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Abstract. Motivated by stationary vacuum solutions of the Einstein field equations, we study

singular harmonic maps from domains of 3-dimensional Euclidean space to the hyperbolic plane

having bounded hyperbolic distance to Kerr harmonic maps. In the degenerate case, we prove

that every such harmonic map admits a unique tangent harmonic map at the extreme black

hole horizon. The possible tangent maps are classified and shown to be shifted ‘extreme Kerr’

geodesics in the hyperbolic plane that depend on two parameters, one determined by angular

momentum and another by conical singularities. In addition, rates of convergence to the tangent

map are established. Similarly, expansions in the asymptotically flat end are presented. These

results, together with those of Li-Tian [27, 28] and Weinstein [41, 42], provide a complete

regularity theory for harmonic maps from R3 \z-axis to H2 with prescribed singularities. Lastly,

the analysis is utilized to prove existence of the so called near horizon limit, and to compute

the associated near horizon geometries of extreme black holes.

1. Introduction

Stationary vacuum black hole solutions play a fundamental role in general relativity, in par-
ticular they are expected to serve as the final state of gravitational collapse for isolated systems.
It is therefore of paramount importance to classify these solutions and understand their prop-
erties. In this regard, the classical black hole uniqueness ‘no hair’ conjecture asserts that the
only 4-dimensional asymptotically flat solution of this type is the Kerr black hole. An important
milestone in this context is the Hawking rigidity theorem [21], which guarantees that a station-
ary vacuum spacetime possesses a rotational Killing field making it axisymmetric, under the
assumption of analyticity. More recent work by Alexakis, Ionescu, and Klainerman [3, 4, 5] has
made significant progress towards removing the analyticity hypothesis. It is with the axisym-
metry condition that harmonic maps make an entrance to this topic. In particular, the original
uniqueness result of Robinson [34] for a connected nondegenerate horizon relied on a divergence
identity, which through the observations of Bunting [10] and Mazur [30] could be explained
from the point of view of a harmonic map structure. In fact, it was earlier shown by Ernst
[18] and Carter [12] that the axisymmetric stationary vacuum Einstein equations reduce to an
axisymmetric singular harmonic map system from Euclidean 3-space R3 to the hyperbolic plane
H2. See the article of Chruściel-Costa [14] (as well as [15]) for further details on the uniqueness
result for a single black hole.

A significant open problem is whether the uniqueness theorem continues to hold if the horizon
connectedness hypothesis is dropped. During the 1990’s, upon a suggestion of Christodoulou
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to address this issue, Weinstein extensively studied the associated harmonic map problem in
[41, 42, 43, 44, 45], proving existence for every possible configuration of multiple nondegenerate
stationary vacuum black holes. With each such solution, the question of geometric regularity
and analytic regularity arises. Geometric regularity concerns the ability to smoothly extend the
spacetime metric across the axes, and is directly related to the potential presence of conical
singularities. On the other hand, analytic regularity concerns the differentiability properties of
the harmonic map up to the orbit space boundary after the singular part of the map has been
removed. This latter problem was addressed independently by Li-Tian [27, 28] and Weinstein
[42], who established regularity at the interior of axis rods; a similar analysis was performed by
Nguyen [32] for the Einstein-Maxwell equations. The study of conical singularities in multi-black
hole solutions was initiated over a century ago by Bach and Weyl in [7], where they proved that in
the static (non-rotating) case conical singularities must be present on the axes between horizons.
They further showed that the eccentricity of cone angles may be interpreted as the magnitude of
a force keeping the individual black holes in equilibrium. Much later, Bunting and Masood-ul-
Alam [11] completely resolved the static uniqueness problem for nondegenerate horizons with an
elegant argument using the positive mass theorem of Schoen-Yau [36] and Witten [47]; see [24]
for the degenerate case. In the general stationary setting, it is conjectured that each solution
with multiple horizons possesses a conical singularity on some finite axis rod joining two black
holes. This has been confirmed in special solutions with an involutive symmetry by Li-Tian
[26], or with small angular momentum [27]. Additionally, Weinstein [43] proved the conjecture
for rapidly counter-rotating black holes as well as for those that are sufficiently close, while
Neugebauer-Hennig [31] treated configurations with only two black holes.

The purpose of the present work is to complete the study of regularity and asymptotics for
singular harmonic maps arising from stationary vacuum spacetimes, by analyzing solutions in
all relevant regimes, namely in neighborhoods of the punctures, and in the asymptotically flat
end; neighborhoods of axis points and poles have been previously treated by Li-Tian [27, 28]
and Weinstein [42]. The notion of a puncture refers to the regime associated with a degenerate
horizon (extreme black hole), while a pole represents the intersection of an axis rod with a
nondegenerate horizon. In particular, we classify tangent maps at the punctures and establish
rates of convergence, while precise asymptotic expansions are obtained in the asymptotically flat
end. The analysis at punctures is further motivated by the mass-angular momentum inequality
studied by Chruściel-Li-Weinstein [16], Dain [17], and Schoen-Zhou [37]; see [23] for the charged
case. This Penrose-type inequality is ultimately tied to the grand cosmic censorship conjecture
[33], and is open for the case of multiple horizons. In connection with this problem, Chruściel-
Li-Weinstein [16, Remark 2.2] stated that it is of interest to investigate and determine the
regularity of solutions in the neighborhood of punctures. As further consequences of our results,
we establish existence of the so called near horizon limit and classify the associated near horizon
geometries of extreme horizon punctures, proving that they depend on two parameters. One
parameter represents the angular momentum of the black hole, while the other is shown to be
given explicitly in terms of the angle defects of adjacent axis rods.
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2. Background and Statement of Results

Any solution of the asymptotically flat axisymmetric stationary vacuum Einstein equations
may be obtained by specifying a harmonic map from R3 \ Γ to H2 with prescribed singularities
along Γ, where Γ denotes the z-axis in R3 and H2 represents the hyperbolic plane of curvature
−2. The Dirichlet energy density of the map in question takes the form

e(u, v) = |∇u|2 + e4u|∇v|2,

and the corresponding harmonic map equations are given by

∆u− 2e4u|∇v|2 = 0,

∆v + 4∇u · ∇v = 0.
(2.1)

The Laplacian ∆ is with respect to the flat metric on R3 parameterized in cylindrical coordinates
(ρ, z, ϕ), while the hyperbolic metric is parameterized in horospherical coordinates

gR3 = dρ2 + dz2 + ρ2dϕ2, gH2 = du2 + e4udv2.

