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Abstract
We develop a framework for understanding the existence of asymptotically flat
solutions to the static vacuum Einstein equations on M = R

3\B with geometric
boundary conditions on ∂M � S2. A partial existence result is obtained, giving
a partial resolution of a conjecture of Bartnik on such static vacuum extensions.
The existence and uniqueness of such extensions is closely related to Bartnik’s
definition of quasi-local mass.

PACS numbers: 04.20.−q, 04:20.Cv, 02.40.Vh, 02.30.Jr

1. Introduction

This paper is concerned with a conjecture of Bartnik [B3, B4] on the existence and uniqueness
of static solutions to the vacuum Einstein equations with certain prescribed boundary data. On
the physical side, this is closely related to the issue of local mass in general relativity while, on
the mathematical side, to the issue of global existence and uniqueness for a rather complicated
geometric nonlinear system of elliptic boundary value problems.

Let M be a 3-manifold diffeomorphic to R
3\B where B is a 3-ball, so that ∂M � S2. The

static vacuum Einstein equations are the equations for a pair (g, u) consisting of a smooth
Riemannian metric g on M and a positive potential function u : M → R

+ given by

uRicg = D2u, �u = 0, (1.1)

where the Hessian D2 and Laplacian � = tr D2 are taken with respect to g. The equations
(1.1) are equivalent to the statement that the four-dimensional metric

gM = ±u2dt2 + g, (1.2)

on the 4-manifold M = R × M is Ricci-flat, i.e.

RicgM = 0. (1.3)

This holds for either choice of sign in (1.2) and since most of the analysis of the paper concerns
the Riemannian data (g, u) in (1.1), we will assume gM is Riemannian, and moreover identify
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t in (1.2) periodically, to obtain a metric on M = S1 × M with t replaced by the angular
variable θ .

Given (M, g, u) as above, let γ be the Riemannian metric induced on S2 = ∂M and let H
be the mean curvature of ∂M ⊂ (M, g), (with respect to the inward unit normal into M). Then
(one version of) the Bartnik conjecture [B4] states that, given an arbitrary such pair in C∞,

(γ , H) ∈ Met∞(S2) × C∞
+ (S2), H > 0, (1.4)

there exists a unique asymptotically flat solution (g, u) to the static vacuum Einstein
equations (1.1) inducing the boundary data (γ , H) on ∂M.

This conjecture is a natural outgrowth of Bartnik’s concept of quasi-local mass mB(�),
[B2, B3], defined as follows. Let (�, g) be a smooth compact 3-manifold with smooth boundary
of non-negative scalar curvature, and define an admissible extension of (�, g) to be a complete,
asymptotically flat 3-manifold (M̃, g) of non-negative scalar curvature in which (�, g) embeds
isometrically and is not enclosed by any compact minimal surfaces (horizons). Then

mB(�) = inf{mADM(M̃) : (M̃, g) is an admissible extension of (�, g)}, (1.5)

where mADM(M̃) is the ADM mass of (M̃, g), cf [B1]. In [HI] Huisken and Ilmanen have
proved a number of basic properties of mB(�), in particular that mB(�) > 0 unless (�, g)

is locally isometric to Euclidean space. In [Br] Bray discusses a similar definition, where the
boundary ∂� is required to be outer-minimizing in (M̃, g). As will be seen below, the outer-
minimizing property plays an important role in this paper, although for somewhat different
reasons than in [Br].

Conjecturally, an extension (M̃, g) realizing the infimum in (1.5) is a solution to the static
vacuum Einstein equations (1.1) on M = M̃\� which is Lipschitz, (but not smooth), across
the junction ∂� and for which the induced metric and mean curvature at the boundary of the
interior and exterior regions agree:

g|∂M = g|∂�, H∂M = H∂�,

leading to the boundary data (1.4). Observe that the boundary data (γ , H) have the character
of a mixed Dirichlet–Neumann type boundary value problem for the static equations (1.1),
but the potential function u is absent from the boundary data. We point out that more standard
Dirichlet or Neumann boundary data are not suitable for the (static) Einstein equations, cf
[A3].

In this paper, we develop a general framework for the Bartnik conjecture and make partial
progress on its resolution. To describe the setting, let ES = Em,α

S be the moduli space of
AF static vacuum solutions (M, g, u) on a given 3-manifold M which are Cm,α up to ∂M,
m � 3. The exact definition is given in section 2, but basically ES is the space of all AF static
vacuum metrics on M modulo the action of the group Diff1 of diffeomorphisms on M equal
to the identity on ∂M. Next, let Metm,α (∂M) be the space of Cm,α metrics on ∂M � S2 and
Cm−1,α (∂M) be the space of Cm−1,α functions on ∂M. One thus has a natural map, mapping a
static vacuum solution to its Bartnik boundary data:

�B : Em,α
S → Metm,α (∂M) × Cm−1,α (∂M),

�B(g) = (γ , H). (1.6)

Theorem 1.1. The space Em,α
S is a smooth (infinite dimensional) Banach manifold, and the

map �B is C∞ smooth and Fredholm, of Fredholm index 0.

Theorem 1.1 essentially amounts to the statement that the static vacuum Einstein
equations (1.1) with boundary conditions (1.4) form an elliptic boundary value problem,
modulo gauge transformations, i.e. diffeomorphisms, and that one has a well-behaved local
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existence theory for this problem. We note that this boundary value problem also has a
variational characterization, cf proposition 3.7.

Let E+ be the open submanifold of ES for which the mean curvature H is positive, i.e.

E+ = (�B)−1(Metm,α (∂M) × Cm−1,α
+ (∂M)).

The Bartnik conjecture above may thus be rephrased to state that the smooth map �B, restricted
to the open submanifold E+,

�B : E+ → Metm,α (∂M) × Cm−1,α
+ (∂M), (1.7)

is surjective and injective, and hence, via the inverse function theorem, is a smooth
diffeomorphism.

However, this most optimistic version of the conjecture does not hold, in that �B in (1.7)
cannot be a diffeomorphism. To illustrate the problem consider (for example) the flat solution
gflat with u = 1; there are boundaries ∂M = S2 ⊂ R

3 given by embedded spheres (S2, γi, Hi)

with Hi uniformly positive, which converge smoothly in R
3 to a limit which is an immersed but

not embedded sphere in R
3. Such a limit is then at the boundary ∂E+, but the limit boundary

data (γ , H) ∈ Metm,α (∂M) × Cm−1,α
+ (∂M). In other words, the condition that the boundary

data (γ , H) is uniformly controlled in the target space is not sufficient to ensure that one
stays within the class of manifolds-with-boundary. (In particular, there cannot be a smooth
inverse map to �B.) As a concrete example, let T 2 be a torus of revolution embedded in R

3

with H > 0. One may remove a (small) essential annulus from T 2 and smoothly attach two
embedded discs to obtain a 2-sphere S2 with H > 0, cf figure 1. This surface may be deformed
to obtain a curve (S2)t , t ∈ [0, 1], of positive mean curvature spheres which for t < 1

2 are
embedded and for t � 1

2 are immersed, with a single self-intersection point of the discs at
t = 1

2 . (The same situation holds with any background static vacuum solution and varying
boundary ∂M within M.) This passage from embedded to immersed behavior also shows that
the boundary map �B on E+ is not proper.

Figure 1. An illustration of the one-parameter family of spheres (S2)t , t ∈ [0, 1], in the process of
passing from embedding to immersion.

The basic issue is in fact that of finding domains within E+ on which �B is proper.
Recall that a map between two topological spaces is proper, if the preimage of any compact
set is itself compact. In the current setting, �B is proper on a domain U ⊂ E+ if whenever
(γi, Hi) is a sequence of boundary data converging to limit data (γ , H) and (M, gi, ui) ∈ U
are any solutions with �B(gi, ui) = (γi, Hi), then (M, gi, ui) converges, in a subsequence, to
a limit solution (M, g, u) ∈ U . Here convergence is in the topology of the target and domain
spaces respectively. In other words, control of the boundary data (γ , H) = �B(g, u) implies
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global control of the solution (M, g, u) within U . Equivalently, one needs a priori estimates
controlling the behavior of the full solution (M, g, u) in terms of the boundary data (γ , H).

Now let Eo ⊂ E+ be the domain for which the boundary ∂M is strictly outer-minimizing,
i.e. for which

area(	) > area(∂M), (1.8)

for any surface 	 ⊂ M homologous to ∂M with 	 �= ∂M (we point out that the examples
in figure 1 are not strictly outer-minimizing for t sufficiently close to 1

2 ). Clearly Eo is an
open submanifold of E+. It is not known (although likely to be true) that Eo is connected.
Throughout the following, we thus assume that Eo is taken to be the connected component
containing the standard flat exterior solution where M is the exterior of the standard unit ball
in R

3, with ∂M the round S2 of radius 1. One then has a natural boundary map

�o : Eo → Metm,α (∂M) × Cm−1,α
+ (∂M). (1.9)

The second main result of this paper is the following.

Theorem 1.2. The boundary map �o in (1.9) is ‘almost’ proper, in the following sense. If
(γi, Hi) is a sequence of boundary data converging to limit data (γ , H) in Metm,α (∂M) ×
Cm−1,α

+ (∂M), and (M, gi, ui) ∈ Eo are any solutions with �o(gi, ui) = (γi, Hi), then (M, gi, ui)

converges in Em,α
S , in a subsequence, to a limit solution (M, g, u) ∈ Em,α

S which is (at least)
weakly outer-minimizing, i.e.

area(	) � area(∂M), (1.10)

for 	 as in (1.8).

Roughly speaking, theorem 1.3 thus shows that static vacuum solutions (M, g, u) with
outer-minimizing boundary are controlled by their boundary data (γ , H). The issue remains
however of how to determine from the boundary data (γ , H) whether the boundary is outer-
minimizing in (M, g, u). We point out that the full global property (1.8) is not actually
necessary; theorem 1.2 remains valid if (1.8) holds only in an arbitrarily small neighborhood
of ∂M, (depending on (M, g, u)), cf remark 4.4.

A smooth proper Fredholm map F : B1 → B2 between connected Banach manifolds has a
Z2-valued degree deg

Z2
F , the Smale degree, cf [Sm]. When the index of F is zero, the degree

is given by the number of preimages of a regular value modulo 2. If the spaces or map have
a suitable orientation, this can be extended to a Z-valued degree deg

Z
F , cf [ET] for instance.

Essentially an immediate consequence of its definition and the Sard–Smale theorem [Sm] is
that if such a degree is non-zero,

deg
Z2

F �= 0,

then F is surjective.
The definition of degree above may be extended to maps which are almost proper in the

sense above, cf [BFP] for instance. Thus, let ∂Eo be the boundary of Eo within the space ES

of static vacuum solutions. This is the space of solutions in ES satisfying (1.10) but not (1.8).
Let Z = �B(∂Eo) ⊂ Metm,α (∂M) × Cm−1,α (∂M) be the image of ∂Eo under the boundary
map �B and let EP = (�o)−1([Metm,α (∂M) ×Cm−1,α (∂M)]\Z) be the corresponding inverse
image. Then, as discussed in section 5, the induced boundary map (restriction of �o to EP)

�P : EP → [Metm,α (∂M) × Cm−1,α (∂M)]\Z,

is proper. In particular, EP has a finite number of connected components EPi and the induced
boundary map �Pi on EPi has a well-defined Z2-valued degree (with respect to a component
of the target space). We also expect that �Pi has a well-defined Z-valued degree.
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Let EP0 be the component of EP containing the standard round exterior flat solution as
following (1.8), and let T0 be the component of [Metm,α (∂M) × Cm−1,α

+ (∂M)]\Z containing
the corresponding standard boundary data (γ+1, 2). One thus has the boundary map

�P0 : EP0 → T0. (1.11)

A further main result of this paper is the computation of this degree.

Theorem 1.3. For the map �P0 in (1.11), one has

deg
Z2

�P0 = 1. (1.12)

The proof of theorem 1.3 is based on the well-known black hole uniqueness theorem for
the Schwarzschild metric, cf [I, R, BM].

It follows that the boundary map �P0 maps EP0 surjectively onto the component T0 of the
target [Metm,α (∂M) × Cm−1,α

+ (∂M)]\Z. In particular, the image of �P0 and so the image of
�B has non-empty interior in the target space Metm,α (∂M) × Cm−1,α

+ (∂M); this has not been
previously known, cf remark 5.4 for further discussion.

Of course, the main issue at this point is what can be said about the structure of the set Z?
It is of first category (so non-generic) but its more detailed structure awaits future study. An
alternate approach bypassing the issue of the boundary ∂Eo would be to find conditions on the
boundary data (γ , H) which imply ∂M is outer-minimizing as in (1.8) in any static vacuum
extension (M, g, u) of (γ , H). For example, in R

3 (where u = 1) convexity suffices, which is
expressed in terms of boundary data as Kγ > 0 where K is the Gauss curvature. It is an open
problem whether this condition also suffices for general static vacuum solutions.

The contents of the paper are briefly as follows. In section 2, we present background
information on the structure of static vacuum solutions and choices of gauge. Section 3
discusses elliptic boundary value problems for the Einstein equations and proves the basic
structure theorems on the moduli space ES and the boundary map �B, including theorem 1.1.
In section 4, we then prove the requisite a priori estimates and establish the almost properness
of �o on Eo, proving theorem 1.2. Finally, section 5 contains the computation of the degree of
�P0 and closes with several related remarks.

