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Abstract: We establish a Penrose-Like Inequality for general (not necessarily time
symmetric) initial data sets of the Einstein equations which satisfy the dominant energy
condition. More precisely, it is shown that the ADM energy is bounded below by an
expression which is proportional to the square root of the area of the outermost future
(or past) apparent horizon.

1. Introduction

In an attempt to find a counterexample for his Cosmic Censorship Conjecture, R. Penrose
[12] proposed a necessary condition for its validity, in the form of an inequality relating
the ADM mass and area of any event horizon in an asymptotically flat spacetime:

Mass ≥
√

Area

16π
. (1.1)

Unfortunately this Penrose Inequality can only be proven with knowledge of the full
spacetime development, as otherwise it would not be possible to locate the event hori-
zon in a given spacelike slice. Thus it is customary to reformulate (1.1) so that the
quantities involved may be calculated solely from local information, namely initial data
sets for the Einstein equations. By an initial data set we are referring to a triple (M, g, k),
consisting of a Riemannian 3-manifold M with metric g and a symmetric 2-tensor k rep-
resenting the extrinsic curvature of a spacelike slice. These data are required to satisfy
the constraint equations

16πµ = R + (Trgk)2 − |k|2,
8π Ji = ∇ j (ki j − (Trgk)gi j ),
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where R is scalar curvature and µ, J are respectively the energy and momentum densities
for the matter fields. If all measured energy densities are nonnegative then µ ≥ |J |, which
will be referred to as the dominant energy condition. Moreover the initial data set will
be taken to be asymptotically flat (with one end), so that at spatial infinity the metric and
extrinsic curvature satisfy the following fall-off conditions:

|∂ l(gi j − δi j )| = O(r−l−1), |∂ l ki j | = O(r−l−2), l = 0, 1, 2, as r → ∞.

The ADM energy and momentum are then well defined by

E = lim
r→∞

1

16π

∫
Sr

(∂i gi j − ∂ j gii )ν
j , Pi = lim

r→∞
1

8π

∫
Sr

(ki j − (Trgk)gi j )ν
j ,

where Sr are coordinate spheres in the asymptotic end with unit outward normal ν.
The strength of the gravitational field in the vicinity of a 2-surface � ⊂ M may be

measured by the null expansions

θ± := H� ± Tr�k,

where H� is the mean curvature with respect to the unit outward normal (pointing
towards spatial infinity). The null expansions measure the rate of change of area for a
shell of light emitted by the surface in the outward future direction (θ+), and outward
past direction (θ−). Thus the gravitational field is interpreted as being strong near � if
θ+ < 0 or θ− < 0, in which case � is referred to as a future (past) trapped surface.
Future (past) apparent horizons arise as boundaries of future (past) trapped regions and
satisfy the equation θ+ = 0 (θ− = 0). In the setting of the initial data set formulation
of the Penrose Inequality, apparent horizons take the place of event horizons, in that the
area of the event horizon is replaced by the area of the outermost apparent horizon (or
in some formulations by the least area required to enclose an apparent horizon).

The Penrose Inequality has been established by Huisken & Ilmanen [8] and by Bray
[2] in the time symmetric case, that is when k = 0. At the present time the conjecture for
arbitrary initial data sets remains open, however recently Bray and the author [3] have
succeeded in reducing this problem to the question of existence for a canonical system of
partial differential equations. The purpose here is to establish a Penrose-Like Inequality
for arbitrary initial data satisfying the dominant energy condition. This new inequality
will generalize the following one obtained by Herzlich [7] in the time symmetric case.

Theorem 1.1. Let (M, g) be a 3-dimensional asymptotically flat Riemannian manifold
with nonnegative scalar curvature, and boundary consisting of a minimal 2-sphere with
area |∂ M |. Then the ADM energy satisfies

E(g) ≥ σ

2(1 + σ)

√ |∂ M |
π

,

where

σ =
√ |∂ M |

π
inf

v∈C∞
c

v �=0

‖ ∇v ‖2
L2(M)

‖ v ‖2
L2(∂ M)

.