Due to the nature of the singularities on Γ, the total Dirichlet energy of these harmonic maps
is always infinite.

A special role in our analysis will be played by the extreme Kerr harmonic map. This map
may be expressed in polar coordinates (r, θ), with θ ∈ [0, π] and such that ρ = r sin θ, z = r cos θ,
by

uK = − ln sin θ − 1

2
ln
(

(r +m)2 +m2 +
2m3(r +m) sin2 θ

Σ

)
,

vK = m2 cos θ(3 − cos2 θ) +
m4 sin4 θ cos θ

Σ
,

(2.2)

where m > 0 is a parameter representing mass (or equivalently angular momentum divided by
mass) and Σ = (r+m)2 +m2 cos2 θ. Notice that since sin θ = 0 on Γ the function uK is singular
there, however

uK + ln sin θ is smooth on R3.

Moreover, vK has a jump discontinuity at the origin, and in fact

(2.3) vK
∣∣
Γ+

= 2m2, vK
∣∣
Γ−

= −2m2,

where Γ+ = Γ ∩ {z > 0} and Γ− = Γ ∩ {z < 0}. Although the Dirichlet energy of the extreme
Kerr harmonic map is infinite, it has a finite renormalized energy where the renormalized energy
density of a map (u, v) is defined as

e′(U, v) = |∇U |2 + e4u|∇v|2,

where U = u+ ln(r sin θ). This type of behavior exhibited by the extreme Kerr map will serve
as a model for general solutions. Furthermore, the multi-extreme black hole family of axially
symmetric harmonic maps constructed by Chruściel-Li-Weinstein [16] have bounded H2-distance
to extreme Kerr harmonic maps near each puncture, the point on Γ where the v-component has
a jump discontinuity.

The first result concerns the asymptotics of harmonic maps, possessing prescribed singularities
modeled on extreme Kerr, near punctures. Without assuming axisymmetry, it is shown that a
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tangent map exists and rates of convergence to the tangent map are provided. In what follows,
B1 will denote the ball of unit radius centered at the origin in R3, while S2 denotes the unit
sphere parameterized by the angles (θ, ϕ) with N and S representing the north and south poles,
∇S2 indicates covariant differentiation on the sphere, and H1 will be the Sobolev space of square
integrable functions with square integrable derivatives.

Theorem 2.1. Let (u, v) ∈ H1
loc(B1 \ Γ) be a harmonic map from B1 \ Γ to H2. Suppose that

|u+ ln sin θ| ≤ Λ in B1 \ Γ,

e′(u+ ln(r sin θ), v) ∈ L1
loc(B1 \ {0}),

with

(2.4) v = a on B1 ∩ Γ+ and v = −a on B1 ∩ Γ− in the trace sense,

for some positive constants Λ and a. Then (u+ ln sin θ, v) ∈ C3,α(B1 \ {0}) for any α ∈ (0, 1),
and there exists a harmonic map (ū, v̄) from S2 \ {N,S} → H2 satisfying

(ū+ ln sin θ, v̄) ∈ C3,α(S2), v̄(N) = a, v̄(S) = −a,

such that

(2.5) max
S2

(
|(r∂r)l∇k

S2(u(r) − ū)| + e(k−3−α)ū|(r∂r)l∇k
S2(v(r) − v̄)|

)
≤ Crβ,

for l + k ≤ 3, where C and β are positive constants and u(r) = u(r, ·), v(r) = v(r, ·).

We note that the asserted C3,α-regularity in the punctured ball follows from Li-Tian [27] and
Weinstein [41, 42]. The primary contribution of Theorem 2.1 is the existence and uniqueness of
the limit (ū, v̄), along with the rate of convergence as stated in (2.5). It is an interesting point
that although axisymmetry is not assumed a priori for (u, v), the tangent map must always admit
the axial symmetry as is shown below. It should also be noted that we do not assume that the
renormalized energy is bounded up to the origin in this theorem, that is e′(u + ln(r sin θ), v) ∈
L1(Br) for some r > 0 is not a hypothesis, however the conclusions imply that this is so.

Moreover, observe that the weight e4u(x) ∼ dist(x,Γ)−4 is sufficiently singular to guarantee that
the trace of v on Γ± makes sense. The next result classifies all the tangent harmonic maps in
the above theorem, and proves their integrability in the sense of Allard-Almgren [6].

Theorem 2.2. Let (ū, v̄) ∈ H1
loc(S2 \ {N,S}) be a harmonic map from S2 \ {N,S} → H2

satisfying

|ū+ ln sin θ| ≤ Λ on S2,

|∇S2(ū+ ln sin θ)|2 + e4ū|∇S2 v̄|2 ∈ L1(S2),
v̄(N) = a and v̄(S) = −a in the trace sense,

(2.6)

for some positive constants Λ and a. Then there exists a constant b ∈ (−1, 1) such that

(2.7) ū(s) =
1

2
ln

[
1

2a
cosh(−2s+ tanh−1 b)

]
, v̄(s) = a tanh(−2s+ tanh−1 b),

where s = 1
2 ln 1−cos θ

1+cos θ is arclength parameterization in H2. Moreover, the kernel of the linearized

harmonic map at (ū, v̄) is 1-dimensional, and is generated by (∂bū, ∂bv̄).
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Interpretations may be given for the parameters defining the tangent map. Namely, a = 2J is
twice the angular momentum of the black hole, and as is described in detail below, the parameter
b encodes the difference of angle defects associated with Γ+ and Γ−. Additionally, the problem is
invariant under v 7→ ±v+c for any constant c. Thus, the boundary conditions a and −a in (2.6)
can be replaced with any two numbers whose difference is ±2a. For any choice of parameters a
and b, the tangent map expression (2.7) represents a geodesic in hyperbolic space parameterized
by arclength, which is a translation of the tangent map of an extreme Kerr, and agrees with the
extreme Kerr geodesic when b = 0.