2. Background discussion

Let M be a 3-manifold with compact boundary ∂M, and with a single open end E. (All of the
results of this section and of section 3 hold in all dimensions, but for simplicity, we restrict to
dimension 3). A priori, ∂M need not be connected, although this will be assumed later on. As
following (1.2) and (1.3), we let M = S1 × M. Almost all of the discussion and computation
in sections 2 and 3 is carried out on the 4-manifold M and gM will often be denoted g for
notational simplicity.

Let MetS(M) = Metm,α
S (M) be the space of complete (up to the boundary) Cm,α static

metrics on M, i.e. metrics of the form (1.2), m � 2. One has

Metm,α
S (M) � Metm,α (M) × Cm,α

+ (M), (2.1)

where Cm,α
+ (M) is the space of positive Cm,α functions on M. The space ES = ES(M) of

static Einstein (Ricci-flat) metrics on M is equivalent to the space of pairs gM = (gM, u) ∈
Met(M)×C+(M) satisfying (1.1) or (1.3) (the smoothness indices will be occasionally dropped
when unimportant). It is well-known [M] that away from the boundary, solutions of the static
vacuum equations are analytic in appropriate coordinates.

5
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Recall that a complete metric g ∈ Metm,α (E ) on an end E is asymptotically flat if E is
diffeomorphic to R

3\B, where B is a 3-ball, and there exists a diffeomorphism F : R
3\B → E

such that, in the chart F ,

gi j = δi j + O(r−1), ∂kgi j = O(r−2), ∂k∂�gi j = O(r−3), (2.2)

in the standard Euclidean coordinates on R
3. The static vacuum equations (1.1) are invariant

under multiplication of the potential u by constants. Throughout the paper, we assume that u
is normalized so that u → 1 at infinity, and that u is asymptotically constant in the sense that

u = 1 + O(r−1), ∂ku = O(r−2), ∂k∂�u = O(r−3). (2.3)

Thus the 4-metric gM is asymptotic to the product S1 × R
3 at infinity.

It is proved in [A2] that ends of static vacuum solutions (M, g, u) are either asymptotically
flat or parabolic, where parabolic is understood in the sense of potential theory; equivalently,
parabolic ends have small volume growth in that the area of geodesic spheres grows slower
than r1+ε, for any ε > 0. Moreover, asymptotically flat ends are strongly asymptotically flat
in that the metric and potential have asymptotic expansions of the form

gi j =
(

1 + 2m

r

)
δi j + · · · , u = 1 − 2m

r
+ · · · , (2.4)

where the mass m may a priori be any value m ∈ R, cf also [KO]. These two behaviors,
asymptotically flat and parabolic, are radically different and there is no curve of asymptotic
structures for static vacuum solutions which joins them. The finer behavior of asymptotically
flat ends is described by the mass parameter m and higher multipole moments, cf [BS].

Let g̃ be a fixed asymptotically flat (background) metric in ES; henceforth ES will denote
the space of asymptotically flat static vacuum Einstein solutions. The static Einstein equations
are not elliptic, due to their invariance under diffeomorphisms, and for several reasons one
needs to choose an elliptic gauge. To begin, we consider the Bianchi gauge, and define


g̃ : Metm,α
S (M) → Sm−2,α (M),


g̃(g) = Ricg + δ∗
gβg̃(g), (2.5)

where βg̃ is the Bianchi operator, βg̃(g) = δg̃(g)+ 1
2 dtrg̃(g). Also, (δ∗X )(A, B) = 1

2 (〈∇AX, B〉+
〈∇BX, A〉) and δX = −tr(δ∗X ) is the divergence. The operator 
g̃ is a C∞ smooth map into
the space Sm−2,α (M) of static symmetric bilinear forms on M; note that here a symmetric
bilinear form is referred to as static if its components do not depend on time and the mixed
time/space components vanish.

Using standard formulas for the linearization of the Ricci and scalar curvatures, cf [Be, p
63] for instance, the linearization of 
 at g = g̃ ∈ ES is given by

L(h) = 2(D
g)(h) = D∗Dh − 2R(h), (2.6)

where R(h)(X,Y ) = 〈R(ei, X )Y, h(ei)〉 with ei an orthonormal basis. Clearly, L is elliptic and
formally self-adjoint. In section 3 we will discuss boundary value problems for 
 and L.

Next, the asymptotic behavior in the asymptotically flat end E requires the introduction of
suitable weighted function spaces. We will use the standard weighted Hölder spaces, although
one could equally well use weighted Sobolev spaces. Thus, define Metm,α

δ (M) ⊂ Metm,α
S (M)

to be the subspace of metrics which decay to Euclidean data at a rate r−δ at infinity; more
precisely, the component functions gi j and u of gM should satisfy

gi j − δi j ∈ Cm,α
δ (R3\B), u − 1 ∈ Cm,α

δ (R3\B).

Here Cm
δ consists of functions v such that

||v||Cm
δ

=
m∑

k=0

sup rk+δ|∇kv| < ∞,

6
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while Cm,α
δ consists of functions such that

||v||Cm,α
δ

= ||v||Cm
δ

+ sup
x,y

[
min(r(x), r(y))m+α+δ |∇mv(x) − ∇mv(y)|

|x − y|α
]

< ∞,

cf [B1, LP]. Throughout the following, we assume the decay rate δ is fixed, and chosen to
satisfy

1
2 < δ < 1. (2.7)

It is well-known, cf [B1, LP], that the Laplacian on functions, and Laplace-type operators on
tensors, as in (2.6), are Fredholm when acting on these weighted Hölder spaces.

The map 
 in (2.5) clearly induces a smooth map


 : Metm,α
δ (M) → Sm−2,α

δ (M). (2.8)

Observe that g is Einstein if 
g̃(g) = 0 and βg̃(g) = 0, so that g is in Bianchi gauge with
respect to g̃. (Although 
g̃ is defined for all g ∈ Metm,α

δ (M), we will only consider it acting
on g near g̃.)

Given g̃ ∈ ES, let Metm,α
C (M) ⊂ Metm,α

δ (M) be the space of Cm,α smooth static AF
Riemannian metrics on M, satisfying the Bianchi gauge constraint

βg̃(g) = 0 at ∂M. (2.9)

As above,


 : Metm,α
C (M) → Sm−2,α

δ (M).

Similarly let Zm,α
C be the space of metrics g ∈ Metm,α

C (M) satisfying 
g̃(g) = 0, and let

EC ⊂ ZC (2.10)

be the subset of static Einstein metrics g = gN , Ricg = 0 in ZC. The following result justifies
the use of the operator 
 to study EC.

Proposition 2.1. Any static metric g = gM ∈ ZC sufficiently close to g̃ is necessarily Einstein,
g ∈ EC. Moreover, this also holds infinitesimally in the following sense. Let κ be an infinitesimal
deformation of g ∈ ZC, i.e. κ ∈ Ker D
. If βg̃(g) = 0, (for example g̃ = g), then

βg̃(κ) = 0, (2.11)

and κ is an infinitesimal Einstein deformation, i.e. the variation of g in the direction κ preserves
(1.3) to first order.

Proof. Since g ∈ ZC, one has 
(g) = 0, i.e.

Ricg + δ∗
gβg̃(g) = 0.

Applying the Bianchi operator βg and using the Bianchi identity βg(Ricg) = 0 gives

βg
(
δ∗

g (βg̃(g))
) = 0. (2.12)

Set V = βg̃(g), and notice that a simple computation produces the Weitzenbock formula
2βgδ

∗
g (V ) = D∗DV − Ric(V ). Also, since g, g̃ ∈ Metm,α

δ (M), V ∈ χm−1,α
1+δ

(M), where
χm−1,α

1+δ
(M) is the space of vector fields whose components are in Cm−1,α

1+δ
(M). When acting on

vector fields V with V = 0 on ∂M, as in (2.9), the operator D∗D is positive, with trivial kernel.
Namely, if W ∈ Cm−1,α

1+δ
is in the kernel of D∗D, then integrating by parts gives∫

B(r)
|DW |2 +

∫
S(r)

〈W,∇NW 〉 = 0,

7
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where B(r) = {x ∈ M : dist(x, ∂M) � r} and N is the outward unit normal. (Since W = 0 on
∂M, there is no boundary term at ∂M). Letting r → ∞, the boundary integral tends to 0 and
so DW = 0, which in turn implies W = 0.

Since D∗D is self-adjoint and Fredholm, it has a smallest positive eigenvalue bounded
away from 0. For g sufficiently close to g̃, |Ric| ∼ 0 pointwise and Ric(V ) ∈ Cm−3,α

3+δ
(M), so

we may assume that 2βgδ
∗
g is a positive operator on V . Hence, again since V = 0 on ∂M, the

only solution of (2.12) is V = 0, which implies g ∈ EC.
To prove the second statement, let gt = g+tκ . Applying the Bianchi operator βgt to 
(gt )

gives

βgt 
(gt ) = βgt δ
∗
gt
(βg̃(gt )). (2.13)

Taking the derivative with respect to t at t = 0, one has (βgt 
(gt ))
′ = β ′
+β
′. Both terms

here vanish since g ∈ ZC and κ is formally tangent to ZC. Hence the variation of the right-hand
side of (2.13) vanishes. Since βg̃(g) = 0, this gives βgδ

∗
g (βg̃(κ)) = 0. The equation (2.11)

then follows exactly as following (2.12), with V = βg̃(κ). �
Let Dm+1,α

1 denote the space of Cm+1,α
δ static diffeomorphisms of M which equal the

identity on ∂M. These are diffeomorphisms which decay to the identity at the rate r−δ and
are independent of the t or θ -variable in (1.2). The group D1 acts freely and continuously on
Met(M) and ES by pullback and one has the following local slice theorem for this action; we
refer to [A3] for the proof.

Lemma 2.2. Given any g̃ ∈ E
m,α
S and g ∈ Metm,α

δ (M) near g̃, there exists a unique
diffeomorphism φ ∈ Dm+1,α

1 close to the identity, such that

βg̃(φ
∗g) = 0. (2.14)

In particular, φ∗g ∈ Metm,α
C (M).

Lemma 2.2 implies that if g ∈ E
m,α
S is a static Einstein metric near g̃, then g is isometric,

by a diffeomorphism in Dm+1,α
1 , to an Einstein metric in E

m,α
C , so that E

m,α
C is a slice for E

m,α
S

under the action of Dm+1,α
1 .

To prove that the moduli space E is a smooth Banach manifold, (cf theorem 3.6), it is
important to have a gauge with choice of boundary data in which the Einstein equations form
a self-adjoint elliptic boundary value problem. This is not the case for the operator 
 and we
are not aware of geometrically natural self-adjoint boundary conditions for 
. For this reason,
we will also consider another natural gauge, namely the divergence-free gauge.

To do this, instead of 
, consider


̂(g) = 
̂g̃(g) = Ricg − s

2
g + δ∗

gδg̃g, (2.15)

where s is the scalar curvature of g = gM. The linearization of 
̂ at g = g̃ ∈ ES is given by

L̂(h) = 2(D
̂g̃)g(h) = D∗Dh − 2R(h) − (D2 tr h + δδh g) + � tr h g. (2.16)

In analogy to (2.9), define

Metm,α
D (M) = {

g ∈ Metm,α
δ (M) : δg̃g = 0 at ∂M

}
. (2.17)

Similarly, let Zm,α
D = 
̂−1(0) ∩ Metm,α

D (M) and ED ⊂ ZD be the space of Einstein metrics in
divergence-free gauge with respect to g̃ ∈ ES.

It is easy to see that proposition 2.1 and lemma 2.2 hold in this divergence-free gauge in
place of the previous Bianchi gauge, with essentially the same proof. Thus ED = ZD and for
g ∈ ED,

δg̃g = 0 on M. (2.18)

8
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Moreover, the diffeomorphism group D1 transforms one gauge choice uniquely to the other.
For instance, suppose βg̃(g) = 0. Then we claim there is a unique φ ∈ Dm+1,α

1 such that

δg̃(φ
∗g) = 0. (2.19)

At the linearized level, with g = g̃, this amounts to finding a vector field V with V = 0 on
∂M such that if βg̃h = 0 then δg̃(h + δ∗V ) = 0. This equation is equivalent to the equation
δδ∗V = 1

2 d tr h, which is uniquely solvable for V with V = 0 on ∂M. The local result in (2.19)
then follows from the inverse function theorem.

3. The moduli space

In this section, we study boundary value problems for the elliptic operators 
 and 
̂, and use
this to prove that the moduli space ES of static vacuum solutions is a smooth Banach manifold
for which the boundary map �B is Fredholm, of Fredholm index 0, cf theorem 3.6.

We begin with the Bianchi-gauged Einstein operator 
 in (2.5), i.e.


g̃(g) = Ricg + δ∗
gβg̃(g).

Let A denote the second fundamental form of ∂M in M, A(X,Y ) = 〈∇X N,Y 〉, where N is
the unit inward normal into M, X,Y tangent to ∂M. Similarly, let HM = tr A denote the mean
curvature of ∂M in M. Throughout the paper W T will denote the restriction or the orthogonal
projection of a tensor W to T (∂N) or T (∂M).