Furthermore equality holds if and only if (M, g) is a portion of the t = 0 slice of the
Schwarzchild spacetime with mass

√|∂ M |/16π .
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A useful device for extending results in the time symmetric case to the general case is
Jang’s deformation [9] of the initial data, which was successfully employed by Schoen
and Yau [13] in their proof of the Positive Energy Theorem. In their application, special
solutions of Jang’s equation which exhibit blow-up behavior at apparent horizons played
an integral role, and for some time it has been suggested that these solutions may be
helpful in studying the Penrose Inequality (see [10] for some problems that can occur
with this approach). For this to be the case, solutions which blow-up at a given appar-
ent horizon must always be shown to exist. In fact such a theorem has recently been
established by Metzger in [11]. More precisely Metzger has shown that given an initial
data set containing an outermost future (or past) apparent horizon, there exists a smooth
solution of Jang’s equation outside of the outermost apparent horizon which blows-up
to +∞ (−∞) in the form of a cylinder over the horizon, and vanishes at spatial infin-
ity. Here an outermost future (past) apparent horizon refers to a future (past) apparent
horizon outside of which there is no other apparent horizon; such a horizon may have
several components. We will denote the Jang surface associated with the given blow-up
solution of Jang’s equation by (M, g), and its connection by ∇. We will show

Theorem 1.2. Let (M, g, k) be an asymptotically flat initial data set for the Einstein
equations satisfying the dominant energy condition µ ≥ |J |. If the boundary con-
sists of an outermost future (past) apparent horizon with components of area |∂i M |,
i = 1, . . . , n, then the ADM energy satisfies

E(g) ≥ σ

2(1 + σ)

n∑
i=1

√ |∂i M |
π

,

where

σ =
(

n∑
i=1

√
4π |∂i M |

)−1

inf ‖ ∇v ‖2
L2(M)

,

with the infimum taken over all v ∈ C∞(M) such that v(x) → 0 as x → ∂ M and
v(x) → 1 as |x | → ∞.

Remark 1.3. Although the hypotheses require a boundary consisting entirely of future or
entirely of past apparent horizons, our proof gives a bit more. Namely when both types
are present the same result holds, where {∂i M}n

i=1 consists entirely of future or entirely
of past apparent horizons.

An important point to note concerning Theorem 1.2 is that the case of equality is not
considered. The reasons for this are the following. First the Jang equation is designed
to embed the initial data into Minkowski space if equality were to occur (as is done in
the Positive Energy Theorem), and so there is no chance of obtaining and embedding
into the Schwarzchild spacetime in this situation, as the Penrose Inequality demands.
Moreover, it will in fact be shown that the case of equality can never be achieved. This
implies that the current result is not optimal (unlike Theorem 1.1), and suggests that
there may be a better choice of boundary conditions for the Jang equation which does
yield an optimal result.

Another point to note is that the constant σ is dimensionless, and so is actually
independent of the area of the boundary ∂ M . Furthermore σ never vanishes, and there-
fore Theorem 1.2 does give a positive lower bound for the ADM mass in terms of the area
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of the apparent horizon, which is consistent with the spirit of the Penrose Inequality.
Moreover the theorem may be generalized to the setting of initial data containing a
trapped surface, to give a positive lower bound for the ADM mass in terms of the least
area required to enclose the trapped surface. To see this recall that Andersson and Metz-
ger [1], and Eichmair [4], have shown that the existence of a future (past) trapped surface
in an asymptotically flat initial data set implies the existence of an outermost future (past)
apparent horizon. One may then apply Theorem 1.2 to obtain the desired result.

The proof of Theorem 1.2 closely follows that of Theorem 1.1. The main difference,
or new idea, is to employ blow-up solutions for Jang’s equation in an appropriate way.
However the argument still relies on the following version of the Positive Energy The-
orem due to Herzlich.