The proof of Theorem 2.1 may be described as follows. Once regularity is established for the
renormalization (u+ln sin θ, v), the theorem consists of studying an isolated singularity problem
for the renormalized map, which shares some common features with the tangent map problem
for harmonic maps, see for instance Adams-Simon [1], Gulliver-White [19], Hardt [20], Schoen-
Uhlenbeck [35], Simon [38, 39, 40], White [46]. In these works, a monotonicity formula with
respect to the energy density integrated on balls centered at singular points is crucial. However,
such a monotonicity formula is absent for the renormalized energy density in our setting. Never-
theless, due to the negative curvature of the target space H2, we instead can adapt the method
of Schoen-Uhlenbeck [35] and Li-Tian [27] to establish uniform bounds for derivatives of the
renormalized map, away from the isolated singular points. Then, after developing some impor-
tant weighted estimates, we adapt the method of Simon [38, 39, 40] for establishing asymptotics
of solutions to elliptic equations with gradient type structure. Due to the last conclusion of
Theorem 2.2, the integrability hypothesis of Allard-Almgren [6] (see also [40]) is satisfied within
the context of the current problem, which yields the rate rβ instead of the slower one | ln r|−γ for
some γ > 0. Here the constant β can be chosen optimally, depending on the second eigenvalue
of the linearized operator at (ū, v̄) for maps from S2 \ {N,S} → H2 with prescribed singularity.

Having studied the asymptotics of solutions at punctures, we now establish expansions at
infinity. These will imply that the associated stationary vacuum spacetime is asymptotically
flat. The proof, however, is quite different from Theorem 2.1. More precisely, we show that
the harmonic map system essentially becomes decoupled as r → ∞, allowing for a separate
analysis of each equation via eigenfunction expansions. Some related results were obtained by
Beig-Simon [9] (see also Weinstein [42, Proposition 5]) for stationary vacuum solutions of the
Einstein equations. In what follows, the complement of the closed ball in R3 will be denoted by
B

c
1.

Theorem 2.3. Let (u, v) ∈ H1
loc(B

c
1 \ Γ) be a harmonic map from B

c
1 \ Γ to H2. Suppose that

|u+ ln ρ| + |v| ≤ Λ in B
c
1 \ Γ,

e′(u+ ln ρ, v) ∈ L1
loc(B

c
1),

with

v = a on B
c
1 ∩ Γ+ and v = −a on B

c
1 ∩ Γ− in the trace sense,

for some positive constants Λ and a. Then (u+ ln ρ, v) ∈ C3+α(B
c
1) for all α ∈ (0, 1) and∣∣u(r) + ln ρ− c0 − c1r

−1 − Y1r
−2 − Y2r

−3
∣∣
C3(S2) ≤ Cr−3−β,∣∣v(r) − 1

2a cos θ(3 − cos2 θ) − c2r
−1 sin4 θ

∣∣
C3(S2) ≤ Cr−1−β,
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for some β ∈ (0, 1) where c0, c1, c2, C are constants and Y1, Y2 are degree 1 and 2 spherical
harmonics, respectively. Moreover, corresponding asymptotics are valid for the r-derivatives of
(u, v).

We now discuss a geometric interpretation of the parameter b appearing in Theorem 2.2, as
well as an application of the asymptotic analysis at punctures. Consider the domain of outer
communication M4 of a stationary axisymmetric 4-dimensional spacetime. Stationarity and
axisymmetry imply that the isometry group admits R× U(1) as a subgroup. Under reasonable
hypotheses [14], the orbit space M4/[R×U(1)] is homeomorphic to the right half plane {(ρ, z) |
ρ > 0}, and the spacetime metric may be expressed in Weyl-Papapetrou coordinates as

(2.8) g = −e2Udτ2 + ρ2e−2U (dϕ+ wdτ)2 + e−2U+2α(dρ2 + dz2),

where the U(1) symmetry is generated by ∂ϕ for ϕ ∈ [0, 2π) and the time translation symmetry is
generated by ∂τ . By setting u = U − ln ρ, the vacuum Einstein equations [41] may be expressed
as the harmonic map equations for (u, v) : R3 \ Γ → H2, and a set of quadrature equations all
given by

(2.9) ∆u− 2e4u|∇v|2 = 0, ∆v + 4∇u · ∇v = 0,

(2.10) wρ = 2ρe4uvz, wz = −2ρe4uvρ,

(2.11) ρ−1(αρ − 2uρ − ρ−1) = u2ρ − u2z + e4u(v2ρ − v2z), ρ−1(αz − 2uz) = 2uρuz + 2e4uvρvz.

Observe that the integrability conditions for (2.10) and (2.11) are equivalent to the harmonic
map equations (2.9). Moreover, the z-axis is decomposed into a sequence of intervals {Γl}l∈I
for some index set I, called rods. There are two types of rods, those on which |∂ϕ| vanishes
are designated as axis rods, while all others are referred to as horizon rods. It should be noted
that a horizon rod Γh may also be identified by the vanishing in norm of a Killing field, namely
∂τ + Ωh∂ϕ where Ωh = −w|Γh

is a constant indicating the angular velocity of the horizon. The
intersection point of an axis rod with a horizon rod is called a pole, while the intersection point
of two axis rod closures is referred to as a puncture. These latter points represent the horizons
of extreme black holes. The rod structure for the extreme Kerr harmonic map given by (2.2)
consists of two semi-infinite axis rods, and a single puncture at the origin indicating a degenerate
horizon.

