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0. Introduction

Consider the class of two-dimensional Monge-Ampère equations:

�uxx + a�p� u� �u���uyy + c�p� u� �u��− �uxy + b�p� u� �u��2 = f�p� u� �u�� (0.1)

where p = �x� y�. The question of local solvability is to ask, given smooth functions
a� b� c, and f defined in a neighborhood of a point, say �x� y� = 0, does there always
exist a C2 function u�x� y�, defined in a possibly smaller domain, which satisfies
(0.1)? Note that we do not ask for u�x� y� to satisfy any boundary/initial conditions,
have higher regularity, or to be given in a predetermined domain. This is the most
elementary question that one can ask of a differential equation. Yet, it is remarkable
that the basic question of whether there exist any examples of local nonsolvability,
has remained open for this well-studied class of equations. The purpose of this paper
is to provide such examples.

We first recall the known results. Since (0.1) is elliptic if f > 0, hyperbolic if
f < 0, and of mixed type if f changes sign, the manner in which f vanishes will
play the primary role in the hypotheses of any result. The classical results state
that a solution always exists in the case that f does not vanish at the origin or
is analytic (a� b, and c are also required to be analytic); these results follow easily
from standard elliptic and hyperbolic theory when f does not vanish, and from
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666 Khuri

the Cauchy–Kovalevskaya theorem in the case that a� b� c, and f are analytic.
If f�x� y� u� �u� = f1�x� y�f2�x� y� u� �u� with f2 > 0, then C.-S. Lin provides an
affirmative answer in Lin (1985, 1986), when f1 ≥ 0 or when f1�0�= 0 and �f1�0� �= 0.
When f1 ≤ 0 and �f1 possesses a certain nondegeneracy, Han et al. (2003) show that
a solution always exists. Furthermore, in Khuri (preprint a, to appear b) the author
provides an affirmative answer in the case that f1 has a nondegenerate critical point
at the origin, or degenerates to arbitrary finite order along a single smooth curve
(see also Han’s result, 2006). Here, we shall prove the theorem.

Theorem. There exist sign changing and nonpositive f ∈ C���5�, and a� b� c ∈
C���5�, such that equation (0.1) possesses no C3 solution in any neighborhood of the
origin.

The results mentioned above stem from work on a well-known problem in
geometry, namely the local isometric embedding problem for two-dimensional
Riemannian manifolds. This problem is equivalent to the local solvability of the
following Monge-Ampère equation:

det �iju = K�det g��1− ��gu�2�� (0.2)

where g is a given smooth Riemannian metric, K is its Gaussian curvature,
�ij are second covariant derivatives, and �g is the gradient with respect to g.
Recently, N. Nadirashvili and Y. Yuan have proposed counterexamples to the
isometric embedding problem in Nadirashvili (Preprint) and Nadirashvili and
Yuan (Preprint). An immediate consequence is the local nonsolvability of equation
(0.2). Although this observation was not mentioned by the authors, it is quite
significant since it represents the first nontrivial example of a fully nonlinear
equation exhibiting the property of local nonsolvability. (Of course in the setting of
linear equations, this phenomenon has received much attention through the work
of Hörmander, Nirenberg, Treves, and others since its original discovery by Lewy,
1957). The main distinction between our theorem and the results of Nadirashvili
and Yuan, besides the difference in equations considered, is the fact that the proof
presented here is very elementary and does not rely on any geometric significance
that the equation may possess (as is exhibited with equation (0.2)); as a result it
is possible that the methods presented here may be generalized to other Monge-
Ampère equations.