Theorem 1.4 [7]. Let (M, g) be a 3-dimensional asymptotically flat Riemannian man-
ifold with nonnegative scalar curvature. If the boundary ∂ M consists of n components
having spherical topology and mean curvature (calculated with respect to the normal
pointing inside M) satisfying H∂i M ≤ √

16π/|∂i M |, 1 ≤ i ≤ n, then E(g) ≥ 0 and
when equality occurs g is flat.

Remark 1.5. The statement of Herzlich’s original theorem only allowed the boundary
∂ M to have one component. However the same spinor proof may easily be extended to
allow for finitely many components as in Theorem 1.4.

In continuing with the outline of proof for Theorem 1.2, there are three primary steps.
The first is to deform the initial data by constructing a blow-up solution of the Jang equa-
tion, which as mentioned above has already been established. This deformation yields
a positivity property for the scalar curvature of the Jang metric g. The next step entails
cutting off the cylindrical ends of the blown-up Jang surface at a height T to obtain a man-
ifold with boundary MT , and then making a conformal deformation (MT , ĝT := u4

T g)

to obtain a manifold with zero scalar curvature and with each boundary component

satisfying Ĥ∂i MT
=

√
16π/|∂i MT |ĝT , 1 ≤ i ≤ n. Existence of a conformal factor uT

satisfying these properties will be established by a variational argument, which heavily
depends on the positivity property for the scalar curvature of the Jang metric as well as
the blow-up behavior of the Jang surface at the horizon. One may then undertake the last
step, which consists of applying Theorem 1.4 to obtain E(ĝT ) ≥ 0. The desired lower
bound for E(g) = E(g) is then produced by estimating the difference E(g) − E(ĝT )

and letting T → ∞.

2. The Jang Surface

The goal of this section is to give a precise description of the blow-up solution to the Jang
equation, as well as to record certain qualitative properties of the resulting Jang surface.
Let us first recall some basic facts. The Jang surface M is given by a graph t = f (x) in
the product manifold (M × R, g + dt2), and so has induced metric g = g + d f 2. The
function f is required to satisfy the Jang equation:

gi j

⎛
⎝ ∇i j f√

1 + |∇g f |2
− ki j

⎞
⎠ = 0. (2.1)
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Here ∇i j denote second covariant derivatives with respect to g and

gi j = gi j − f if j

1 + |∇g f |2
is the inverse matrix for gi j with f i = gi j∇i f , and therefore Jang’s equation simply
asserts that the mean curvature of the graph is equal to the trace of k over the graph
(assuming that the tensor k has been extended trivially to all of M × R). The motivation
for solving Jang’s equation is to obtain a positivity property for the scalar curvature of
the Jang surface. In particular, if f satisfies Eq. (2.1) then the scalar curvature of g has
the following expression (see [13]):

R = 16π(µ − J (w)) + |h − k|2g + 2|q|2g − 2divg(q), (2.2)

where

wi = ∇i f√
1 + |∇g f |2

, qi = f j√
1 + |∇g f |2

(hi j − ki j ),

and h is the second fundamental form of M . In addition to the positivity property for
the scalar curvature, we will require the Jang surface to exhibit blow-up behavior at ∂ M
in order to construct the conformal factor described in the introduction. It turns out that
such a solution always exists as long as ∂ M is an outermost horizon.

Theorem 2.1 [11]. Suppose that ∂ M is an outermost future (past) apparent horizon.
Then there exists an open set 	 ⊂ M (with (M − 	) ∩ ∂ M = ∅) and a smooth function
f : 	 → R satisfying (2.1), such that ∂	− ∂ M consists of past (future) apparent hori-
zons, M = graph( f ) is asymptotic to the cylinders ∂ M × R+ (∂ M × R−) and ∂	× R−
(∂	 × R+), and f (x) → 0 as |x | → ∞.