Theorems 2.1 and 2.3 address the asymptotics of harmonic maps at punctures and in the
asymptotically flat end, respectively. The question of regularity in the vicinity of axis points,
and of poles, was previously studied by Li-Tian and Weinstein. In this situation, the origin of
coordinates may be taken at the axis point or pole, with the nonnegative z-axis representing
an axis rod, and the nonpositive z-axis representing either another portion of the axis or the
horizon rod for the latter situation. Since blow-up of the harmonic map should then only occur
on both the nonnegative and nonpositive z-axis, or just the nonnegative z-axis, the harmonic
functions ln ρ or ln

√
r − z are used to renormalize the map, respectively. In contrast with the

case of punctures, the tangent map at axis points and poles is trivial. Li-Tian [27, Theorem
1.1], [28, Theorem 2.2] and Weinstein [41, Theorem 5], [42, Corollary 1] were able to obtain
C3,α regularity in neighborhoods of axis points and C1,α regularity in neighborhoods of poles
for the renormalized maps, using the small energy regularity approach. Moreover, they assumed
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separate extra hypotheses, such as a minimizing property [27, 28] or axisymmetry and bounded
renormalized energy up to the origin [41, 42]. Theorem 2.1, 2.2, and 2.3, together with the cited
results due to Li-Tian [27, 28] and Weinstein [41, 42], provide a complete regularity theory for
harmonic maps from R3 \ Γ to H2 with prescribed singularities.

An important issue when constructing the spacetime metric g in (2.8) from a harmonic map, is
the possible presence of conical singularities along axis rods. A conical singularity at point (0, z0)
on an axis rod Γl has an associated angle defect θ ∈ (−∞, 2π) arising from the 2-dimensional
cone formed by the orbits of ∂ϕ over the line z = z0. More precisely

(2.12)
2π

2π − θ
= lim

ρ→0

2π · Radius

Circumference
= lim

ρ→0

∫ ρ
0 e

α−U

ρe−U
= eα(0,z0).

The existence of this limit as well as the fact that this quantity is constant along each axis rod,
follows from the interior axis regularity established by Li-Tian [27, 28] and Weinstein [41, 42];
specifically the constancy is a consequence of (2.11). We will denote the logarithmic angle defect

ln
(

2π
2π−θ

)
, on an axis rod Γl, by bl. Moreover, the absence of a conical singularity corresponds

to a zero logarithmic angle defect. In this case, the metric is smoothly extendable across the
axis, which may be checked via a change to Cartesian coordinates. The conical singularity on
Γl is said to have an angle deficit if bl > 0, and an angle surplus if bl < 0. Physically, the
logarithmic angle defect’s sign determines the character of the force associated with the axis
rod, through the following formula computed in [41, pg. 921], namely

Force =
1

4

(
e−bl − 1

)
.

We are able to give a precise relation between the tangent map parameter b, and the logarithmic
angle defects in the spacetime metric. It should be noted that the conical singularity difference
is independent of the angular momentum parameter in the tangent map.

Theorem 2.4. Let (u, v) be as in Theorem 2.1, and consider the associated stationary vacuum
spacetime (M4,g). If the two axis rods Γl+1 and Γl lying directly to the north and south of the
puncture pl = 0 each have logarithmic angle defect bl+1 and bl, respectively, then

bl+1 − bl = ln

(
1 + b

1 − b

)
.

Another concept associated with extreme black holes is that of the near horizon geometry
(NHG). These spacetimes arise through a limiting process in the vicinity of a degenerate black
hole (puncture), which infinitely magnifies the spacetime geometry at the horizon, see [25] for
a detailed review and [2] for the use of harmonic maps to construct these solutions. In the
physics literature, a rigorous justification of the so called near horizon limit that gives rise to
the NHG, is often not addressed. Here we show that this limit exists as a consequence of
the asymptotic analysis studied in this work, and compute the limit. More precisely, utilizing
polar coordinates centered at a puncture, the NHG metric is obtained from the scaling r = ϵr̄,
τ = ϵ−1τ̄ , ϕ = ϕ̄+ Ωϵ−1τ̄ by letting ϵ→ 0, where Ω is the angular velocity of the black hole. A
relevant example is the extremal Kerr throat metric [8], which is derived from the extreme Kerr
solution.
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Theorem 2.5. Let (u, v) be as in Theorem 2.1, and consider the associated stationary vacuum
spacetime (M4,g). Then the near horizon limit exists, and gives rise to the near horizon metric

gNH = − r̄2
(

1 + cos2 θ + 2b cos θ

2a
√

1 − b2

)
dτ̄2 +

2a
√

1 − b2 sin2 θ

1 + cos2 θ + 2b cos θ

(
dϕ̄+

r̄

a
dτ̄

)2

+
a
√

1 − b2

2
(1 + cos2 θ + 2b cos θ)

(
dr̄2

r̄2
+ dθ2

)
.

In particular, this agrees with the extremal Kerr throat metric when a = 2J and b = 0, where
J denotes angular momentum.

The paper is organized as follows. In Section 3, we prove regularity and uniform estimates
for the renormalized maps on a portion of the cylinder I × S2, where I is an interval. This is
inspired by Li-Tian [27] and Schoen-Uhlenbeck [35], with the primary goal consisting of certain
linear form estimates that are important for later applications. Section 4 is dedicated to the
proof of Theorem 2.2. The proof of Theorem 2.1 is presented in Section 5, by adapting the
method of Simon [38, 39], while the proof of Theorem 2.3 is given in Section 6. Lastly, conical
singularities and near horizon geometries are studied, and Theorems 2.4 and 2.5 are established,
in Section 7.