In the remainder of this section, we will partially construct the functions a� b� c,
and f of the theorem, as well as reduce the proof of this theorem to the problem of
showing that certain second derivatives of any solution of (0.1) must vanish along
the boundary of a sequence of squares. Define sequences of disjoint open squares
�Xn��n=1 and �Xn

1 �
�
n=1 whose sides are aligned with the x and y-axes, and such that

Xn, Xn
1 are centered at qn = � 1

n
� 0�, Xn ⊂ Xn

1 , and Xn, Xn
1 have widths 1

2n�n+1� ,
1

n�n+1� ,
respectively. Set a� b� c� f ≡ 0 in �2 −⋃

Xn
1 . Define

X = ��x� y� � �x� < 1� �y� < 1��

and let � ∈ C��X� be such that � vanishes to infinite order on �X, and either
��p� > 0 or ��p� < 0 for all p ∈ X; here X denotes the closure of X. We now define
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Counterexamples 667

a� b� c� f in Xn by a� b� c ≡ 0, and

f�p� = 	n��4n�n+ 1��p− qn��� p ∈ X
n
� (0.3)

where �	n�
�
n=1 is a sequence of positive numbers that will be chosen later, with the

property that limn→� 	n = 0. In the next section, f will be defined to be nonpositive
in the remaining region

⋃�
n=1�X

n
1 − Xn�. Therefore, by choosing � to be positive

or negative in each Xn, we obtain the desired sign changing or nonpositive f as
mentioned in the theorem.

We now reduce the proof of the theorem as mentioned above. Suppose that
a local solution, u ∈ C3, of (0.1) exists. Let −vn, +vn represent the left and right
vertical portions of �Xn, respectively, and let +hn, −hn represent the top and bottom
horizontal portions of �Xn, respectively. Now assume that

uyy�±vn
= 0 and uxx�±hn

= 0� for all n ≥ N� (0.4)

where N is the smallest integer such that XN is completely contained within the
domain of existence of u. Let n0 ≥ N , and note that (0.3) and (0.4) imply that
uxy�±vn0

= 0. We may now integrate by parts to obtain a contradiction,

0 �=
∫
Xn0

f =
∫
Xn0

uxxuyy − u2
xy =

∫
�Xn0

uxxuy
2 − uxyuy
1 = 0�

where �
1� 
2� are the components of the unit outward normal to �Xn0 . Thus, our
theorem is reduced to the proof of (0.4).

The outline of the paper is as follows. In Sec. 1 we complete the construction
of a� b� c, and f . Furthermore, assuming that (0.4) does not hold, we find a certain
integral equality that u must satisfy. In order to violate this integral equality, we
construct approximate solutions to a homogeneous degenerate hyperbolic equation
in Sec. 2.

1. The Integral Equality

The purpose of this section is to construct a sequence of integral equalities, valid
for C3 solutions of (0.1) in subdomains of Xn

1 − Xn if (0.4) is violated. However,
before obtaining the integral equalities we will first complete the construction of
a� b� c, and f in the regions Xn

1 − Xn. Extend the line segments ±vn, ±hn until they
reach �Xn

1 , so that we obtain four rectangles each bounded by �Xn, �Xn
1 , and the

extended segments ±vn, ±hn. Denote the rectangles to the left and right of �Xn

by −Vn, +Vn respectively, and denote the rectangles to the top and bottom of
�Xn by +Hn, −Hn respectively. We then set a� b� c� f ≡ 0 in �Xn

1 − Xn�− �±Vn ∪
±Hn�, define a = an�x� y�uuy, b = c ≡ 0 in ±Vn, and c = cn�x� y�uux, a = b ≡ 0 in
±Hn, for some an ∈ C��±Vn� and cn ∈ C��±Hn� to be given below. Lastly, in
±Vn ∪ ±Hn we will write f = Kn�x� y�+ gn�x� y� �u� for nonpositive functions Kn ∈
C��±Vn ∪ ±Hn�, gn ∈ C��±Vn ∪ ±Hn ×�2� also to be given below. In order to
motivate the construction of f in the regions ±Vn ∪ ±Hn, we will now convert (0.1)
into a quasilinear equation by applying an appropriate Legendre transformation.

Let u ∈ C3 be a local solution of (0.1), and as above let n0 be such that Xn0
1 is

contained within the domain of existence of u. Let p = �p1� p2� ∈ +vn0 , and assume
that (0.4) is violated, so that uyy�p� �= 0. Then we have a well-defined C2 Legendre
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668 Khuri

transformation T � �x� y� �→ ��� 
� defined in a sufficiently small neighborhood, Bp

of p, and given by

� = x − p1� 
 = uy�x� y��

It follows that u must satisfy a quasilinear equation in the new variables.