Proposition 3.1. Near any given background solution g̃ ∈ E
m,α
S , the operator 
 = 
g̃ in (2.5)

with boundary conditions:

βg̃(g) = 0, g|T (∂M) = γM, HM = hM at ∂M, (3.1)

is an elliptic boundary value problem of Fredholm index 0.

Here the induced metric γM is in Metm,α (∂M) while the mean curvature hM of ∂M in
(M, gM ) is in Cm−1,α (∂M). Note that the potential u does not enter this boundary data and so
is formally undetermined at ∂M. Also the static property implies that βg̃(g) vanishes in the
vertical direction, βg̃(g)(∂θ ) = 0.

Proof. It suffices to prove that the leading order part of the linearized operators forms an
elliptic system. Recall from (2.6) that the linearization of 
 at g̃ = g is given by

L(h) = 2(D
g)(h) = D∗Dh − 2R(h).

The leading order symbol of L = 2D
 at ξ ′ is

σ (L) = −|ξ ′|2I, (3.2)

where I is the Q×Q identity matrix, with Q = (n(n+1)/2)+1; Q is the sum of the dimension
of the space of symmetric bilinear forms on R

n, together with the extra vertical S1 direction.
Here n = 3 but we give the proof for general dimensions. For static metrics, all components of
the metric are locally functions on R

n, and all derivatives in the vertical S1 direction are trivial.
In the following, the subscript 0 represents the direction normal to ∂M in M, (or ∂M in M),
subscript 1 denotes the vertical direction, tangent to S1, while indices 2 through n represent
the directions tangent to ∂M. Note that one has h1α = 0, for all α �= 1. The positive roots of
(3.2) are i|ξ |, where ξ ′ = (ξ0, ξ ), with multiplicity Q at ξ ∈ T ∗(Rn).

9
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Writing ξ ′ = (z, ξi), i = 2, . . . , n, (as above ξ1 = 0), the symbols of the leading order
terms in the boundary operators are given by:

−2izh0k − 2i
∑
j�2

ξ jh jk + iξktr h = 0, k � 2,

−2izh00 − 2i
∑
k�2

ξkh0k + iz tr h = 0,

hT = (γ ′)T , and (HM )′h = ω.

This gives n + n(n−1)

2 + 1 = Q boundary equations, as required. Ellipticity requires that the
operator defined by the boundary symbols above has trivial kernel when z is set to the root
i|ξ |. Carrying this out then gives the system

2|ξ |h0k − 2i
∑
j�2

ξ jh jk + iξk tr h = 0, k � 2, (3.3)

2|ξ |h00 − 2i
∑
k�2

ξkh0k − |ξ |tr h = 0, (3.4)

h11 = φ, hT = 0, (HM )′h = 0, (3.5)

where φ is an undetermined function.
Multiplying (3.3) by iξk and summing gives, via (3.5),

2|ξ |i
∑
k�2

ξkh0k = |ξ |2 tr h.

Substituting (3.4) on the term on the left above then gives

2|ξ |2h00 − 2|ξ |2 tr h = 0.

Since tr h = h00 + φ, it follows that φ = 0.
Next, to compute H ′

M , we first observe that in general

2A′
h = ∇Nh + 2A ◦ h − 2δ∗(h(N)T ) − δ∗(h00N). (3.6)

This follows by differentiating the defining formula 2A = LNg, and using the identities
2N ′

h = −2h(N)T − h00N, LNh = ∇Nh + 2A ◦ h. Since HM = trMA, H ′
h = trMA′

h − trMA ◦ h
and so

2(HM )′h = trM(∇Nh − 2δ∗(h(N)T ) − δ∗(h00N)). (3.7)

Hence the symbol of 2(HM )′h is given by
∑

k�2(izhkk − 2iξkh0k). Setting this to 0 at the root
z = i|ξ | gives ∑

k�2

(|ξ |hkk + 2iξkh0k) = 0. (3.8)

Via (3.5), this gives −2i
∑

k�2 ξkh0k = 0, and substituting this in (3.4) and using the fact that
φ = 0 gives

2|ξ |h00 − |ξ |h00 = 0,

so that h00 = 0. It follows from (3.3) that h0k = 0 and hence h = 0. This proves ellipticity
of the boundary value problem (3.1) and the Fredholm property follows from the fact that the
Laplace-type operator L is Fredholm on Metm,α

δ , cf [LP].
Finally, it is straightforward to verify that the boundary data (3.1) may be continuously

deformed through elliptic boundary data to elliptic boundary data for which L is self-adjoint
and so of index 0. This is proved in [A3] in a slightly different setting and the proof carries

10
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over here with only minor change, and so we refer to [A3] for further details. The homotopy
invariance of the index then completes the proof. �

As noted in section 2, we are not aware of a geometrically natural self-adjoint elliptic
boundary value problem for 
. In particular, the boundary conditions (3.1) are not self-adjoint.
This property is important for the proof of theorem 3.6, and for this reason, we turn to the
operator 
̂ in (2.15) with linearization at g̃ = g given by L̂ in (2.16).

Regarding boundary conditions for L̂, for h ∈ Sm−2,α
δ (M), let hT = h|∂M and [hT ]0 be

the projection of hT onto the space of forms trace-free with respect to γ = γM. Similarly, H ′
h

denotes here the linearization of the mean curvature H = HM of ∂M ⊂ M.
We then have:

Lemma 3.2. The operator L̂ with boundary conditions

δh = 0, [hT ]0 = 0, H ′
h = 0, (3.9)

is a self-adjoint elliptic operator. Moreover, under the first two conditions δh = 0 and
[hT ]0 = 0, the operator L̂ is self-adjoint exactly for the boundary condition H ′

h = 0.

Proof. It is a rather long (and uninteresting) calculation to prove that the operator L̂ with
boundary data (3.9) forms an elliptic system; this has been verified by computer computation
using Maple. More conceptually, instead we will make use of proposition 3.1 to simplify the
proof. First, recall, [ADN, T], that ellipticity of a boundary value problem is equivalent to the
existence of a uniform estimate

||h||Cm,α � C(||L̂(h)||Cm−2,α + ||Bj(h)||Cm− j,α + ||h||C0 ), (3.10)

where Bj is the part of the boundary operator of order j, together with such an estimate for
the adjoint operator. As seen below, the boundary value problem is self-adjoint, so it suffices
to establish (3.10).

First, it is simple to prove (3.10) for L in place of L̂ via a slight modification of the proof
of proposition 3.1. Namely, for the boundary condition [hT ]0 = 0, we have hT = φγ on ∂M,
(in place of (3.5)). Note also that (3.3) and (3.4) hold, but without the tr h terms. The analogue
of (3.3) then gives

|ξ |h0k = iξkφ,

and hence, via the analogue of (3.4),

|ξ |2h00 = −|ξ |2φ,

so that h00 + φ = 0. Next, via the condition H ′
h = 0, the analogue of (3.8) becomes∑

k�1

(|ξ |hkk + 2iξkh0k) = 0,

which gives

n|ξ |φ = −2i
∑

ξkh0k = 2|ξ |φ.

Since n � 3, this implies φ = 0, and so h00 = 0, hence h0k = 0. It follows that h = 0, which
proves ellipticity of L with the boundary conditions (3.9). Thus, (3.10) holds with L in place
of L̂.

Next, one has

L̂ = L − (D2 tr h − � tr h g) − δδh g. (3.11)

11
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Thus to prove (3.10), it suffices to prove

||δh||Cm−1,α � C(||L̂(h)||Cm−2,α + ||Bj(h)||Cm− j,α + ||h||C0 ), (3.12)

||D2 tr h||Cm−2,α � C(||L̂(h)||Cm−2,α + ||Bj(h)||Cm− j,α + ||h||C0 ). (3.13)

From (2.15) and (2.16) and the Bianchi identity, (as in (2.13)), one has δL̂(h) = 2δδ∗(δh) and
the operator δδ∗ is elliptic with respect to Dirichlet boundary conditions. Since the boundary
data δh in (3.9) is included in the boundary operators Bj, this proves (3.12).

Using this and taking the trace of (3.11) shows that

||D2 tr h||Cm−2,α � C(||L̂(h)||Cm−2,α + ||Bj(h)||Cm− j,α + ||NN(tr h)||Cm−2,α + ||h||C0 ),

so that it suffices to prove that the boundary conditions B cover NN(tr h). For this, a simple
computation using (3.7), (cf also (3.19) below), gives

N(tr h) = 2H ′
h − δ((h(N))T ) − (δh)(N) + O(h), (3.14)

where O(h) is of differential order 0 in h. Using the standard interpolation ||h||Cm−1,α �
ε||h||Cm,α + ε−1||h||C0 , where ε > 0 is an arbitrary constant, shows that it suffices here and
below only to consider terms with the leading number of derivatives of h.

Now the Gauss equations at ∂M are |A|2 − H2 + sγM = sgM − 2Ric(N, N) and hence,

(|A|2 − H2 + sγM )′h = −2L̂(h)(N, N) + 2δ∗δ(h)(N, N) + O(h).

One has s′
γM

(hT ) = −�tr hT + δδ(hT )+O(hT ) and A′
h, H ′

h only involve first order derivatives
in h. Writing then hT = B0(h) + 1

n tr∂MhγM, it follows that tr∂Mh at ∂M is controlled by
L̂(h), Bj(h), in that

||tr∂Mh||Cm,α � C(||h||Cm−1,α + ||L̂(h)||Cm−2,α + ||Bj(h)||Cm− j,α ),

and hence

||hT ||Cm,α � C(||h||Cm−1,α + ||L̂(h)||Cm−2,α + ||Bj(h)||Cm− j,α ),

i.e. hT is controlled at ∂M by L̂(h) and Bj(h). Next, at ∂M, one has −(δh)(T ) =
∇Nh(N, T )+∇ei h(ei, T ), which then gives control as above on (∇Nh)(N, T ), and so control on
∇N (h(N)T ). In turn, this gives then control on δ∂M(∇N (h(N)T )), which modulo lower order
(curvature) terms, equals N(δ(h(N)T )). The N-derivative of (3.14) also holds and shows that
control of N(δ(h(N)T )) implies control of NN(tr h), so that (3.13) holds, provided N(H ′

h) is
controlled. But the Riccati equation gives N(H) = −|A|2 −Ric(N, N); taking the linearization
of this in the direction h shows that N(H ′

h) is indeed controlled by L̂(h) and the boundary
conditions Bj. This completes the proof of ellipticity.

Next, we prove the operator L̂ with boundary conditions (3.9) is self-adjoint. To begin,
integrating the terms in the expression (2.16) for L̂ by parts over M gives∫

M
〈D∗D(h), k〉 +

∫
∂M

〈∇Nh, k〉 =
∫
M

〈D∗D(k), h〉 +
∫

∂M
〈∇Nk, h〉,∫

M
δδhtr k +

∫
∂M

(δh)(N)tr k =
∫
M

〈h, D2(tr k)〉 −
∫

∂M
h(N, dtr k),

and ∫
M

(�tr h)tr k −
∫

∂M
N(tr h)tr k =

∫
M

(�tr k)tr h −
∫

∂M
N(tr k)tr h.

Here the boundary terms on S(r) all tend to 0 as r → ∞, since the components of h and k are
in Cm,α

δ and δ > 1
2 . It follows that∫
M

〈L̂(h), k〉 +
∫

∂M
〈B(h), k〉 =

∫
M

〈L̂(k), h〉 +
∫

∂M
〈B(k), h〉, (3.15)

12
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where

〈B(k), h〉 = 〈∇Nk, h〉 + h(N, dtr k) − (δk)(N)tr h − tr hN(tr k). (3.16)

Setting Z(k, h) = 〈B(k), h〉 − 〈B(h), k〉, we thus need to show that∫
∂M

Z(h, k) = 0, (3.17)

when h, k satisfy the boundary conditions (3.9).
Thus suppose h and k both satisfy (3.9). A simple calculation shows that (δk)(T ) = 0 is

equivalent to

(∇Nk)(N)T = δ∂M(kT ) − α(k(N)), (3.18)

where α(k(N)) = [A(k(N)) + Hk(N)T ], (all taken on ∂M), while (δk)(N) = 0 is equivalent
to

N(k00) = δ∂M(k(N)T ) + 〈A, k〉 − k00H. (3.19)

The same equations hold for h, and one also has

hT = φhγ , and kT = φkγ . (3.20)

We thus need to calculate

B(k, h) = 〈∇Nk, h〉 + h(N, dtr k) − tr hN(tr k),

and skew-symmetrize. To begin, write 〈∇Nk, h〉 = 〈(∇Nk)(N), h(N)〉 + 〈(∇Nk)(ei), h(ei)〉,
so that 〈∇Nk, h〉 = N(k00)h00 + φh[N(tr k) − N(k00)] + 2〈(∇Nk)(N), h(N)T 〉, where we have
used the relation trγ ∇Nk = trN∇Nk − N(k00). Thus, B(k, h) equals

N(k00)h00 + φh[N(tr k) − N(k00)] + 2〈(∇Nk)(N), h(N)T 〉
−N(tr k)[tr h − h00] + 〈h(N)T , dtr k〉. (3.21)

By (3.18) and (3.20),

2〈(∇Nk)(N), h(N)T 〉 = −2〈dφk, h(N)T 〉 − 2α(k, h) = −2φkδ∂M(h(N)T ) − 2α(k, h) + ω1

where ω1 is a divergence term and α(k, h) = 〈α(k(N)), h(N)T 〉. Similarly, by (3.19) and
(3.20),

N(k00) = δ∂M(k(N)T ) + (φk − k00)H,

where here and in the following δ = δ∂M. Note also that 〈h(N)T , dtr k〉 = tr kδ∂N (h(N)T )+ω2,
where ω2 is another divergence term. Since (3.17) involves integration over ∂M, in the
following we ignore the divergence terms. Substituting these computations in (3.21) gives

δ(k(N)T )[h00 − φh] + δ(h(N)T )[tr k − 2φk] − (n − 1)φhN(tr k)

+H(φk − k00)(h00 − φh) − 2α(h, k).