This theorem yields the desired blow-up behavior at ∂ M with the added feature that
blow-up may occur elsewhere at ∂	 − ∂ M as well, if M contains apparent horizons
of the other type (with respect to ∂ M). However the hypotheses of Theorem 1.2 do not
allow for such extra horizons, so that in fact 	 = M . We remark that the sole reason
for prohibiting extra horizons in the initial data is to ensure that each component of ∂	

has spherical topology, which is needed when applying the Positive Energy Theorem,
Theorem 1.4. Thus one could allow apparent horizons of the other type, if they have
spherical topology.

The other goal of this section is to record the decay rate for certain geometric quantities
associated with the Jang surface. Since the solution of Jang’s equation blows-up at ∂ M
in the form of a cylinder, in a neighborhood of each boundary component the Jang sur-
face may be foliated by the level sets t = f (x), which we denote by �t . Similarly in
a neighborhood of each boundary component, M may be foliated by the projection of
the level sets �t onto M , which we denote by �t . We can then introduce coordinates
(r, ξ2, ξ3) in such a neighborhood of each component, where r = |t |−1 and ξ2, ξ3 are
coordinates on a 2-sphere. Note that as r → 0 the projections �r converge to their
associated component of ∂ M . Furthermore the r -coordinate may be chosen orthogonal
to its level sets, so that the initial data metric takes the form

g = g11dr2 +
3∑

i, j=2

gi j dξ i dξ j .
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Lemma 2.2. Consider the level sets �r of the blown-up Jang surface near a component
of ∂M. If H�r

denotes the mean curvature of �r with respect to the inward pointing

(towards spatial infinity) normal N, then H�r
− q(N ) → 0 as r → 0.

Proof. A calculation in [14] (p. 10) shows that

H�r
− q(N ) =

√
1 + |∇g f |2(H�r ± Tr�r k) ∓ Tr�r k

|∇g f | +
√

1 + |∇g f |2
,

where H�r is the mean curvature of �r , Tr�r k is the trace over �r , and + (−) is chosen
depending on whether the particular component of ∂ M in question is a future (past)
horizon respectively. From this expression we see that it is enough to show that the first
term on the right-hand side approaches zero as r → 0. Fortunately this same expression
appears in the Jang equation, and yields the desired result. To see this, write the Jang
equation in the coordinates (r, ξ2, ξ3) to obtain

g11

1 + g11 f 2
,r

( f,rr − �1
11 f,r ) −

3∑
i, j=2

gi j�1
i j f,r

=
√

1 + g11 f 2
,r

⎛
⎝ g11

1 + g11 f 2
,r

k11 +
3∑

i, j=2

gi j ki j

⎞
⎠ ,

where f,r , f,rr are partial derivatives and �1
i j are Christoffel symbols for g given by

�1
11 = 1

2
g11∂r g11, �1

i j = −
√

g11hi j , 2 ≤ i, j ≤ 3,

with hi j denoting the second fundamental form of �r . It follows that

√
1 + |∇g f |2(H�r ± Tr�r k) = ± g11 f,rr

1 + g11 f 2
,r

+ O

⎛
⎝ 1√

1 + |∇g f |2

⎞
⎠ .

Lastly we observe that by definition of the coordinate r , f (r) = ±r−1, and therefore

√
1 + |∇g f |2(H�r ± Tr�r k) = O(r) as r → 0.

��
Lemma 2.3. The solution of Jang’s equation satisfies the following fall-off condition at
spatial infinity:

|∇l f |(x) = O(|x |− 1
2 −l) as |x | → ∞, l = 0, 1, 2.

In particular, the energy of the Jang metric g equals the energy of g.