Lemma 1. There exist constants �0 > 0, 
1 > 
∗ > 
0, and a rectangle D = �0� �0�×
�
0� 
1� ⊂ T�Bp� where T�p� = �0� 
∗�, such that in D we have �uyuyy� > 0 and

Lu �= u�� + �Kn0
u
�
 − �2
−1Kn0

+ 
2an0
+ 
uuyyan0


�u
 = Gn0
� (1.1)

where

Gn0
= −�gn0u
�
 + 2
−1gn0u
�

Proof. If uy�p� = 0, then we could instead take any point p̄ ∈ +vn0 near p with
uy�p̄� �= 0 and uyy�p̄� �= 0. The existence of a rectangle D in which �uyuyy� > 0 now
follows. Moreover, if we set

F = f − auyy + 2buxy − cuxx + b2 − ac�

then for any � ∈ C�
c �D� we have

∫
D
�u��� + Fu
�
�d� d


=
∫
T−1�D�

[(
ux −

uxy

uyy

uy

)(
�x −

uxy

uyy

�y

)
+ F

(
1
uyy

)2

uy�y

]
uyydx dy

=
∫
T−1�D�

��uxuyy − uxyuy��x + �uyuxx − uxuxy��y� dx dy

= −2
∫
T−1�D�

F�dx dy

= −2
∫
D

−1Fu
�d� d
�

Recalling that f = Kn0
+ gn0 and b = c ≡ 0 in +Vn0

we obtain

u�� + �Kn0
u
�
 − �2
−1Kn0

+ �auyyu
�
u
−1

 − 2
−1auyy�u
 = Gn0

�

from which (1.1) follows with a = an0
uuy. �

We may view (1.1) as a linear equation which possesses a solution u ∈ C2�D�.
Since Kn0

is nonpositive in +Vn0
, equation (1.1) is degenerate hyperbolic in D.

Let ā� b̄� c̄� d̄� ḡ ∈ C��D� with ā ≥ 0, and consider the linear degenerate hyperbolic
equation:

z�� − �āz
�
 + b̄z
 + c̄z� + d̄z = ḡ� (1.2)
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Counterexamples 669

The local solvability of (1.2) is highly dependent upon certain relationships between
the coefficients ā and b̄, the so called Levi conditions. One of the most powerful Levi
conditions was given by Oleinik (1970), who proved that the Cauchy problem for
(1.2), with data prescribed on the line � = 0, is well-posed if there exists an integer
J > 0 and constants A�B > 0, �0 = 0 < �1 < · · · < �J , such that either

B��− �j−1�b̄
2 ≤ Aā+ ā� or B��j − ��b̄2 ≤

[
A+ 1

B��j − ��

]
ā− ā� (1.3)

holds for �j−1 ≤ � ≤ �j , j = 1� � � � � J . Note that (1.3) implies that either

0 ≤ Aā+ ā� or 0 ≤
[
A+ 1

B��j − ��

]
ā− ā��

so that we must have either ā��� 
̄� = 0 for all �j−1 ≤ � ≤ �̄, or all �̄ ≤ � ≤ �j ,
respectively, if ā��̄� 
̄� = 0. Therefore, Oleinik’s result does not allow the coefficient
ā to have an infinite sequence of isolated zeros as � → 0, as would be the case
if ā exhibited fast oscillations near � = 0. In fact, counterexamples to the local
solvability of (1.2) have been found (Egorov, 1993) in the case that ā possesses this
type of behavior.

With this intuition, we will define Kn in +Vn to have special fast oscillations as
x → �Xn. Let xn = x − � 1

n
+ 1

4n�n+1� �, so that in the new coordinates +Vn is given by

+Vn =
{
�xn� y� � 0 < xn <

1
4n�n+ 1�

�
−1

4n�n+ 1�
< y <

1
4n�n+ 1�

}
�

Let kn be the smallest integer such that kn >
4n�n+1�

�
, and set Ik = � 1

��k+1� �
1
�k
�, k ∈ �>0.