When skew-symmetrizing, the last two terms H(φk − k00)(h00 − φh) − 2α(h, k) cancel, while
the first three terms combine to give

−(n − 1)[φhδ(k(N)T ) − φkδ(h(N)T )] − (n − 1)[N(tr k)φh − N(tr h)φk],

or equivalently, (after dividing by n − 1),

− φh[N(tr k) + δ(k(N)T )] + φk[N(tr h) + δ(h(N)T )]. (3.22)

On the other hand, by (3.6) or (3.7),

2(H ′)k = tr[∇Nk − 2δ∗(k(N)T ) − δ∗(k00N)]

= N(tr k) + 2δ(k(N)T ) − k00H − N(k00).

13
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Substituting (3.19) gives

2(H ′)k = N(tr k) + δ(k(N)T ) − Hφk,

so (3.22) becomes

−φh[2(H ′)k + Hφk] + φk[2(H ′)h + Hφh] = −2φh(H
′)k + 2φk(H

′)h.

This vanishes exactly when H ′
k and H ′

h vanish. This completes the proof. �
The main step in the proof of the manifold theorem, (theorem 3.6), is the following result.

Theorem 3.3. Suppose π1(M, ∂M) = 0 and m � 3. Then at any g̃ ∈ ES, the map 
̂ is a
submersion, i.e. the derivative

(D
̂)g̃ : T̃gMetm,α
D (M) → T


̂(̃g)
Sm−2,α

δ (M) (3.23)

is surjective and its kernel splits in T̃gMetm,α
D (M).

Proof. The operator L̂ = 2D
̂g̃ is elliptic in the interior, and the boundary data in lemma
3.2 give a self-adjoint elliptic boundary value problem. Let Sm,α

B (M) be the space of Cm,α

symmetric bilinear forms on M satisfying the boundary condition B(h) = 0 from lemma 3.2,
i.e.

B(h) = {δh, [hT ]0, (H ′)h} = (0, 0, 0).

Clearly, Sm,α
B (N) ⊂ Sm,α

D (N), where Sm,α
D (M) = T̃g(Metm,α

D (M)). Throughout the following,
we set g̃ = g. The operator L̂, mapping

Sm,α
B (M) → Sm−2,α

δ (M), L̂(h) = f , B(h) = 0 at ∂M,

is then Fredholm, of Fredholm index 0. On Sm,α
B (M), the image Im(L̂) is a closed subspace

of the range Sm−2,α (M), of finite codimension, and with codimension equal to dimension of
the kernel K.

If K = 0, then L̂ maps Sm,α
B (M) onto Sm−2,α

δ (M), which proves the result. Thus suppose
K �= 0. Then as in (3.15), by the self-adjointness, one has for any h ∈ Sm,α

B (M) and k ∈ K,∫
M

〈L̂(h), k〉 =
∫
M

〈h, L̂(k)〉 = 0,

since the boundary terms vanish and L̂(k) = 0. Thus Im(L̂|Sm,α
B (M)) = K⊥, (where K⊥ is taken

with respect to the L2 inner product). To prove surjectivity on Sm,α
D (M), it thus suffices to

prove that for any k ∈ K, there exists h ∈ Sm,α
D (M) such that∫

M
〈L̂(h), k〉 �= 0. (3.24)

Suppose then (3.24) does not hold, so that∫
M

〈L̂(h), k〉 = 0, (3.25)

for all h ∈ Sm,α
D (M), i.e. for which δh = 0 on ∂M. Integrating by parts, it follows that∫

M
〈h, L̂(k)〉 +

∫
∂M

Z(h, k) = 0, (3.26)

for Z(h, k) as following (3.16). As before, the boundary terms at infinity vanish, since δ > 1
2 .

Choosing h ∈ Sm,α
D (M) arbitrary of compact support in M, it follows from (3.26) that

L̂(k) = 0, (3.27)

14
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i.e. k is formally tangent to Ẑ = 
̂−1(0). Of course this is already known, since k ∈ K.
Moreover, one also has

δk = 0 on M. (3.28)

To see this, let h = δ∗V , with V any vector field vanishing on ∂M. Since g is Einstein and so
(Ric − s

2 g)′δ∗V = 0, it follows from (3.5) and (3.6) that L̂(h) = δ∗Y , where Y = 2δδ∗V . As in
lemma 2.2, the operator δδ∗ is surjective, (in fact an isomorphism), on vector fields vanishing
at ∂M, so that Y may be arbitrarily prescribed. Moreover, h ∈ Sm,α

D (M) if and only if Y = 0
at ∂M. Then (3.25) gives

0 =
∫
M

〈L̂(δ∗V ), k〉 =
∫
M

〈δ∗Y, k〉 =
∫
M

〈Y, δk〉 +
∫

∂M
k(Y, N) =

∫
M

〈Y, δk〉,
since Y = 0 on ∂M. Here we have used again the fact that the boundary term at infinity
vanishes, since |k| = O(r−δ ) and |Y | = O(r−1−δ ). Since Y is otherwise arbitrary, this gives
(3.28).

Returning now to (3.26), (3.27) gives∫
∂M

Z(h, k) = 0, (3.29)

for all h with δh = 0 on ∂M. Next, we choose certain test forms h ∈ SD(M) in (3.29). First,
choose h such that h = 0 on ∂M. Then ∇Nh is freely specifiable, subject to the divergence
constraint δh = 0; all computations here and below are at ∂M. Since h = 0, this constraint
gives (∇Nh)(N) = 0, which is equivalent to the tangential and normal constraints:

(∇Nh)(N, T ) = 0, (3.30)

N(h00) = 0, (3.31)

for any T tangent to ∂M. Choosing h and ∇Nh satisfying h = 0 and (3.30) and (3.31) at ∂M,
the terms (∇Nh)(T1, T2) are freely specifiable on ∂M, where T1, T2 are any vectors tangent to
∂M. Substituting such h in (3.29) and using (3.28), it follows that∫

∂M
〈∇Nh, k〉 + (k00 − tr k)N(tr h) = 0. (3.32)

Now choose ∇Nh = f gT , where gT = g|T (∂M). This choice satisfies the constraints (3.30) and
(3.31). The integrand in (3.32) then becomes f trT k−N(tr h)trT k. Since N(tr h) = 〈∇Nh, g〉 =
n f , and since f is arbitrary, it follows that trT k = 0. In turn, since the tangential part of ∇Nh
is arbitrary, (3.32) implies

kT = 0, on ∂M. (3.33)

Lemma 3.4. At ∂M, one has

(A′
k)

T = 0, (3.34)

i.e. (∇Nk)T = 2[δ∗(k(N)T )]T + k00A, since kT = 0, cf (3.6).

Proof. The proof is a straightforward, but rather long computation. To begin, as preceding
(3.21) and using (3.33), one has 〈∇Nh, k〉 = 2〈(∇Nh)(N), k(N)T 〉 + N(h00)k00. By (3.18),
(∇Nh)(N)T = δ∂M(hT ) − α(h(N)), so that∫

∂M
〈∇Nh, k〉 =

∫
∂M

2〈δ∂M(hT ), k(N)T 〉 + N(h00)k00 − 2α(h, k)

=
∫

∂M
2〈hT , (δ∂M)∗(k(N)T )〉 + N(h00)k00 − 2α(h, k). (3.35)
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Further, for Z tangent to ∂M, one has (δ∂M)∗(k(N)T )(Z, Z) = 〈∇T
Z k(N)T , Z〉 =

〈∇Zk(N)T , Z〉 = δ∗(k(N)T )(Z, Z), where now δ∗ is taken with respect to the ambient metric
gM, (not the boundary metric γM). So this gives∫

∂M
〈∇Nh, k〉 =

∫
∂M

〈hT , 2δ∗(k(N)T )〉 + N(h00)k00 − 2α(h, k). (3.36)

On the other hand, one computes 〈∇Nk, h〉 = 〈(∇Nk)T , hT 〉 + 〈∇Nk(N), h(N)〉 =
〈(∇Nk)T , hT 〉 − 〈α(k(N)), h(N)T 〉 + N(k00)h00, again by (3.18) and (3.33). Taking the
difference of this with (3.36) and noting that α is symmetric, gives∫

∂M
〈hT , (∇Nk)T − 2δ∗(k(N)T )〉 + N(k00)h00 − N(h00)k00 = E, (3.37)

where via (3.16) and (3.17), E is given by

E =
∫

∂M
[k(N, d tr h) − h(N, d tr k)] − [N(tr h)tr k − tr hN(tr k)].

Computing this term-by-term gives: k00N(tr h) + 〈k(N)T , dT tr h〉 − h00N(tr k) −
〈h(N)T , dT tr k〉 − N(tr h)tr k + tr hN(tr k). Since tr k = k00, the first and second-to-last terms
cancel. Integrating over ∂M and using the divergence theorem shows that

E =
∫

∂M
tr hδ∂M(k(N)T ) − k00δ

T (h(N)T ) − h00N(tr k) + tr hN(tr k). (3.38)

Next we claim that

δ∂M(h(N)T ) = N(h00) + Hh00 − 〈A, h〉, (3.39)

and similarly for k. This follows from the following computation: δ∂M(h(N)T ) =
δ∂M(h(N)) − δT (h00N) = δ∂M(h(N)) + Hh00, while δ∂M(h(N)) = δ(h(N)) + N(h00).
Since δ(h(N)) = (δh)(N) − 〈A, h〉, this gives the claim. Substituting (3.39) into (3.38), and
using 〈A, k〉 = 0 implies that

E =
∫

∂M
tr h(N(k00) + Hk00) − k00(N(h00) + Hh00 − 〈A, h〉) − h00N(tr k) + tr hN(tr k),

and rearranging terms gives

E =
∫

∂M
〈A, h〉k00 + N(tr k)[tr h − h00] + tr hN(k00) − k00N(h00) + H(tr hk00 − tr kh00).

(3.40)

Now substitute (3.40) into (3.37): the k00N(h00) term cancels to give∫
∂M

〈hT , (∇Nk)T − 2δ∗(k(N))T 〉 − 〈A, h〉k00

= −
∫

∂M
N(k00)h00 − N(tr k)[tr h − h00] − tr hN(k00) − H(tr hk00 − tr kh00). (3.41)

The integrand on the right combines to: −N(k00)(h00 − tr h)−N(tr k)[h00 − tr h]−H tr k(h00 −
tr h) = −[N(k00) + N(tr k) + Htr k](h00 − tr h). Since h00 − tr h = −trT h = −〈hT , gT 〉, and
since hT may be chosen arbitrarily, (the constraint δh = 0 imposes no constraint on hT ), it
follows that

(∇Nk)T = 2[δ∗(k(N)T )]T + k00A + [N(k00) + N(tr k) + Htr k]gT . (3.42)

To complete the proof of (3.34), we thus need to show that

N(k00) + N(tr k) + Htr k = 0. (3.43)
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To obtain (3.43), take the gT -trace of (3.42). One has 〈∇Nk, gT 〉 = N(tr k) − N(k00), while
〈δ∗(k(N)T ), gT 〉 = 〈∇ei k(N)T , ei〉 = 〈∇ei k(N), ei〉 − k00H = 〈(∇ei k)(N), ei〉 − k(∇ei N, ei) −
k00H = −N(k00) − k00H, the last equality using (3.33) and (3.28). This gives

N(tr k) − N(k00) = −2N(k00) − 2k00H + k00H − n[N(k00) + N(tr k) + Htr k],

which implies (3.43). This completes the proof of the lemma. �
To complete the proof of theorem 3.3, (3.33) and (3.34) show that

kT = (A′
k)

T = 0,

at ∂M. One also has L̂(k) = δk = 0 on M, so that k is an infinitesimal Einstein deformation
on M. By the local unique continuation result of [AH], together with the global hypothesis
π1(M, ∂M) = 0, it follows that k = 0. This shows that L̂ is surjective. The fact that its kernel
splits is standard, cf [A3]. This completes the proof. �

Via the implicit function theorem, one obtains:

Corollary 3.5. Suppose π1(M, ∂M) = 0 and m � 3. Then the local spaces E
m,α
D are infinite

dimensional C∞ Banach manifolds, with

T̃gED = Ker(D
̂g̃). (3.44)

Proof. This is an immediate consequence of theorem 3.3, the fact from proposition 2.1 that
ED = ZD, (cf (2.18)), and the implicit function theorem, (or regular value theorem), in Banach
spaces. �

This leads to the main result of this section.