Acknowledgements. The authors would like to thank YanYan Li for helpful discussions.

3. Regularity and Uniform Estimates on the Cylinder

In this section, we discuss the regularity of harmonic maps away from the origin and derive
necessary estimates of the L∞-norms of harmonic maps and their derivatives in terms of the L2-
norm of a specific combination of derivatives. The analysis here will be applied to study both the
convergence near black holes and in the asymptotically flat end of associated stationary vacuum
spacetimes. It should be pointed out that the results of this section do not require axisymmetry.

Let (r, ϕ, θ) be spherical coordinate on R3 with r > 0, ϕ ∈ [0, 2π), θ ∈ [0, π], and set

t = − ln r.

Note that the flat metric may be expressed with respect to the two radial coordinates as

dr2 + r2g0 = e−2t(dt2 + g0),

where

g0 = dθ2 + sin2 θdϕ2

is the round metric on S2. We will denote the product metric on R× S2 by

(3.1) g = dt2 + g0.

In order to write the harmonic map equations as a differential system on the cylinder, let ∇g

and ∆g be the gradient operator and Laplace-Beltrami operator with respect to the metric g,
that is

∇g = (∂t,∇g0), ∆g = ∂2t + ∆g0 .
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By a straightforward computation, the harmonic map system (2.9) reduces to the following set
of equations on R× S2:

∆gu− ∂tu− 2e4u|∇gv|2 = 0,

∆gv − ∂tv + 4∇gu · ∇gv = 0,
(3.2)

where · represents the inner product given by g. Furthermore, by setting

(3.3) L = ∆g − ∂t = ∂2t − ∂t + ∆g0 ,

the system of equations (3.2) may be rewritten as

Lu− 2e4u|∇gv|2 = 0,

Lv + 4∇gu · ∇gv = 0.

Let N be the north pole on S2 and S = −N the south pole. We will consider the model
function ln sin θ on S2. Note that ln sin θ is singular only at N and S. A simple computation
shows

L(ln sin θ) = −1.

Let ω ∈ C∞([−2, 2] × S2 \ {N,S}) be a positive function satisfying

(3.4) ∥ lnω − ln sin θ∥C10([−2,2]×S2) ≤ A1,

for some constant A1 ≥ 1. We can take a larger A1, if necessary, to have

(3.5) ∥L lnω∥C8([−2,2]×S2) ≤ A1.

In the rest of the section, ω is fixed to satisfy (3.4). The reason for carrying out the analysis with
a general singular function instead of restricting to the model, is that different models will be
needed when applying the results below to study expansions near horizons and in asymptotically
flat ends of stationary vacuum spacetimes.

In what follows we introduce a renormalized function Φ given by

(3.6) u = Φ − lnω,

and consider weak solutions of the renormalized harmonic map system

LΦ − 2e4u|∇gv|2 = L lnω,

Lv + 4∇gu · ∇gv = 0.
(3.7)

It will be assumed that (Φ, v) ∈ H1((−2, 2) × S2) satisfies

|Φ| ≤ Λ on (−2, 2) × S2,(3.8) ∫ 2

−2

∫
S2

(|∇gΦ|2 + ω−4|∇gv|2) dvolg0dt <∞,(3.9)

for some constant Λ ≥ 1, and in trace sense

v = a on ( − 2, 2) × {N}, v = −a on ( − 2, 2) × {S},(3.10)

for some positive constant a. Here H1 represents the Sobolev space of L2 functions having
square integrable derivatives. Moreover, by referring to (Φ, v) as a weak solution this should be
understood in the distributional sense, see Li-Tian [27] for further details.
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Remark 3.1. Consider the Dirichlet problem

Lξ = L lnω on (−2, 2) × S2,

ξ = 0 on {−2, 2} × S2.
(3.11)

By (3.5), there exists a unique solution ξ ∈ C9([−2, 2] × S2) of (3.11) satisfying

∥ξ∥C9([−2,2]×S2) ≤ CA1,

for some universal constant C > 0. It may be checked that (Φ − ξ, v) then satisfies (3.7) with
a homogeneous right-hand side, and with a different ω in (3.6). Therefore, in studying the
regularity of (Φ, v), it may be assumed without loss of generality that L lnω = 0.

We we begin with an energy estimate for the density

eg(Φ, v) = |∇gΦ|2 + e4u|∇gv|2.

Notice that in the proof below, only the first equation of (3.7) will be utilized.

Lemma 3.2. Let (Φ, v) ∈ H1((−2, 2) × S2) be a weak solution of (3.7) satisfying (3.8), (3.9),
and (3.10) for some positive constants Λ and a. Suppose that L lnω = 0. Then∫ R

−R

∫
S2
eg(Φ, v) dvolg0dt ≤

5000Λ2

(2 −R)2

for any 0 < R < 2.

Proof. Let η = η(t) ∈ C2
c (−2, 2) be a smooth cut-off function satisfying 0 ≤ η ≤ 1,

η = 1 on (−R,R) and |η′| + (2 −R)|η′′| ≤ 10

2 −R
.

Using η2 as a test function in the first equation of (3.7), we have∫ 2

−2

∫
S2

[
Φ
( d2
dt2

η2 +
d

dt
η2
)
− 2η2e4u|∇gv|2

]
dvolg0dt = 0.

Since |Φ| ≤ Λ, it follows that∫ 2

−2

∫
S2
η2e4u|∇gv|2 dvolg0dt ≤

1000Λ

(2 −R)2
.(3.12)

Next, using η2Φ as a test function in the first equation of (3.7), we have∫ 2

−2

∫
S2

[
∂tΦ∂t(Φη

2) + η2|∇g0Φ|2 − 1

2
Φ2 d

dt
η2 + 2η2Φe4u|∇gv|2

]
dvolg0dt = 0,

and by the Cauchy inequality

∂tΦ∂t(Φη
2) ≥ 1

2
|∂tΦ|2η2 − 4Φ2|∂tη|2.

