Þ=16�

q
. Furthermore if Er ¼ 0 or Er ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðSr0Þ=16�
q

, then ðBr; g; kÞ [respectively ðBr0r; g; kÞ]
arises from a spacelike hypersurface in the Minkowski
(respectively Schwarzschild) spacetime.

These observations concerning the Misner-Sharp energy
have previously been established by Hayward in [24] (see
also [25]) using different methods, although the rigidity
result appears to be new (for details see [20]). The novelty

of our method lies with the fact that it can easily be
generalized to the nonspherically symmetric case, once a
general existence theory for the modified Jang equation has
been obtained. When this is done, an expanded version of
Theorem 3 would give new positivity and monotonicity
properties for the Hawking energy, and would lead to a
proof of the Penrose inequality [18] for general initial data.
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