Theorem 3.6. Suppose π1(M, ∂M) = 0 and m � 3. Then the moduli space ES = Em,α
S is a C∞

smooth infinite dimensional Banach manifold for which the boundary map

�B : ES → Metm,α (∂M) × Cm−1,α (∂M), (3.45)

is a C∞ smooth Fredholm map, of Fredholm index 0.

Proof. Recall from section 1 that the moduli space ES of static vacuum Einstein metrics is
defined to be the quotient E

m,α
S /Dm+1,α

1 . The local spaces ED are smooth Banach manifolds
and depend smoothly on the background metric g̃, since the divergence-free gauge condition
(2.18) varies smoothly with g̃. As noted preceding lemma 2.2, the action of D1 on E is free
and the local spaces ED are smooth local slices for the action of D1 on ES. Hence the global
space ES is a smooth Banach manifold, as is the quotient ES. The local slices ED represent
local coordinate patches for ES.

Proposition 3.1 implies that the boundary map �B : E
m,α
S → Metm,α (∂M)×Cm−1,α (∂M)

is smooth and Fredholm, of Fredholm index 0. Moreover, �B is invariant under the action
of Dm+1,α

1 (M) on Em,α
S and so it descends to a smooth Fredholm map as in (3.45), still of

index 0. �
The boundary conditions (γ , H) for the operator 
̂ are also self-adjoint; in fact they arise

naturally from a variational principle (Lagrangian) on a space of static (non-vacuum) metrics.
To describe this, let S(h) = −� tr h + δδ(h) − 〈Ric, h〉 be the linearization of the scalar

curvature s, with adjoint S∗ given by

S∗u = D2u − �ug − uRic.

It is well-known that the static vacuum equations are given by S∗u = 0 and s = 0 on M.
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Proposition 3.7. For (M, g, u) as above, the Bartnik boundary conditions (γ , H) give a
well-defined variational problem for the Lagrangian

L(g, u) =
∫

M
usdVg − 16πmADM : Metm,α

δ (M) × Cm,α
δ (M) → R, (3.46)

where mADM is the ADM mass of (M, g, u). The gradient ∇L of L at (g, u) is given by

∇L =
(

S∗u + 1

2
usg, s, uA − N(u)γ , 2u

)
, (3.47)

in the following sense: if (h, u′) is a variation of (g, u) inducing the variation (hT , H ′
h) of the

boundary data, then

dL
(
h, u′, hT , H ′

h

) =
∫

M

[〈
S∗u + 1

2
usg, h

〉
+ su′

]
+

∫
∂M

[〈uA − N(u)γ , hT 〉 + 2uH ′
h

]
. (3.48)

In particular, the static vacuum equations are critical points for L with data (γ , H) fixed.

Proof. Suppose that D is compact domain in M, with N the outward unit normal from D.
Varying (g, u) in the direction (h, u′) then gives

DL0(h, u′) =
∫

D
(us′ + u′s + us(dV )′) =

∫
D
〈u, s(h)〉 + 1

2
us〈g, h〉 + su′, (3.49)

where L0 = ∫
D usdVg. A straightforward integration by parts gives∫

D
〈S(h), u〉 =

∫
D
〈h, S∗u〉 +

∫
∂D

−uN(tr h) − (δh)(N)u − 〈h(N), du〉 + tr hN(u). (3.50)

The equations (3.49) and (3.50) imply immediately the bulk Euler-Lagrange equations—
the first two terms in (3.47). If the bulk term (over D) vanishes, then since u′ is arbitrary s = 0,
so this gives

S∗u = 0,

with s = 0, which are the static vacuum equations.
For the boundary terms, from (3.7) one has

2H ′
h = N(tr h) + 2δ(h(N)T ) − h00H − N(h00).

Also by a simple calculation

(δh)(N) = δ(h(N)T ) + 〈A, h〉 − h00H − N(h00),

so that,

2H ′
h − (δh)(N) = N(tr h) + δ(h(N)T ) − 〈A, h〉.

This gives ∫
∂D

u(−N(tr h) − (δh)(N)) =
∫

∂D
−2uH ′

h + 〈du, h(N)T 〉 − u〈A, h〉.
It follows that the boundary term in (3.50) is given by∫

∂D
−2uH ′

h − u〈A, h〉 − N(u)h00 + N(u)tr h =
∫

∂D
−2uH ′

h − u〈A, hT 〉 + N(u)〈hT , γ 〉.
(3.51)

Now let the outer boundary of D equal S(r) and consider the limit r → ∞. Then u → 1
and

∫
S(r) N(u)〈hT , γ 〉 → 0. It follows that

lim
r→∞

∫
S(r)

−2uH ′
h − u〈A, hT 〉 = lim

r→∞

∫
S(r)

(−N(tr h) − (δh)(N)) = 16π(mADM)′,
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where the second equality follows from standard formulas for the ADM mass and its variation,
cf [RT, B3]. Here the variation (mADM)′ is taken in the direction h. The formula (3.50)
and (3.51) is also valid at the inner boundary ∂M, with respect to the outward normal.
Changing to the inner normal changes the sign of each term, and (3.47) and (3.48) then follow
immediately. �

On-shell, i.e. on the space of solutions E , the Lagrangian

L = −16πmADM : E → R

is a smooth function whose derivative is given by the boundary term in (3.48), a result basically
due to Bartnik [B3]. After writing this work, we learned that a special case of proposition 3.7
has been noted, without proof, in a paper of Miao, cf [M2].

4. Curvature estimates and properness of �o

In contrast to the previous section, where most of the computations were done on the 4-
manifold (M, gM), in this section we focus mostly on the three-dimensional data (M, g, u).
Let in j∂M denote the injectivity radius of the normal exponential map from ∂M in M and
let R denote the (full) curvature tensor of g. The main result of this section is the following
collection of a priori estimates.

Theorem 4.1. For (M, g, u) ∈ Eo = (Em,α )o with m � 2, one has a global pointwise estimate

|R| � �, (4.1)

on M, where � depends only on bounds for the boundary data (γ , H). Moreover, at ∂M, one
has the bounds

|A| � �, in j∂M � �−1. (4.2)

The estimates (4.1), (4.2) also hold for higher derivatives of R and A, up to order m − 2, m − 1
respectively.

Proof. For points in the interior of M, of bounded distance away from ∂M, this follows directly
from the a priori interior estimates in [A1] which state

|R|(x) � K

t2(x)
, |d log u|(x) � K

t(x)
, (4.3)

where t(x) = dist(x, ∂M), where K is an absolute constant. Similar (scale-invariant) estimates
hold for all higher derivatives of R and log u. So one only needs to consider the behavior near
∂M. At ∂M, the Gauss and Gauss–Codazzi (constraint) equations are given by:

|A|2 − H2 + sγ = −2RNN, (4.4)

δ(A − Hγ ) = −u−1D2u(N, ·). (4.5)

Also, −RNN = −Ric(N, N) = −u−1NN(u) = u−1(�∂Mu + HN(u)), so that

u(|A|2 − H2 + sγ ) = 2(�∂Mu + HN(u)). (4.6)

From (4.4), a bound on |R| at ∂M gives immediately a bound on |A| at ∂M, given control
of (γ , H). Similarly, a bound on |R| on M gives a lower bound on the distance dcon to the
conjugacy locus of the normal exponential map exp∂M .

Now, again under a bound on |R|, the outer-minimizing property (1.8) implies a lower
bound on the distance δ∂M to the cut locus of exp∂M . To see this, suppose that δ∂M � 1 but �

in (4.1) is bounded, � ∼ 1. Then since dcon is bounded below, there is a geodesic ζ of length
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2δ∂M in M meeting ∂M orthogonally at points p1, p2. Let T be the boundary of the tubular
neighborhood of ζ of radius r. Then T intersects ∂M in the boundary of two discs D1, D2

of radius approximately r, (for r small). If δ∂M � r, then area T < area(D1 ∪ D2). Further,
T ⊂ M is homologous to D1 ∪ D2 in M. Removing then D1 ∪ D2 from ∂M and attaching T
shows that ∂M is not outer-minimizing in M, giving a contradiction.

Thus it suffices to obtain a curvature bound at or arbitrarily near ∂M. The higher derivative
estimates may then be obtained by standard elliptic regularity methods. The proof of (4.1)
is by a blow-up argument. If the curvature bound in (4.1) is false, then there is a sequence
(M, gi, ui, xi) ∈ Eo with bounded Bartnik boundary data such that

|Rgi |(xi) → ∞.

Without loss of generality, assume that the curvature of gi is maximal at xi. We then rescale
the metrics gi to g′

i so that |R| is bounded, and equals 1 at xi,

|Rg′
i
|(xi) = 1, |Rg′

i
|(yi) � 1, (4.7)

for any yi ∈ (M, g′
i). Thus define g′

i = λ2
i gi where λi = |Rgi |(xi). This gives (4.7) as well as

Hg′
i
= λ−1

i Hgi , sγ ′
i

= λ−2
i sγi and t ′i = λiti. Note that (4.3) implies that t ′i (xi) �

√
K so that xi

remains within a uniformly bounded distance to the boundary ∂M with respect to g′
i.

One may also need to rescale the potential u. For reasons that will be clearer below, choose
points yi ∈ M such that distg′

i
(yi, ∂M) = 1 and distg′

i
(yi, xi) �

√
K, and rescale ui so

u′
i(yi) = 1. (4.8)

The sequence (M, g′
i, u′

i) has uniformly bounded curvature and uniform control of the boundary
geometry, (boundary metric, second fundamental form and normal exponential map). By (4.8)
and the Harnack inequality for positive harmonic functions, the potential u′

i is also uniformly
bounded in compact sets. It follows from the convergence theorem in [AT] for manifolds-with-
boundary that a subsequence converges weakly, (i.e. in C1,α), to a C1,α static limit (X, g, u, x)

with boundary (∂X, γ , u). The convergence is uniform on compact subsets. More precisely,
given any smooth compact domain � in the manifold with boundary X , there is a subsequence,
also denoted {i} and embeddings Fi : � → (Mi, g′

i, u′
i) such that F∗

i (g′
i, u′

i) → (�, g, u) in the
C1,α topology. Moreover, for �1 ⊂ �2, g2|�1 = g1. For the proof, we refer to [AT, theorem
3.1], and more precisely to the local version of this result in [AT, theorem 3.1.1].

By the normalization in (4.7), the limit (X, g) is complete (without singularities) up to
the boundary ∂X . Since ∂M is outer-minimizing in (M, gi), the C0 convergence to the limit
implies that ∂X is weakly outer-minimizing in X : if D is any compact smooth domain in ∂X
and D′ is a surface in X with ∂D′ = ∂D, then

area D′ � area D. (4.9)

One has ∂X = R
2, the boundary metric γ is flat, H = 0, so ∂X is a minimal surface

in X . One has u > 0 in the interior of X , (by the maximum principle), but may have u = 0
somewhere or everywhere on ∂X . The bound (4.7) and the static equations imply that ui is
uniformly bounded up to ∂X , within bounded distance to xi and the limit potential u extends
at least C1,α up to ∂X .

We will prove below that the convergence to the limit is smooth, so that in particular

|R|(x) = 1, (4.10)

where x = lim xi and R = RX .
On the blow-up limit (X, g), (4.6) holds and becomes

1
2 u|A|2 = �∂Mu,
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on ∂X . This equation holds weakly on ∂X with u ∈ C1,α (∂X ); elliptic regularity then implies
it holds strongly, and u ∈ C3,α (∂X ). Since u is harmonic, u is thus C3,α up to ∂X . Also, by the
Riccati equation N(H) = −|A|2 − RNN = −|A|2 + 1

2 (|A|2 − H2 + sγ ), so that

N(H) = − 1
2 (|A|2 + H2 − sγ ). (4.11)

This holds pointwise on the blow-up sequence (M, g′
i, ui) and since sγ → 0 and H → 0 for

g′
i, it follows that N(H) is defined pointwise on the limit ∂X and on ∂X ,

N(H) � 0, (4.12)

with equality on any domain only when A = 0.
Since ∂X is minimal, (4.12) and the outer-minimizing property (4.9) imply that

N(H) = 0, (4.13)

on ∂X . In more detail, (4.9) and the fact that H = 0 on ∂X implies the second order stability of
∂X , in that the second variation of the area of ∂X is non-negative. Thus, for all f of compact
support on ∂X , one has∫

∂X
(|d f |2 + f 2N(H)) � 0. (4.14)

Choose f = fR,S(r) such that f = 1 on D(R) ⊂ ∂X = R
2 and, for r � R,

f = (log r − log S)/(log R − log S), for S � R � 1. One may choose R and S sufficiently
large such that

∫
∂X |d f |2 < ε, for any given ε > 0. This together with (4.12) implies (4.13).

It follows that A = 0 and hence by the Liouville theorem on R
2, u = const on ∂X . Using

the divergence constraint (4.5), we also now have 0 = δ(A − Hγ ) = −u−1D2u(N, ·), and so
0 = D2u(N, ·) = dN(u) − A(du) = dN(u), so that N(u) = const.

Thus, the full Cauchy data (γ , u, A, N(u)) for the static vacuum equations is fixed and
trivial: γ is the flat metric, A = 0 and u, N(u) are constant. Observe that this data is realized
by the family of flat metrics on (R3)+ with either u = const or u equal to an affine function
on (R3)+.