Hence ∫ 2

−2

∫
S2
η2|∇gΦ|2 dvolg0dt ≤

1000Λ2

(2 −R)2
+ 4

∫ 2

−2

∫
S2
η2e4u|∇gv|2 dvolg0dt.

Combining the above inequality with (3.12) produces the desired result. □
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We now proceed to study the regularity and uniform estimates of (Φ, v). Li-Tian [27] proved
that (Φ, v) ∈ C3,α for any 0 < α < 1, if it is a local minimizer. The minimality was used only
in the proof of a monotonicity-type formula, which can be derived from a Caccioppoli-type (or
reverse Poincaré) inequality in our setting as Nguyen [32, pg. 424] pointed out. For any P0 ∈ S2,
we denote by BR(P0) the open geodesic ball centered at P0 with radius R > 0, and set

QR(t0, P0) = (t0 −R, t0 +R) × BR(P0).

The following Caccioppoli-type inequality may be viewed as corresponding to Lemma 4.1 of
Li-Tian [27].

Lemma 3.3. Let (Φ, v) ∈ H1((−2, 2) × S2) be a weak solution of (3.7) satisfying (3.8), (3.9),
and (3.10) for some positive constants Λ and a. Suppose that L lnω = 0, c1 ∈ [−Λ,Λ] is an
arbitrary constant, and c2 = a if N ∈ B2δ(P0) while c2 = −a if S ∈ B2δ(P0) otherwise c2 is an
arbitrary constant. Then for any Qδ(t0, P0) ⊂ (−2, 2) × S2 with 0 < δ < 1/2 it holds that∫

Qδ/2(t0,P0)
eg(Φ, v) dvolg ≤ C

δ2

∫
Qδ(t0,P0)\Qδ/2(t0,P0)

(
|Φ − c1|2 + ω−4|v − c2|2

)
dvolg,

where C is a positive constant depending only on Λ and A1.

Proof. Set ḡ = e−2tg. A simple computation shows that

|∇ḡf |2 = e2t|∇gf |2, ∆ḡf = e2t(∆gf − ∂tf) = e2tLf,

for any f ∈ C2(R× S2). Moreover, if L lnω = 0 then (3.7) is equivalent to

(3.13)

{
∆ḡΦ − 2e4u|∇ḡv|2 = 0,

∆ḡv + 4∇ḡu · ∇ḡv = 0.

We now have that (Φ, v) is a weak solution of (3.13) on (−2, 2) × S2.
Let η ∈ C2

c (Qδ(t0, P0)) be a cutoff function with 0 ≤ η ≤ 1, η = 1 on Qδ/2(t0, P0), and

|∂kt η| + |∇k
g0η| ≤ 10δ−k for k = 1, 2. Note that the second equation of (3.13) can be written

in the divergence form div(e4u∇ḡv) = 0. Then using η2e4u(v − c2) as a test function in this
equation, and applying the Cauchy inequality produces

0 =

∫
Qδ(t0,P0)

e4u∇ḡv · ∇ḡ(η2(v − c2)) dvolḡ

=

∫
Qδ(t0,P0)

(
e4u|∇ḡv|2η2 + 2η(v − c2)e

4u∇ḡv · ∇ḡη
)
dvolḡ

≥ 1

2

∫
Qδ(t0,P0)

e4u|∇ḡv|2η2 dvolḡ − 4

∫
Qδ(t0,P0)\Qδ/2(t0,P0)

e4u|∇ḡη|2(v − c2)
2 dvolḡ.

It follows that

(3.14)

∫
Qδ(t0,P0)

e4u|∇ḡv|2η2 dvolḡ ≤ 80

δ2

∫
Qδ(t0,P0)\Qδ/2(t0,P0)

e4u(v − c2)
2 dvolḡ.
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Using η2(Φ − c1) as a test function in the first equation of (3.13) yields∫
Qδ(t0,P0)

∇ḡΦ · ∇ḡ(η2(Φ − c1)) dvolḡ

= −2

∫
Qδ(t0,P0)

e4u|∇ḡv|2η2(Φ − c1) dvolḡ

≤ 4Λ

∫
Qδ(t0,P0)

e4u|∇ḡv|2η2 dvolḡ.

By the Cauchy inequality again, and (3.14), we conclude that∫
Qδ(t0,P0)

|∇ḡΦ|2η2 dvolḡ ≤ C

δ2

∫
Qδ(t0,P0)\Qδ/2(t0,P0)

(
(Φ − c1)

2 + e4u(v − c2)
2
)
dvolḡ.

Now observe that |u+ lnω| ≤ Λ implies∫
Qδ(t0,P0)

(
|∇ḡΦ|2 + e4u|∇ḡv|2

)
η2 dvolḡ

≤ C

δ2

∫
Qδ(t0,P0)\Qδ/2(t0,P0)

(
(Φ − c1)

2 + ω−4(v − c2)
2
)
dvolḡ.

Since e−2t has positive upper and lower bounds on (−2, 2) × S2, the gradients and the volume
forms can be changed from ḡ = e−2tg to g. This gives the desired inequality. □

Theorem 3.4. Let (Φ, v) ∈ H1((−2, 2)× S2) be a weak solution of (3.7) satisfying (3.8), (3.9),
and (3.10) for some positive constants Λ and a. Then ∂mt ∂

n
ϕ(Φ, v) ∈ C3,α((−2, 2) × S2) for any

α ∈ (0, 1) and m+ n ≤ 3. Moreover, for any 1 < R < 2 the following estimates hold∑
m+n≤3

∥∂mt ∂nϕ(Φ, v)∥C3,α((−R,R)×S2) ≤ C,

and
3∑

l=0

∑
m,n≤3

ωl
∣∣∣∂lθ∂mt ∂nϕ(v − a)

∣∣∣ ≤ Cω3+α on (−R,R) × S2+,

3∑
l=0

∑
m,n≤3

ωl
∣∣∣∂lθ∂mt ∂nϕ(v + a)

∣∣∣ ≤ Cω3+α on (−R,R) × S2−,

(3.15)

where S2+ = {0 ≤ θ < π/2}, S2− = {π/2 < θ ≤ π}, and C is a positive constant depending only
on Λ, A1, a, α,R.