Then define a smooth function K for xn > 0 by

K�xn� =




e−m−2
k −sin−2� 1

xn
� if xn ∈ Ik� k ∈ �k≥kn

�

0 if xn ∈ �Ik�

0 if xn ≥
1
�kn

�

where mk denotes the unique zero of cos� 1
xn
� in the interval Ik. The function K will

be used to give Kn fast oscillations, however Kn will also be required to have specific
behavior in the y-direction as well. In order to accomplish this we partition +Vn

into small rectangles

�k�i�n = ��xn� yn� � xn ∈ Ik� ik
−1/2 < yn < �i+ 1�k−1/2�� i = 0� 1� � � � � ī�k� n��

where yn = y + 1
4n�n+1� and ī�k� n� denotes the largest integer such that �k�ī�k�n��n ∩

+Vn �= ∅. Next let � ∈ C��−���� be a nonnegative 1-periodic function such that

��ȳ� =



1 if

1
4
≤ ȳ ≤ 3

4
�

0 if 0 ≤ ȳ ≤ 1
8

or
7
8
≤ ȳ ≤ 1�
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670 Khuri

and set

�n�xn� yn� =
{
��k1/2yn� if �xn� yn� ∈ �k�i�n� 0 ≤ i < ī�k� n��

0 if �xn� yn� ∈ �k�ī�k�n��n�

We then define

Kn�x� y� = −	nK�xn��n�xn� yn�� �x� y� ∈ +Vn�

where 	n was given in (0.3). Note that Kn ≤ 0 in +Vn and Kn ∈ C��+�Vn�.
Furthermore, we define Kn analogously in the rectangles −Vn, ±Hn, where in ±Hn

the roles of x and y are reversed.
We now choose an, cn, and gn. Set �1�xn� = sin−4� 1

xn
� and define

an�x� y� = 2�′1�xn�
√
	nK�xn��n�xn� yn�� �x� y� ∈ +Vn�

Note that an ∈ C��+Vn�. We also define an in −Vn and cn in ±Hn similarly, where
in ±Hn the roles of x and y are reversed. Next let �Nk�

�
k=1 be a sequence of positive

integers, and let �Nk
∈ C��−���� be a nonnegative 1-periodic function such that

∫ 1

0
�′

Nk
�ȳ���Nk��ȳ�dȳ ≥ 1� k ∈ �>0� (1.4)

here and below we use the notation ��j��ȳ� = dj

dȳj
��ȳ�. The integers Nk are to be

chosen converging to infinity sufficiently slow so that

lim
k→�

e−
1
2m

−2
k sup

ȳ∈�0�1�

∣∣��j�
Nk
�ȳ�

∣∣ = 0� for each j ∈ �≥0� (1.5)

If we did not require �Nk
to be nonnegative, that is, if in the theorem we only wished

to construct examples of mixed type Monge-Ampère equations (see the definition
of gn below), then we could simply take �Nk

= ��Nk−1�, since the Poincaré inequality
implies that

∫ 1

0
�2�s̄�ds̄ ≤ �−2Nk

∫ 1

0
���Nk��2�s̄�ds̄�

where we have used the fact that �2 is the principal eigenvalue of − d2

ds̄2
on the

interval �0� 1�. Let ��k�
�
k=1 be a sequence of positive numbers to be chosen later with

limk→� �k = �, then for �x� y� ∈ +Vn we define

gn�x� y� �u� =
{
�
−Nk

k Kn�x� y��Nk
��ksn�x� y� uy�� if �xn� yn� ∈ �k�i�n� 0 ≤ i < ī�k� n��

0 if �xn� yn� ∈ �k�ī�k�n��n�

where sn = uy�x� y�+
∫ xn
0

√
	nK�x̄�dx̄. Note that gn ≤ 0 and according to (1.5), gn ∈

C��+Vn ×�2�. In the regions −Vn, ±Hn, gn is defined similarly, where again the
roles of x and y are reversed in ±Hn. Lastly, by choosing a sequence �	n�

�
n=1 which

converges to zero sufficiently fast we have a� b� c� f ∈ C���5�.
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Counterexamples 671

Now that a� b� c, and f are fully defined, we shall obtain a sequence of
integral equalities for u inside +Vn0

. In order to construct the domains in which
these integral equalities will be valid, we need the following change of coordinates
T1 � ��� 
� �→ �t� s� given by

t = �� s��� 
� = 
 +
∫ �

0

√
	n0K��̄�d�̄�

which is well-defined near T�p�. Let ��k�ik�n0
��k=1 be a sequence of rectangles such

that �k�ik�n0
∩ ��x� y� ∈ +Vn0

� y = p2� �= ∅, so that this sequence converges to p.
Then for �x� y� ∈ �k�ik�n0

we have �x − p1� + �y − p2�2 = O�k−1�, which implies that

s = uyy�p�y + �uy�p�− uyy�p�p2�+ O�k−1��

Therefore if �k ≥ k and k is large enough, there exist integers Jk such that the
rectangles in the ts-plane,

Rk��k
= ��t� s� � t ∈ Ik� Jk < �ks < Jk + 1��

satisfy

T−1�T−1
1 �Rk��k

�� ⊂ ��x� y� ∈ +Vn0
��n0

�xn0� yn0� ≡ 1� ∩�k�ik�n0
�

It follows that an0

�x� y� = �an0y

u−1
yy ��x� y� = 0 for �x� y� ∈ T−1�T−1

1 �Rk��k
��. Then in

Rk��k
the expression for the operator L of (1.1) becomes

Lu = utt + 2Auts + Bus�

where the coefficients A and B are smooth in ts-coordinates and are given by

A =
√
	n0K� B = 2
−1	n0K − 2
2�′1

√
	n0K + �

√
	n0K�t�

Let zk ∈ C��Rk��k
� vanish identically on the boundary, then multiplying equation

(1.1) through by zk and integrating by parts gives the desired integral equality∫
Rk��k

uL∗zkdt ds =
∫
Rk��k

Gn0
zkdt ds� (1.6)

where L∗ denotes the formal adjoint of L.

2. Violation of the Integral Equality

In this section we will violate the integral equality (1.6) for large k, by choosing the
sequence ��k�

�
k=1 to grow sufficiently fast, and by constructing approximate solutions

of the homogeneous adjoint equation L∗z = 0 vanishing identically on �Rk��k
, so that

the left-hand side of (1.6) tends to zero much faster than the right-hand side.
The approximate solutions will be of the form

zk = e��t�s�
Nk∑
i=0

�−i
k ai�t� s�bi��ks� �= e�z̄�
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672 Khuri

where ai� � ∈ C��Rk��k
� and bi = ��Nk−i�. A calculation shows that

e−�L∗zk = z̄tt + 2Az̄ts + Bz̄s + Cz̄t +Dz̄� (2.1)

where

B = 2At − B + 2A�t� C = 2�As + A�s + �t�� D = �2t + �tt + B�s + Bs�

In order to simplify (2.1) we choose � so that B ≡ 0, that is we set

��t� s� =
∫ t

mk

�−
2�′1�t̄�+ 
−1
√
	n0K�t̄��dt̄ +

1
4
�2�t��

where �1�t� = sin−4� 1
t
� and �2�t� = sin−2� 1

t
�. It follows that

C−1e−�1 sin
−4� 1t � ≤ e� ≤ Ce−�2 sin

−4� 1t � in Rk��k
� (2.2)