Suppose first

u = const > 0 on ∂X. (4.15)

The static vacuum equations (1.1) are then non-degenerate up to ∂X . The unique continuation
property for Einstein metrics with boundary, cf [AH], implies that the Cauchy data uniquely
determine the solution locally. Alternately, since the static vacuum equations are non-
degenerate up to ∂X and since the boundary data (∂X, γ , H) are real-analytic, elliptic regularity
implies that the solution (M, g, u) is real-analytic up to ∂M. Such solutions are uniquely
determined (locally) by their Cauchy data. Hence, the limit (X, g, u) is flat in this case.

Moreover, the convergence to the limit is smooth everywhere. This again follows from
non-degeneracy and ellipticity. Briefly, the potential equation �u = 0 gives a boost on the
regularity of u, (given background regularity on g). One substitutes this into the main static
vacuum equation uRic = D2u, giving thus a boost to the regularity of Ric, inducing then a
boost to the regularity of g. This in turn further boosts the regularity of u via the potential
equation. Bootstrapping gives Cm,α convergence, up to the boundary, in regions where u > 0,
(given that u is Cm,α at the boundary). In sum, one has a contradiction to (4.10).

Thus, suppose instead

u = 0 on ∂X. (4.16)

This situation is more complicated. It is also more difficult to prove smooth convergence in this
situation (one may have x in (4.10) at ∂X). Moreover, there are in fact non-flat static vacuum
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solutions with flat Cauchy data as above with u = 0 on ∂X , (so-called toroidal black holes,
cf [P] and [Th]). Thus the unique continuation results used above are false in this degenerate
situation where the boundary becomes characteristic.

We observe first that the solution (X, g) is still real-analytic up to ∂X in this case. This
follows since the 4-metric g4 = u2dθ2 + gX is Einstein (Ric = 0) and is C1,α up to the horizon
or vanishing locus ∂X = {u = 0}. Elliptic regularity for the Einstein equations then implies
that g4 is real-analytic, and hence so are u, gX up to ∂X .

To see this in more detail, let U be a chart neighborhood of ∂X in X , so that U is
diffeomorphic to a half-ball in R

3 with boundary a disc D2 ⊂ R
2. Over each p ∈ U , one has a

circle of length 2πu(p), with u → 0 as p → ∂X . From the work above, u is C1,α up to ∂X with
N(u) = const at ∂X . Note that N(u) �= 0 at ∂X . For if N(u) = 0 at ∂X , since also u = 0 at ∂X
and u is harmonic (�u = 0), the unique continuation property for harmonic functions implies
that u = 0 in X , giving a contradiction. By rescaling u if necessary, one may thus assume that
N(u) = 1 at ∂X . This implies that the 4-metric g4, defined on B4\D2 extends to a C1,α metric
on the 4-ball B4. (The coordinate θ is an angular variable in R

2 in polar coordinates, shrinking
down to the origin on approach to ∂X). It is well-known, cf [Be], that any C1,α weak solution
to the Einstein equations is real-analytic (in harmonic or geodesic normal coordinates), which
gives the claim above.

To prove the limit is in fact flat, and that one has strong convergence, we need to use the
outer-minimizing property again. Thus, first note that (4.11) holds everywhere on the limit
(X, g) near ∂X , not just at ∂X ; here A is the second fundamental form of the level sets S(t) of
t = dist(∂X, ·), etc. We have already established N(H) = 0 at ∂X , via the outer-minimizing
property and the corresponding stability of the second variation operator (4.14). Taking then
the derivative of (4.11) in the normal direction gives,

NN(H) = −〈A′, A〉 − 〈A2, A〉 − H ′H + 1
2 s′

γ , (4.17)

where A′ = ∇NA. At ∂X , the first three terms vanish while (s′
γ )k = −�(tr k) + δδk −

〈Ricγ , k〉 = 0, since k = 2A = 0. Thus

NN(H) = 0, (4.18)

at ∂X and it follows that the third variation of the area of ∂X in the unit normal direction
vanishes.

Now choose f = fR,S as following (4.14) with R, S large. Let St f = exp∂X (t f (x)), where
exp∂X is the normal exponential map of ∂X into X . Letting v(t) = areaSt f , one has

v(t) = v(0) + 1
2v′′(0)t2 + 1

6v′′′(0)t3 + 1
24v′′′′(0)t4 + O(t5). (4.19)

The expansion (4.19) is valid for all t sufficiently small, |t| � δ0, with δ0 independent of R,
S, since the area and its derivatives are integrals of local expressions, and the local geometry
of X is uniformly bounded in a tubular neighborhood of radius 1 about ∂X . By the second
variational formula (4.14) and (4.13), for any given ε > 0, one has

v′′(0) � ε,

for R, S sufficiently large. For the same reasons via (4.18),

v′′′(0) � ε.

It follows then from the outer-minimizing property (4.9) and (4.19) that for R, S sufficiently
large, one must have

v′′′′(0) � −ε, (4.20)
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again for any ε = ε(R, S) > 0. Using the vanishing of the lower order terms, one computes
that (4.20) gives∫

∂X
f 4NNN(H) − 6 f 2〈d f · d f , A′〉 � −ε. (4.21)

On the other hand, taking the normal derivative of (4.17) gives

NNN(H) = −〈A′, A′〉 − (H ′)2 + 1
2 s′′

γ . (4.22)

We have H ′ = N(H) = 0 and (s′
γ )2A = 2�H + 2δδA − 〈Ricγ , 2A〉. For s′′

γ , one has
(�H)′ = �′H + �H ′ = 0 and 〈Ricγ , A〉′ = 〈(Ricγ )′, A〉 + 〈(Ricγ ), A′〉 = 0. So at ∂X ,
1
2 s′′

γ = δδA′. It follows then from (4.21) and (4.22) that for f = fR,S as above∫
∂X

− f 4|A′|2 + f 4δδA′ − 6 f 2〈d f · d f , A′〉 � −ε. (4.23)

Integrating the second term by parts gives
∫ 〈D2 f 4, A′〉 = ∫ 〈4 f 3D2 f + 12 f 2〈d f · d f , A′〉.

Using the Cauchy–Schwarz and Young inequalities, (4.23) then implies, for any μ small,∫
∂X

f 4|A′|2 � μ

∫
∂X

f 4|A′|2 + Cμ−1
∫

∂X
f 2|D2 f |2 + Cμ−1

∫
∂X

|d f |4 + ε.

Choosing μ small, the first term on the right may be absorbed into the left, while simple
computation shows that the last two terms become arbitrarily small for R and S sufficiently
large. It follows that

A′ = 0 (4.24)

and so NNN(H) = 0 at ∂X . The Riccati equation

A′ = ∇NA = −A2 − RN, (4.25)

where RN (V,W ) = 〈Rg(V, N)N,W 〉, thus gives RN = 0 at ∂X , and so via the Gauss and
Gauss–Codazzi equations Rg = 0 at ∂X . Thus the full ambient curvature vanishes at ∂X .

One can now continue inductively in the same way to see that A and R vanish to infinite
order at ∂X . A simpler method proceeds as follows. The Riccati equation (4.25) holds along
the level sets S(t) of t = dist(∂X, ·). Since sg = 0 and dimX = 3, RN = − ∗ Ric, i.e.
RN (v, v) = −Ric(w,w), where (N, v, w) are an orthonormal basis. Via the static vacuum
equations, this gives ∇NA = −A2 + u−1 ∗ (D2u). Rescale u if necessary so that N(u) = 1 at
∂X and set v = u − t. Since A = D2t, one then obtains

∇NA = −A2 + u−1(∗A) + u−1(∗D2v). (4.26)

This is a system of ODEs for A, singular at ∂X = R
2, but with indicial root 1. From the

work above, we have v = O(t2) and A = O(t2). Writing A = t2B and substituting in (4.26)
shows that A = O(t3). Also, by the computation following (4.22), sγ = O(t3) on S(t), and
hence using the scalar constraint (4.4) and the relation RNN = u−1NN(u), this in turn implies
v = O(t3), and so on. It follows that (g, u) agree with a flat solution to infinite order at ∂X .
Since the solution (X, g, u) is analytic up to ∂X , it follows that (X, g, u) is flat, as claimed.

Next we claim that one has strong convergence to the limit, so that (4.7) is preserved in the
limit, i.e. (4.10) holds, contradicting the fact that the limit is flat. Note first that if x in (4.10)
is in the interior of X , then strong (C∞) convergence is immediate, by the interior estimates
(4.3), i.e. their higher derivative analogues. Thus we may assume that x ∈ ∂X .

From the work above, we know that |R| is uniformly bounded everywhere on (M, g′
i) and

|R| → 0 everywhere away from ∂M → ∂X , so |R| jumps quickly from 1 to 0 near xi. The
main point is to prove that

|R|(x) → 0, (4.27)
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for all x ∈ ∂M → ∂X ; it is then easy to prove that |R| → 0 on (M, g′
i), cf (4.38) below.

To prove (4.27), note that the estimates (4.11)–(4.24) above at ∂X also hold on the blow-up
sequence at ∂M, (since H → 0 and sγ → 0 on ∂M). It follows then by these arguments that
for any R < ∞ and D(R) the R-ball about any base point yi ∈ (∂M, γ ′

i ) converging to y ∈ ∂X ,∫
D(R)

|A|2 + |∇NA|2 → 0. (4.28)

To proceed further, consider the divergence constraint δA = −dH − Ric(N, ·) on (∂M, γ ′
i ), as

in (4.5). The equations δA = χ1, d tr A = χ2 form an elliptic first order system in 2-dimensions,
and so one has elliptic estimates. Since H → 0 ∈ Cm−1,α on (∂M, γ ′

i ), dH → 0 in Cm−2,α .
Also, by assumption (4.7), Ric(N, ·) is bounded in L∞. It follows then from elliptic regularity
that A is bounded in L1,p. By the scalar constraint (4.4), RNN is then also bounded in L1,p and
since trRN = RNN , it follows from (4.28) and (4.25) that

A → 0 and RNN → 0 in Cα
loc(∂M). (4.29)

Next the Einstein equation RicgM = 0 on (M, gM) implies that δMRgM = 0. Hence

0 = (δgMR)(N, N, ·) = δgM (R(·, N)N, ·) + 2R(eα,∇eα
N)N = δgM (R(·, N)N, ·), (4.30)

since one may choose a basis in which ∇eα
N = A(eα ) = λαeα . Let V be the unit vertical

vector, and note that ∇VV = −dν, where ν = log u. Then ∇V (R(V, N)N, ·) = R(dν, N)N,
while ∇N (R(N, N)N, ·) = 0. Hence, for RN as in (4.25), these computations on ∂M give

δRN = −RN (dν),

where the divergence δ and RN are taken on (∂M, γ ′
i ). Since R is bounded in L∞ and

trRN = RNN is bounded in L1,p, elliptic regularity gives

||RN ||L1,p � C||dν||Lp, (4.31)

again on compact domains in ∂M converging to a compact domain in ∂X .
To control dν in (4.31), recall that by (4.7) the ambient curvature R is bounded, and so R

restricted to ∂M is also bounded. Via the static vacuum equations (1.1), this implies that

N(ν)A + u−1D2u (4.32)

is bounded on (∂M, γ ′
i ), where D2u is the Hessian of u|∂M : ∂M → R

+. Now we claim that
each term in (4.32) is bounded, i.e. there exists K such that

|u−1D2u| � K, |N(ν)A| � K, (4.33)

pointwise, on domains converging to a bounded domain in ∂X . To prove (4.33), suppose instead
that |u−1D2u| → ∞ at some sequence of base points yi → y ∈ ∂X . Without loss of generality,
we may assume the points yi realize the maximum of |u−1D2u| on Dyi (10) ⊂ (∂M, γ ′

i )

(possibly up to a factor of 2), where Dyi (10) is the geodesic disc of radius 10 in ∂M centered
at yi . As before, one may then rescale the metrics g′

i further to g′′
i so that |u−1D2u|(yi) = 1 and

hence the full curvature R → 0 in this scale. Also, renormalize u if necessary so that u(yi) = 1.
Note that |du|(yi) must be bounded. For if |du|(yi) were too large, it follows, (e.g. by a still
further rescaling), that u would be close to an affine function on R

2 and hence u would assume
negative values in bounded distance to yi. Since u > 0 everywhere, this is impossible. Thus,
by integration along paths, u is bounded in L1,∞ in the scale g′′

i , within bounded distance to yi.
Now working in the scale and normalization above, from divergence constraint (4.5), one

has −uδ(A − Hγ ) = dN(u) − A(du). Since A is bounded in L1,p and u and du are bounded in
L∞, it follows that dN(u) is bounded in Lp. Thus, N(u) = c + φ, where φ is bounded in L1,p.
Here c is a constant which may, and in fact does, go to ±∞, in the u-normalization u(yi) = 1
above.
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The trace equation (4.6) in this scale and normalization gives

�u + H(c + φ) = u f , (4.34)

where f is bounded in L1,p. Also, Hc is bounded, since N(u)A is bounded via (4.32), and
so Hc → c′, for some constant c′ on ∂X . Since φ is also bounded in L1,p, it follows that
u is bounded in L3,p, and hence (in a subsequence), u converges in C2,α to its limit on
∂X = R

2. Hence D2u converges in Cα to its limit on R
2. On the limit, since H → 0, the trace

equation (4.34) becomes

�u + c′ = 0. (4.35)

If c′ = 0 then since u > 0, u = const and hence D2u = 0, giving a contradiction. If c′ �= 0,
then again since u > 0, one must have c′ < 0 and u is a quadratic polynomial on R

2. Since
u is harmonic on the blow-up sequence and c′ < 0 implies N(u) → −∞, this is also easily
seen to be inconsistent with the requirement u > 0 everywhere. This proves (4.33) holds.