Proof. By Remark 3.1, we can assume that L lnω = 0. Given Lemmas 3.2 and 3.3, the proof of
the desired result follows from the proof of Theorems 1.1 and 5.1 of Li-Tian [27]. Although not
stated here, it should be noted that (Φ, v) is in fact smooth in the t and ϕ variables. Away from
the singular set of lnω, these results were established by Schoen-Uhlenbeck [35]. □

Theorem 3.4 gives the basic regularity and estimates of weak solutions (Φ, v) to the harmonic
map equations (3.7), up to a certain order. This, however, is not sufficient to adapt the method of
Simon [38] concerning analysis of asymptotics. For this purpose we will establish, in Proposition
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3.8 below, L∞-estimates for derivatives of (Φ, v) in terms of a linear form involving certain L2-
norms of derivatives, with constants depending on Λ and A1 from (3.4). If δ < θ < π − δ for
some δ > 0, such linear estimates follow from standard elliptic theory for linear equations with
smooth coefficients. Extra work is needed if θ is close to 0 and π, due to the singular behavior
of u. We will incorporate some ideas from Li-Tian [27].

Let us first make a simple but important observation. Note that the second equation of (3.7)
may be regarded as a linear equation for v. Indeed, upon introducing the corresponding linear
operator L = L+ 4∇gu · ∇g, we have

Lh = Lh− 4
(
∇g lnω −∇gΦ

)
· ∇gh,

according to (3.6). Notice that Φ ∈ C3,α((−2, 2) × S2) for any α ∈ (0, 1) by Theorem 3.4, and
∇g lnω is singular at the north and south poles N , S. We begin with two preperatory lemmas.
The first rephrases Lemma 4.4 of [27] in our specific setting1.

Lemma 3.5. Let (Φ, v) ∈ H1((−2, 2) × S2) be a weak solution of (3.7) satisfying (3.8), (3.9),
and (3.10), and let f be continuous on (−2, 2) × S2+ with

|f(t, ϕ, θ)| ≤ K(sin θ)1+α on (−2, 2) × S2+,

for some constants α ∈ (0, 1) and K > 0. Suppose that h ∈ C2((−2, 2) × S2+) is a solution of
the equation

Lh+ 4∇gu · ∇gh = f on (−2, 2) × S2+,
and satisfies h = 0 on (−2, 2) × {N}. Then

(3.16) |h(t, ϕ, θ)| ≤ C(sin θ)3+α
(
K + ∥h∥L∞((−2,2)×S2+)

)
on (−1, 1) × S2+,

where C is a positive constant depending only on α, A1, and the C1-norm of Φ on (−2, 2)×S2+.

The proof of Lemma 3.5 is based on a barrier function argument. The coefficient 4 in the
gradient term is responsible for the constraint on the largest possible order of decay near the
north pole, as expressed in (3.16). We refer to Lemma 4.4 of [27] for further details.

Lemma 3.6. Let h ∈ C2((−1, 1) × S2+) be a solution of

Lh+ (sin θ)−1b · ∇gh = (sin θ)−2f on (−1, 1) × S2+.

(i) Assume that b ∈ L∞((−1, 1) × S2+) and f ∈ Lp((−1, 1) × S2+) for some p > 3. Then for
any −1/2 < t < 1/2 and P = (ϕ, θ) ∈ S2+ with 0 < θ < π/4 it holds that

|∇gh(t, P )| ≤ C(sin θ)−1
(
∥h∥L∞(Qδ(t,P )) + (sin θ)

− 3
p ∥f∥Lp(Qδ(t,P ))

)
,

where δ = 1
2 min{distg0(P,N), 1/2} and C is a positive constant depending only on p and the

L∞-norm of b on (−1, 1) × S2+.
(ii) Assume that b, f ∈ Ck,β((−1, 1) × S2+) for some k ≥ 0 and β ∈ (0, 1). Then for any

−1/2 < t < 1/2 and P = (ϕ, θ) ∈ S2+ with 0 < θ < π/4 it holds that

|∇l
gh(t, P )| ≤ C(sin θ)−l

(
∥h∥L∞(Qδ(t,P )) + ∥f∥∗Ck,β(Qδ(t,P ))

)
, l = 1, . . . , k + 2,

1The ∆ρ∞ in (4.38) of [27] should be ∇ρ∞, see their proof on page 20. In addition, Lemma 4.4 was misquoted

as Lemma 4.3 at the start of its proof.
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where δ = 1
2 min{distg0(P,N), 1/2}, the notation ∥ · ∥∗

Ck,β(Qδ(t,P ))
indicates scaled Hölder norms,

and C is a positive constant depending only on k, β, and the Ck,β-norm of b on (−1, 1) × S2+.

Proof. The first conclusion follows from the scaled W 2,p estimates for linear elliptic equations,
and the second one follows from scaled Schauder estimates. □

The next result is a preliminary form of a portion of the estimates needed for the asymptotic
analysis relying on Simon’s method. Notice that the right-hand side of the estimates depend
on all derivatives of v. Ultimately, estimates which effectively only depend on t-derivatives are
needed for applications, and will be achieved subsequently.