Proof. See Schoen and Yau [13]. ��
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3. The Conformal Factor

In this section we will complete the last preliminary step before application of the Positive
Energy Theorem. Namely we will conformally deform the Jang metric to zero scalar
curvature on a portion of the Jang surface, while at the same time prescribing the mean
curvature of its boundary. The region to be considered consists of the portion of the Jang
surface lying between the horizontal planes t = ±T , and will be denoted by MT . We
then search for a conformal factor uT satisfying the following boundary value problem:

�uT − 1
8 RuT = 0 on MT , (3.1)

∂νuT + 1
4 H ∂i MT

uT = 1
4

√
16π

|∂i MT |ĝT
u3

T on each i th component of ∂ MT ,

uT = 1 + AT|x | + O(|x |−2) as |x | → ∞,

where AT is a constant and H ∂i MT
denotes mean curvature with respect to the unit

inward normal ν (pointing inside MT ). This ensures that (MT , ĝT := u4
T g) has zero

scalar curvature R̂ ≡ 0 and mean curvature on each i th component of ∂ MT given by

Ĥ∂i MT
=

√
16π/|∂i MT |ĝT . These two properties, combined with the fact that each

component of ∂ M must have spherical topology ([5,6]), then guarantee that Theorem
1.4 is applicable.

We shall use a variational argument, just as in [7], to construct uT := 1 + vT . In this
regard observe that boundary value problem (3.1) arises as the Euler-Lagrange equation
for the functional

Q(v) = 1

2

∫
MT

(
|∇v|2 +

1

8
R(1 + v)2

)
+

√
π

2

(∫
∂ MT

(1 + v)4
)1/2

−1

8

∫
∂ MT

H ∂ MT
(1 + v)2.

More precisely, we will search for a global minimum over the weighted Sobolev space

W 1,2
−1 (MT ) = {v ∈ W 1,2

loc (MT ) | |x |l−1∇l
v ∈ L2(MT ), l = 0, 1}.

Theorem 3.1. Given T > 0 sufficiently large, there exists a function vT ∈ W 1,2
−1 (MT )∩

C∞(MT ) at which Q attains a global minimum. Moreover uT = 1 + vT never vanishes
and satisfies the asymptotic behavior in (3.1).

Proof. In order to establish the existence (as well as the regularity and asymptotic
behavior) portion of this theorem it is enough, by the arguments of [7], to show that
for T sufficiently large the functional Q is nonnegative. To see this use formula (2.2)
and integrate the divergence term by parts to find that for any v ∈ W 1,2

−1 (MT ),

Q(v) ≥
∫

MT

(
3

8
|∇v|2 + π(µ − |J |)(1 + v)2

)
+

√
π

2

(∫
∂ MT

(1 + v)4
)1/2

−1

8

∫
∂ MT

(H ∂ MT
− q(N ))(1 + v)2. (3.2)
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By Lemma 2.2 H ∂ MT
−q(N ) = O(T −1), and a calculation shows that the area of ∂ MT

agrees with the area of �T ⊂ M which remains bounded as T → ∞. It then follows
from Jensen’s Inequality,

(∫
∂ MT

(1 + v)2
)2

≤ |∂ MT |
∫

∂ MT

(1 + v)4,

that for T sufficiently large Q is nonnegative.
It remains to show that uT = 1 + vT is strictly positive. So suppose that uT is not

positive and let D− be the domain on which uT < 0. Since uT → 1 as |x | → ∞, the
closure of D− must be compact. Now multiply Eq. (3.1) through by uT and integrate by
parts to obtain

∫
D−

|∇uT |2 ≤ 0.

Note that if D− ∩ ∂ MT �= ∅, then the same arguments used above to show that Q is
nonnegative, must be employed. It follows that uT ≥ 0. To show that uT > 0, one need
only apply Hopf’s Maximum Principle (the boundary condition of (3.1) must be used to
obtain this conclusion at ∂ MT ). ��

4. Proof of Theorem 1.2

Here we shall carry out the last step in the proof of Theorem 1.2, namely to apply the
Positive Energy Theorem and to compare the two energies E(g) and E(ĝT ). Observe
that all the hypotheses of Theorem 1.4 are satisfied by (MT , ĝT ) so that E(ĝT ) ≥ 0.
Therefore a straightforward calculation yields