Returning to (4.31), we may work in the normalization above that u(yi) = 1 and then
(4.33) implies that dν = u−1du is bounded in L∞ in bounded domains about yi. Hence by
(4.31), RN is bounded in L1,p and so bounded in Cα . Since RN → 0 in L2 locally on ∂M, one
has

RN → 0 in Cα
loc(∂M). (4.36)

This is the main part of the estimate (4.27).
Next, one needs the same result for the Ric(N, T ) term. To do this, take the normal

derivative of the scalar constraint (4.6), to obtain

�N(u) + �′u + N(H)N(u) + HNN(u) = 1
2 N(u)[|A|2 − H2 + sγ ] + 1

2 uN[|A|2 − H2 + sγ ].

(4.37)

Since γ ′ = 2A, a standard formula for the variation of the Laplacian, (cf [Be]), gives
1
2�′u = −〈D2u, A〉 + 〈du, β(A)〉 which is bounded in L∞. Also the terms N(H), H and
NN(u) = − u

2 [|A|2 − H2 + sγ ] all go to 0 in L∞. For the right side of (4.37), the coefficient
of the first term goes to 0 in L∞ while via (4.36) above, uN[|A|2 − H2 + sγ ] is bounded in Lp

provided N(sγ ) is, and this in turn follows from an Lp bound on δδA.
To obtain this, return to (4.30) but with (N, X ) in place of (N, N), with X tangent to

the boundary. Arguing as above, it follows that δ(R(·, N)X, ·) is bounded in Lp. Via the
Gauss–Codazzi equations dA(X,Y, Z) = 〈R(N, X )Y, Z〉, it follows that δdA is bounded in Lp.
Similarly, in the normalization above, δA = D2u(N, ·) = ∇Ndu modulo lower order terms.
Taking the exterior derivative d of this, one easily obtains that dδA is bounded in Lp. This
shows that �A is bounded in Lp, which of course gives the same for δδA by elliptic regularity.

Finally, as in the proof of (4.33), N(u) = c + φ with φ bounded in L1,p. Thus it follows
from the divergence constraint as preceding (4.34) and elliptic regularity that dN(u) is bounded
in L1,p and so converges in Cα on ∂M. Since

−u Ric(N, ·) = dN(u) − A(du),

it now follows that Ric(N, ·) converges to its limit, necessarily 0, in Cα on ∂M. Lastly,
δA = −dH − Ric(N, ·) → 0 in Cα and hence by elliptic regularity, A → 0 in C1,α so that
again via the Gauss-Codazzi equations dA(X,Y, Z) = 〈R(N, X )Y, Z〉 → 0 in Cα . Combining
the computations above now proves the estimate (4.27).

To complete the proof, we have |R| → 0 on ∂M → ∂X . On the 4-manifold M = M×u S1,
the Einstein equations give the inequality

�M|RgM | + c|RgM |2 � 0, (4.38)
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where c is a fixed numerical constant, �M is the 4-Laplacian and RgM is the curvature tensor
on M. One has |RgM | = |R|, (up to a constant). We have proved above that R → 0 in L2

locally on (M, (gM)i) and R → 0 pointwise at ∂M. It follows from the deGiorgi-Nash-
Moser estimates for domains with boundary, (cf [GT, theorem 8.25]), that R → 0 pointwise
on M and hence on M, contradicting (4.7). This completes the proof. �

Next, we show that the potential function u is also controlled by the boundary data of �B.

Corollary 4.2. For (M, g, u) ∈ Eo, there is a constant U0 depending only on the boundary
data (γ , H) ∈ �o(Eo) such that

u � U0, (4.39)

on M. Moreover, if H � H0 > 0 on ∂M, then there exists U0 as above depending in addition
only on H0, such that on M,

u � U−1
0 . (4.40)

Proof. Let S(s) = {x ∈ (M, g) : dist(x, ∂M) = s} be the geodesic ‘sphere’ about ∂M. Choose
a fixed base point x0 ∈ S(1) and suppose one has the bound

c−1
0 � u(x0) � c0. (4.41)

By theorem 4.1, the geometry of the annular region A( 1
2 , 2) about S(1) is uniformly controlled

by the boundary data (γ , H) and so by integration of the static vacuum equations u Ric = D2u
along paths in A( 1

2 , 2), one has

C−1
0 � u � C0, (4.42)

in A( 3
4 , 3

2 ), where C0 depends only on c0 and (γ , H). �
To remove the dependence of C0 in (4.42) on c0 in (4.41), we need better control on the

large-scale behavior of u. To do this, it is proved in [A2, lemma 3.6], that there is a constant
K, depending only on C0, such that for all s � 1,

sup
Sc(s)

|du| � K(vc(s))
−1, (4.43)

where vc(s) = area Sc(s) and Sc(s) is any component of the geodesic sphere S(s). We point
out that (4.43) holds for general static vacuum solutions, not only those in Eo for instance.
The estimate (4.43) is proved by studying the behavior of the harmonic potential log u on the
Ricci-flat 4-manifold (M, gM, log u) and then reducing to (M, gM, u).

Consider now the conformally equivalent metric

g̃ = u2g. (4.44)

It is well-known that the static vacuum Einstein equations (1.1) are equivalent to the equations
R̃ic = 2(dν)2 � 0, �g̃ν = 0, ν = log u. The metric g̃ thus has non-negative Ricci curvature
with harmonic potential ν. These are exactly the properties used to prove (4.43), and a brief
examination of its proof shows that (4.43) also holds with respect to g̃, i.e.

sup
S̃c(s)

|dν |̃g � K (̃vc(s))
−1, (4.45)

again with K = K(C0). Since (M, g) is asymptotically flat and u → const at infinity, the area
growth of geodesic spheres ṽ(s) in (M, g̃) satisfies ṽ(s)/s2 → ω2, where ω2 = areaS2(1). It
follows then from the volume comparison theorem for Ricci curvature, (cf [Pe]), that

ṽ(s) � ω2s2, (4.46)
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for all s � 1. As above, by integration of (4.45) along a geodesic ray starting from a suitable
base point x1 ∈ S(1) out to infinity, one sees that (4.39) holds then globally on M\B(1),
with U0 again depending only on c0 in (4.41). Using the static vacuum equations, the same
integration along paths gives such a bound within B(1). Thus, we see that (4.39) follows from
(4.41).

To prove (4.41), suppose one has a static vacuum solution (M, g, u) with

u(x0) = ε. (4.47)

Renormalize u to ū = u/u(x0), so that ū(x0) = 1 and ū → ε−1 at infinity. Then (4.41) holds,
and hence so does (4.45) and (4.46). Again by integration along geodesics starting at x0 and
diverging to infinity, it follows that

u � U1,

where U1 depends only on the boundary data of �B. This proves the lower bound in (4.41).
To prove the upper bound, suppose instead

u(x0) = ε−1. (4.48)

Then again we renormalize u to ū as above, so that now u → ε at infinity. This does not
directly give a lower bound on ε via (4.45) and (4.46) as above. However, one may proceed
as follows. First, it is well-known that static vacuum solutions come in ‘dual’ pairs, in that if
(M, g, ū) is a static vacuum solution, then so is (M, ĝ, û) with ĝ = ū4g, û = ū−1, cf [A2] for
instance. Then (4.45) and (4.46) hold for (M, ĝ, û) which as before by integration gives an
upper bound û � U1 at infinity. Since near infinity, û � ε−1, this again gives a bound on ε−1.
This completes the proof of (4.39).

To prove (4.40), note that (4.41) has been proved above, and hence by the maximum
principle and normalization u → 1 at infinity, (4.40) holds in the exterior region M\B(1).
Thus, one only needs to consider the behavior near ∂M. For this, suppose (M, g, u) is a static
vacuum solution, C2,α up to ∂M with u � 0 on M̄ = M ∪ ∂M. If H � H0 > 0 on ∂M, we
claim that necessarily

u > 0 on ∂M.

For if u = 0 at some point z ∈ ∂M, then by (4.6), �∂Mu + HN(u) = 0 at z. Since 0 = u(z) is
a global minimum for u, one has �∂Mu � 0 and by the Hopf maximum principle, N(u) > 0
at z. This gives a contradiction if H > 0. The same arguments prove the existence of a lower
bound (4.40) by a contradiction argument, taking a sequence and passing to a limit, using
theorem 4.1. �

The previous results now lead quite easily to the following main result of this section.

Corollary 4.3. The boundary map

�o : Eo → Metm,α (∂M) × Cm−1,α
+ (∂M),

is almost proper.

Proof. Let (M, gi, ui) be a sequence of static vacuum solutions inEo, with �o(gi, ui) = (γi, Hi).
Supposing (γi, Hi) → (γ , H) in Metm,α (∂M) × Cm−1,α

+ (∂M), we need to prove that the
sequence (gi, ui) has a subsequence converging in Cm,α (M), modulo diffeomorphisms, to a
limit (M, g, u) ∈ E .

The curvature bound (4.1) and control of the intrinsic and extrinsic geometries of the
boundary metrics first implies the metrics gi cannot collapse within bounded distance to ∂M,
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i.e. there is a fixed constant i0 > 0 such that the injectivity radius of (M, gi) satisfies

in jgi (x) � i0,

for distgi (x, ∂M) � K. By the compactness theorem in, for instance [AT], it follows that a
subsequence of (M, gi) converges in Cm,α , (and C∞ in the interior), uniformly on bounded
domains containing ∂M, to a limit (M′, g). One has ∂M′ = ∂M and g is a complete Riemannian
metric on M′, Cm,α up to ∂M and C∞ in the interior.

By corollary 4.2, the potential functions ui also converge in Cm,α , (in a subsequence) to
a limit potential function u on M′, and the pair (g, u) gives a solution of the static vacuum
Einstein equations. Since u = lim ui, it follows that

u � U0, (4.49)

on M′, for U0 as in (4.39). Clearly the boundary metric and mean curvature of (M′, g, u) are
given by the limit values (γ , H). To prove that (M′, g, u) ∈ E , one then needs to prove that
(M′, g, u) is asymptotically flat and M′ is diffeomorphic to M. Note that since the convergence
above is only uniform on compact sets, a priori there need not be any relation between the
asymptotic structure of (M′, g, u) and (M, gi, ui) for any given i.

The equation (4.43) holds on each (M, gi, ui) and by corollary 4.2, the constant K is
uniform, independent of i. Moreover, as in the proof of corollary 4.2, there is a geodesic ray
σ = σi starting at any fixed base point in S(1) and diverging to infinity, such that on the
component Sc(s) of S(s) containing σ , one has

sup
Sc(s)

|dui| � Ks−2,

where K is independent of i. Since ui is harmonic, by elliptic regularity, (and scaling), a similar
estimate holds for higher derivatives of ui, and via the static vacuum equations, it follows that

sup
Sc(s)

|Rgi | � Cs−3,

with again C independent of i. This means that the metrics (M, gi, ui) become asymptotically
flat at infinity uniformly, at a rate independent of i. For R sufficiently large, R � R0 independent
of i, the geodesic spheres S(R) and annuli A(R, 2R) are close to Euclidean spheres and annuli,
(when scaled by R−1), and hence the geometry is close to that of Euclidean space; there can
be no branching or joining of different components of S(R) for R � R0. This implies that the
limit (M′, g, u) has a single asymptotically flat end, and M′ is diffeomorphic to M. �

Remark 4.4. The results above also show that the boundary map �B is almost proper
not only on Eo but also its closure Eo

. In other words, if (M, gi, ui) is a sequence of
static vacuum solutions in Eo with boundary data (γi, Hi) and (γi, Hi) → (γ , H) in
Metm,α (∂M) × Cm−1,α (∂M), then (M, gi, ui) converges in Cm,α (in a subsequence) to a limit
(M, g, u) in Eo

, with H � 0.
To see this, note that the constant � in theorem 4.1 does not depend on a positive lower

bound on H, and so (4.1) and (4.2) hold for the sequence (M, gi, ui) above. Of course we
are using here the fact that ∂M is outer-minimizing on the sequence (M, gi, ui). Similarly in
corollary 4.2, the upper bound U0 on ui does not depend on a lower bound for H. One may
then use the argument concerning (4.47) to show that ui cannot go to 0 on M away from ∂M.
The proof of corollary 4.3 also does not require a bound on H away from 0.

It is also worth pointing out a brief examination of the proof shows that the results of this
section only require that ∂M is outer-minimizing in a neighborhood of arbitrarily small but
fixed size (depending on (M, g, u)) about ∂M.
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5. Degree of �P

By [Sm], a smooth proper Fredholm map F : B1 → B2 of Fredholm index 0 between connected
Banach manifolds B1, B2 has a well-defined degree (mod 2). Namely, if y is a regular value of
F , then F−1(y) is a finite set of points, and deg

Z2
F is just the cardinality of F−1(y) (mod 2).