for some constants C� �1� �2 > 0 independent of k. Furthermore, (2.1) becomes

e−�L∗zk = 2�kAa0tb
′
0 +

Nk−1∑
i=0

�−i
k �aitt + 2Aaits + Cait +Dai + 2Aa�i+1�t�bi

+ �
−Nk

k �aNktt
+ 2AaNkts

+ CaNkt
+DaNk

�bNk
�

This suggests that we inductively choose a0 = sgn�uyu
−1
yy �p�� �= ±1,

2Aa�i+1�t = −aitt − 2Aaits − Cait −Dai� ai+1�mk� s� = 0� i = 0� � � � � Nk − 1�

Therefore (2.2) shows that zk ∈ C��Rk��k
� vanishes identically on �Rk��k

, and

max
j=0�1�2

sup
�t�s�∈Rk��k

e��t�s���jai�t� s���1+ �C�t� s�� + �D�t� s��� ≤ M�i� k� u� (2.3)

for some constants M�i� k� u� which only depend on �k through their dependence on
u. As a result, it is clear that �k can be chosen so that for any w ∈ C3�+Vn0

� with
wy�p� �= 0 and wyy�p� �= 0,

C1��Nk
�

Nk∑
i=1

�−i
k CNk−i���M�i� k� w� ≤ M0�w�e

−k4� (2.4)

�−1
k M�Nk� k� w� ≤ M1�w�e

−k4� �−1
k CNk

���C0��Nk
� ≤ k−4� (2.5)

where

Cj��� �= sup
s̄∈�0�1�

���j��s̄��� Cj��Nk
� �= sup

s̄∈�0�1�
���j�

Nk
�s̄���
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and the constants M0�w� and M1�w� depend only on 
0�w� and 
1�w� (see
Lemma 1). Then combining (2.3) and (2.5) we have∣∣∣∣

∫
Rk��k

uL∗zkdt ds
∣∣∣∣ ≤ C�

−Nk−1
k M�Nk� k� u� ≤ CM1�u�e

−k4�
−Nk

k � (2.6)

We now estimate the right-hand side of the integral equality (1.6). First observe
that Lemma 1 together with the definition of gn0 yields

Gn0
�t� s� = 	n0�

−Nk+1
k �′

Nk
��ks�K�t�uyu

−1
yy + O��

−Nk

k C0��Nk
�e−m−2

k �� �t� s� ∈ Rk��k
�

Moreover, using (2.3) we have

zk�t� s� = sgn�uyu
−1
yy �p��e

���Nk���ks�+ O

( Nk∑
i=1

�−i
k CNk−i���M�i� k� u�

)
�

We now apply (1.4), (2.2), (2.4), and (2.5) to obtain

∫
Rk��

Gn0
zkdt ds (2.7)

≥ Ce−m−2
k �

−Nk

k

( ∫ 1
�k

1
��k+1�

e−�1 sin
−4� 1t �−sin−2� 1t �dt

)( ∫ 1

0
�′

Nk
�s̄���Nk��s̄�ds̄

)

+O

(
�
−Nk−1
k e−m−2

k CNk
���C0��Nk

�+ �
−Nk

k e−m−2
k C1��Nk

�
Nk∑
i=1

�−i
k CNk−i���M�i� k� u�

)

≥ C1k
−2e−m−2

k �
−Nk

k + O
(
�
−Nk

k e−m−2
k M0�u�e

−k4
)
�

for some constants C�C1 > 0 independent of k.
We may now complete the proof of the theorem. Combining (1.6), (2.6), and

(2.7) produces

C−1k−2e−m−2
k �

−Nk

k ≤
∫
Rk��k

Gn0
zkdt ds =

∫
Rk��k

uL∗zkdt ds ≤ CM1�u�e
−k4�

−Nk

k �

which leads to a contradiction for large k. It follows that uyy�p� = 0. Since p ∈ +vn0
was arbitrary we must then have uyy�+vn0

= 0. Moreover, the definitions of a� b� c,
and f in the regions −Vn0

, ±Hn0
is such that the same arguments used in Secs. 1

and 2 may be applied to show that

uyy�−vn0
= 0� uxx�±hn0

= 0�

Lastly, since Xn0 was chosen arbitrarily inside the domain of existence of u, (0.4) is
valid. The theorem now follows from the arguments at the end of the introduction.
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