E(g) ≥ E(g) − E(ĝT ) = 1

2π
lim

r→∞

∫
|x |=r

∂νuT . (4.1)

Furthermore upon integrating by parts and using boundary value problem (3.1) we obtain

lim
r→∞

∫
|x |=r

∂νuT = lim
r→∞

∫
|x |=r

uT ∂νuT = 2Q(vT ). (4.2)

Now suppose that Q(vT ) ≤ η
∑n

i=1

√
π |∂i MT | for some positive constant η, where

n denotes the number of components comprising ∂ M . Then integrating by parts, and
using arguments such as those found in the proof of Theorem 3.1, shows that there exists
a constant C > 0 independent of T such that

3

8

∫
MT

|∇vT |2 +

(
1 − CT −1

2

) n∑
i=1

√
π

|∂i MT |
∫

∂i MT

(1 + vT )2 ≤ η

n∑
i=1

√
π |∂i MT |.

However by Young’s Inequality,

(1 + vT )2 ≥ 1 − 1

δ
+ (1 − δ)v2

T
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for any δ > 0, and therefore

3

8

∫
MT

|∇vT |2 + (1 − δ)

(
1 − CT −1

2

) n∑
i=1

√
π

|∂i MT |
∫

∂i MT

v2
T

≤ (η − 1

2
(1 − δ−1)(1 − CT −1))

n∑
i=1

√
π |∂i MT |.

It follows that the left-hand side is nonnegative if δ − 1 ≤ σT , where

σT =
∫

MT
|∇vT |2

2(1 − CT −1)
∑n

i=1

√
π

|∂i MT |
∫
∂i MT

v2
T

,

so that η ≥ δ−1(δ−1)(1−CT −1)/2 for all such δ. In particular by choosing δ = 1+σT
we conclude that

Q(vT ) ≥ σT (1 − CT −1)

2(1 + σT )

n∑
i=1

√
π |∂i MT |. (4.3)

Furthermore combining (4.1), (4.2), and (4.3) produces

E(g) ≥ σT (1 − CT −1)

2(1 + σT )

n∑
i=1

√
|∂i MT |

π
. (4.4)

The desired inequality of Theorem 1.2 may be obtained from (4.4) by letting T → ∞.
To see this we observe that (4.1), (4.2), and (3.2) together show that the sequence of
functions {uT } is uniformly bounded in W 1,2

loc (M). Thus with the help of elliptic esti-
mates and Sobolev embeddings, this sequence converges on compact subsets to a smooth
uniformly bounded solution u∞ of

�u∞ − 1

8
Ru∞ = 0 on M, u∞ = 1 +

A∞
|x | + O(|x |−2) as |x | → ∞.

However since M approximates a cylinder on regions where it blows-up, comparison
with a bounded solution of the same equation on the cylinder (as is done in [13]) shows
that u∞(x) → 0 as x → ∂ M ; in fact the decay rate is of exponential strength. Therefore
(with a bit more effort) σT → σ∞ ≥ σ and |∂i MT | → |∂i M |, 1 ≤ i ≤ n, as T → ∞.
This completes the proof of Theorem 1.2.

Lastly we analyze what happens when equality occurs in Theorem 1.2. By slightly
modifying the arguments of this section in this special case, we find that∫

M
|∇u∞|2 = 0,

and therefore u∞ must be constant. However this is impossible since

u∞(x) →
{

1 as |x | → ∞,

0 as x → ∂ M.

We conclude that the case of equality cannot occur.
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http://arxiv.org/abs/0708.4252v3[gr-qc]
http://arxiv.org/abs/0708.4252v3[gr-qc]
http://arxiv.org/abs/0711.4139v2[math.DG]
http://arxiv.org/abs/0711.4753v1[gr-qc]
http://arxiv.org/abs/0711.4753v1[gr-qc]

	A Penrose-Like Inequality for General Initial Data Sets
	Abstract:
	Introduction
	The Jang Surface
	The Conformal Factor
	Proof of Theorem 1.2
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