In fact if B1 and B2 are oriented, then F has a well-defined degree in Z, cf [ET, BFP].
From the discussion in section 1, the boundary map �B : E+ → Met(∂M) × C+(∂M),

although Fredholm, is not proper. However, by theorem 1.2, the restricted boundary map
�o : Eo → Met(∂M) × C+(∂M) is almost proper. This in fact suffices to obtain a Z2-valued
degree on natural domains within Eo.

Thus, as in the introduction, let ∂Eo be the boundary of Eo within the space ES of static
vacuum solutions. Hence, (M, g, u) ∈ ∂Eo if and only if (M, g, u) satisfies (1.10) but not (1.8).
Let Z = �B(∂Eo) ⊂ Metm,α (∂M) × Cm−1,α (∂M) be the image of ∂Eo under the boundary
map �B and set

EP = (�o)−1([Metm,α (∂M) × Cm−1,α (∂M)]\Z).

Then, by theorem 1.2 and construction, the induced boundary map

�P : EP → [Metm,α (∂M) × Cm−1,α (∂M)]\Z (5.1)

is proper. In particular EP has only finitely many components EPi and on each component the
Z2-valued Smale degree is well-defined.

This discussion leads to theorem 1.3. Let EP0 be the component of EP containing the
standard round flat solution, equal to the exterior of the round ball in R

3, with

�P0 : EP0 → T0.

Theorem 5.1. The degree of �P0 satisfies

deg
Z2

�P0 = 1. (5.2)

Proof. The proof is based on the black hole uniqueness theorem [I, R, BM], that the
Schwarzschild metrics

gSch(m) =
(

1 − 2m

r

)−1

dr2 + r2gS2(1), u =
√

1 − 2m

r
, (5.3)

r � 2m, are the unique AF static vacuum metrics with a smooth horizon H = {u = 0}.
The induced metric on ∂M is S2(2m)—the round metric γ2m of radius 2m on S2. The mean
curvature satisfies H = 0. Of course the Schwarzschild metrics are not in ES, but instead lie at
the boundary ∂ES.

Consider any sequence {(gi, ui)} ∈ EP0 for which �P0 (gi, ui) = (γi, Hi) → (γ2m, 0)

smoothly. Clearly, {(gi, ui)} is a divergent sequence in Eo. By corollary 4.3 and remark 4.4,
a subsequence of {(gi, ui)} converges smoothly to a static vacuum limit (M, g, u). (Of course
one may have u = 0 on ∂M). On this limit,

H = 0,

at ∂M, so that ∂M is a minimal surface. From (4.6) one has 2�∂Mu = u(|A|2 + sγ ) � 0,
and hence it follows from the maximum principle that u = 0 on ∂M. Via the static vacuum
equations (1.1), this implies further that A = 0 and N(u) = const at ∂M. The black hole
uniqueness theorem then implies that any such limit is the Schwarzschild metric, and so
unique up to scaling. Thus one has uniqueness for the boundary data (γ , 0), so that almost all
boundary metrics γ cannot be realized with H = 0 at ∂M, (the no-hair result).
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Given this background, suppose

deg
Z2

�P0 = 0. (5.4)

Then for any regular value (γ , H) of �P0 , the finite set (�P0 )−1(γ , H), if non-empty, consists
of at least two distinct static vacuum solutions (g1, u1), (g2, u2). The regular values of �P0 are
generic (of second category) in the range space, by the Sard–Smale theorem. Choose then a
sequence of regular values (γi, Hi) → (γ+1, 0) smoothly. (We set m = 1/2 here). Suppose for
now that (�P0 )−1(γi, Hi) is non-empty; this will proved to be the case later.

Let (g1
i , u1

i ), (g2
i , u2

i ) be any pair of corresponding distinct sequences in (�P0 )−1(γi, Hi).
By corollary 4.3 and remark 4.4, the sequences (g1

i , u1
i ), (g2

i , u2
i ) have Cm,α convergent

subsequences to limits (g1
∞, u1

∞), (g2
∞, u2

∞) in EP0 and by the uniqueness above

g1
∞ = g2

∞ = gSch(m),

with m = 1/2, with u1
∞ = u2

∞ = u in (5.3).
This implies that near gSch, the boundary map �P0 is not locally 1-1, and so presumably

D�B has a non-trivial kernel at gSch. (Note however that gSch /∈ ES). We claim this is impossible.
To prove the claim, let

gSch = u2dθ2 + gSch,

be the four-dimensional Schwarzschild metric on R
2 × S2, and similarly let

g j
i = (

u j
i

)2
dθ2 + gj

i ,

be the four-dimensional static Ricci-flat metrics associated to (gj
i , u j

i ). By lemma 2.2, without
loss of generality we may assume that each g j

i is in Bianchi gauge with respect to gSch, so that,
as in (2.10) and (2.11),

βgSch

(
g j

i

) = 0,

for j = 1, 2 and i sufficiently large. By the smoothness of the convergence above, one may
write

g j
i = gSch + ε

j
i κ

j
i + O

((
ε

j
i

)2)
, (5.5)

where L(κ
j

i ) = 0 and L is the linearized Einstein operator (2.6) at gSch. The data g j
i , gSch and

κ
j

i are all smooth, (up to the boundary). The forms κ
j

i are only unique up to multiplicative
constants, which will be determined by choosing ε

j
i so that the C1,α norm of g j

i − gSch equals
ε

j
i . Thus the C1,α norm of κ

j
i is on the order of 1. Note that κ

j
i decays to 0 at infinity, so it is

basically supported within compact regions of M. Let εi = max(ε1
i , ε

2
i ). Then

ε−1
i

(
g2

i − g1
i

) = κi + O(εi),

where κi = ε−1
i (ε2

i κ
2
i − ε1

i κ
1
i ) → κ , where the convergence is in C1,α′

, (in a subsequence). As
previously, we need to show that the convergence is strong, so that κ �= 0. This follows from
a standard linearization and bootstrap argument, as preceding (4.16). In more detail, dropping
the index i, we have �gj u j = 0, so that

�g2 (u1 − u2) = (�g2 − �g1 )u1.

In local harmonic coordinates, the right side this equation is on the order of ε in C1,α , and hence
by elliptic regularity, u1 − u2 is on the order of ε in C3,α . Substituting this in the difference of
the static equations ujRicgj = D2

gj u j and arguing in the same way shows that the difference
g1 − g2 is then also on the order of ε in C3,α . This proves the strong convergence.

It follows that the limit form

κ = (h, u′), (5.6)
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is a non-zero C1,α weak solution of the linearized static vacuum equations L(κ) = 0 at gSch

and since �P0 (g1
i , u1

i ) = �P0 (g2
i , u2

i ), one has

γ ′
h = H ′

h = 0 at ∂M, (5.7)

where γ ′
h = hT = h|∂M . As discussed following (4.16), elliptic regularity implies that (h, u′)

is smooth and so in particular a strong solution. Below we will use the fact that the data (h, u′)
are in fact real-analytic up to ∂M, (again by elliptic regularity).

We claim that

(h, u′) = 0 on M, (5.8)

which will give a contradiction. This is of course a linearized version of the black hole
uniqueness theorem. It is possible that (5.8) can be proved by linearizing one of the existing
proofs of black hole uniqueness in [I, R, BM]. However, we have not succeeded in doing this
and instead (5.8) is proved in a manner similar to the proof of theorem 5.1.

First, the linearization of (4.6) gives, at ∂M,

u′sγ = 2�u′.

Since sγ > 0, the maximum principle implies that u′ = 0 at ∂M. Next we claim A′ = 0.
To see this, the vacuum equations give u Ric = D2u and D2u = N(u)A + (D2u)T when
evaluated on tangent vectors to ∂M. Taking then the variation and evaluating tangentially
gives (u Ric)′ = 0 so 0 = (D2u)′ = (D2)′u + D2u′. The first term on the right
vanishes when evaluating tangentially and hence so does the second term. This implies
0 = (N(u)A)′ = N(u)A′ +N(u′)A = N(u)A′. Since N(u) = const �= 0, it follows that A′ = 0.
Similarly, taking the variation of the divergence or vector constraint gives N(u′) = const.

Clearly N(u′) = m′, (up to constants). A simple examination of the proof of black hole
uniqueness in [R] applied to an Einstein deformation as in (5.3) and satisfying (5.7), shows
easily that N(u′) = 0 at ∂M. (One does not obtain any further information, since the bulk
data in the Robinson proof, via divergence identities, are quadratic in the deviation from
Schwarzschild).

Thus the variations (γ ′, u′, A′, N(u′)) of all the Cauchy data are trivial. As in the proof of
theorem 4.1, we use a bootstrap argument to prove that the data (h, u′) vanish to infinite order
at ∂M, in geodesic gauge.

Thus, using geodesic normal coordinates near ∂M, write

g = dt2 + gt,

where t(x) = dist(x, ∂M). We may assume, (by adding an infinitesimal deformation of the
form δ∗V if necessary), that h preserves this gauge, so that h0α = 0, i.e. h(N, ·) = 0, N = ∂t ,
near ∂M. By the discussion above, we have u′ = N(u′) = 0 at ∂M and similarly h = ∇Nh = 0
at ∂M, so that

u′ = O(t2) and h = O(t2). (5.9)

The variation of the potential equation �Mu = 0 gives

�u′ = −�′u = 〈D2u, h〉 − 〈β(h), du〉, (5.10)

where β is the Bianchi operator, (cf [Be]). Since β(h) = 0 at ∂M, this gives �u′ = 0 at ∂M
and hence NN(u′) = 0 at ∂M, so that

u′ = O(t3). (5.11)

Next the linearization of the Riccati equation gives (∇NA)′ = −(A2)′ − (RN )′ = −(RN )′ at
∂M. One computes ∗RN = −(RicT ) = −u−1(D2u)T , so (∗RN )′ = u−2u′D2u − u−1(D2)′u −
u−1D2u′, as a form on T (∂M). It follows from (5.11) that (∗RN )′ = 0 at ∂N and hence
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(∇NA)′ = 0 so that

h = O(t3). (5.12)

Next taking the normal derivative of (5.10) gives

�N(u′) = 〈∇ND2u, h〉 + 〈D2u,∇Nh〉 + 〈∇Nβ(h), du〉 + 〈β(h),∇Ndu〉,
which vanishes at ∂M and hence u′ = O(t4). Substituting this in the linearized Riccati equation
above and using previous estimates gives h = O(t4), and so on. It follows that (h, u′) vanish to
infinite order at ∂M. Since (h, u′) are real-analytic up to ∂M, (in geodesic gauge), this implies
that h = u′ = 0 on M, i.e. (5.8) holds.

It remains only to prove that there are regular values (γ , H) of �P0 near (γ+1, 0) whose
inverse image under �P0 is non-empty. However, (5.8) proves that Ker D�B = 0 at the
Schwarzschild metric with boundary data (γ+1, 0). By continuity and the black hole uniqueness
theorem, it follows that KerD�B = 0, for all solutions with boundary data (γ , H) near
(γ+1, 0) in Im �P0 . Thus, all such boundary data are regular values of �P0 . This completes the
proof. �

Remark 5.2. Although the proof of theorem 5.2 implies that D�B has trivial kernel at the
Schwarzschild metric gSch, one does not expect this to be the case for the cokernel. In fact,
one expects that CokerD�B is infinite dimensional, in that any boundary variation of the form
(k, 0), where k is a variation of the boundary metric, is not tangent to a curve of static metrics
with H = 0 at ∂M. This amounts to the linearized version of the no-hair theorem, (which has
not been proved as far as we are aware). In particular, we expect D�B is not Fredholm at gSch.

Remark 5.3. The proof of theorem 5.2 above shows that Im �P0 and hence Im �B contains
regular values. In particular, this means that the image Im �B has non-empty interior and is in
fact an open map near the Schwarzschild metric with boundary the horizon r = 2m. We point
out that it has been an open question as to whether �B has any regular values. For instance,
the analysis of Miao in [M1] shows that the exterior of the standard round unit ball B3(1) in
flat R

3 is a critical point of �B. In fact it is still unknown whether Im �B has open interior
near such standard boundary data (γ+1, 2).

Remark 5.3 indicates how little has been understood, and how much remains to be
understood, regarding the global behavior of the boundary map �B. The proof of the almost
properness of �o in theorem 1.2 uses the outer-minimizing property (1.8) in two key, but
essentially independent ways. First, it is used to obtain the a priori curvature and related
estimates discussed in section 4, i.e. to prevent blow-up behavior at the boundary. For this,
only a small-scale version of (1.8) is necessary, in that one needs stability of the area of the
boundary only to fourth order at ∂M, and this only in small discs in ∂M. Second, it is used to
keep the boundary ∂M properly embedded in M, i.e. to prevent the passage from embedded to
immersed behavior. Again, as mentioned in remark 4.4, only a local version of (1.8) is needed
for this.

For further progress, an important issue is to find some condition on the boundary data
(γ , H) which ensures that the two properties above hold. A natural question is whether
positivity of the Gauss and mean curvatures is sufficient.
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