Proposition 3.7. Let (Φ, v) ∈ H1((−2, 2) × S2) be a weak solution of (3.7) satisfying (3.8),
(3.9), and (3.10) for some positive constants Λ and a. Then for any 0 < α < 1, 1 ≤ R1 < R2 <
2, and l,m, n = 0, 1, 2, 3 the following estimates hold∣∣∣∂lθ∂mt ∂nϕ(v − a)

∣∣∣ ≤ Cω3+α−l∥ω−2∇gv∥L2((−R2,R2)×S2) on (−R1, R1) × S2+,∣∣∣∂lθ∂mt ∂nϕ(v + a)
∣∣∣ ≤ Cω3+α−l∥ω−2∇gv∥L2((−R2,R2)×S2) on (−R1, R1) × S2−,

where C is a positive constant depending only on a, α,Λ, A1, R1, and R2.

Proof. We give arguments only for S2+, as the proof for S2− is analogous. By Corollary 4.1 of
[27], we have the weighted Poincaré inequality

∥ω−2(v − a)∥L2((−R2,R2)×(S2∩{θ<3/4})) ≤ C∥ω−2∇gv∥L2((−R2,R2)×(S2∩{θ<3/4})),

where C is a positive constant depending only on A1 and R2. We now view the second equation
of (3.7) as a linear equation of v − a. Let Ω ⊂⊂ (−R2, R2) × (S2 ∩ {θ < 5/8}) and 0 < α < 1.
Then Theorem 3.4 above and Theorem 1 of [32] yield

sup
Ω
ω−(3+α)|(v − a)| ≤ C∥ω−2(v − a)∥L2((−R2,R2)×(S2∩{θ<3/4})),

where C is a positive constant depending only on a, α,Λ, and Ω. We point out that this estimate
is proved with a De Giorgi iteration. The difficulty arises from the singularity of the coefficient
∇gu in the second equation of (3.7). We refer to the proof of Theorem 1 in [32] for further
details. The higher order estimates follow from Lemma 3.6. □

We are ready to establish the main estimate in this section. These pointwise bounds for the
radial derivatives will play a fundamental role in the asymptotic analysis near black holes.

Proposition 3.8. Let (Φ, v) ∈ H1((−2, 2) × S2) be a weak solution of (3.7) satisfying (3.8),
(3.9), and (3.10) for some positive constants Λ and a. Suppose that ∇g0∂t lnω = 0 and
∂t(L lnω) = 0. Then on [−1, 1] × S2 the following estimate holds

|∂tΦ| + |∂tv| ≤ C
(∫ 2

−2

∫
S2

[
|∂tΦ|2 + e4u(|∂tv|2 + |∂t lnω|2|∇g0v|2)

]
dvolg0dt

)1/2
,
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and for any α ∈ (0, 1), k = 1, 2, 3, and j = 0, 1, 2, 3 the higher order derivatives satisfy

|∂kt ∇j
g0Φ| + ωj−3−α|∂kt ∇j

g0v|

≤ C
(∫ 2

−2

∫
S2

(
|∂tΦ|2 + e4u|∂tv|2

)
dvolg0dt

)1/2

+ C∥∂t lnω∥C5((−2,2)×S2)

(∫ 2

−2

∫
S2
e4u|∇g0v|2 dvolg0dt

)1/2
,

where C is a positive constant depending only on a, α,Λ, and A1.

Proof. We will write (Φt, vt) = (∂tΦ, ∂tv) for brevity. Since ∂t(L lnω) = 0, differentiating
equations (3.7) with respect to t produces

LΦt − 4e4u∇gv · ∇gvt − 8e4u|∇gv|2Φt + 8e4u|∇gv|2∂t lnω = 0,

Lvt + 4∇gu · ∇gvt + 4∇gΦt · ∇gv − 4∇g∂t lnω · ∇gv = 0.
(3.17)

For the last term in the first equation, write |∇gv|2 = |∂tv|2+ |∇g0v|2 and move the portion with
|∇g0v|2 to the right-hand side. Moreover, note that in the last term of the second equation, the
portion involving ∇g0v is absent since ∇g0∂t lnω = 0. Equations (3.17) may then be rewritten
as

LΦt + b11 · ∇gvt + b12Φt + b13vt = b0,

Lvt + 4∇gu · ∇gvt + b21 · ∇gΦt + b22vt = 0,
(3.18)

where

b11 = −4e4u∇gv, b12 = −8e4u|∇gv|2,
b13 = 8e4u∂tv∂t lnω, b0 = −8e4u|∇g0v|2∂t lnω,

and

b21 = 4∇gv, b22 = −4∂2t lnω.

By Theorem 3.4 and the conditions on ω, we have

|b11| ≤ Cωαe2u, |b12| ≤ Cω2α, |b13| ≤ Cωαe2u,

|b0| ≤ Cωα|∂t lnω|e2u|∇g0v|, |b21| ≤ Cω2+α, |b22| ≤ C.
(3.19)

Step 1. Energy estimates. Fix a constant t1 ∈ (1, 2) and a smooth cutoff function η(t) ∈
C2
c (−2, 2) with η = 1 on (−t1, t1). Take η2Φt as a test function for the first equation of (3.18).

By the Cauchy inequality and (3.19), for any ε > 0 we have∫ 2

−2

∫
S2
|∇gΦt|2η2 dvolg0dt ≤ ε

∫ 2

−2

∫
S2
e4u|∇gvt|2η2 dvolg0dt

+ C(ε)

∫ 2

−2

∫
S2

(
|Φt|2 + e4u|vt|2 + e4u|∂t lnω|2|∇g0v|2

)
dvolg0dt.

We may write the second equation of (3.18) as

e−4udivg(e4u∇gvt) − ∂tvt + b21 · ∇gΦt + b22vt = 0,
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and take η2e4uvt as a test function. Again, the Cauchy inequality and (3.19) imply∫ 2

−2

∫
S2
e4u|∇gvt|2η2 dvolg0dt ≤ ε

∫ 2

−2

∫
S2
|∇gΦt|2η2 dvolg0dt

+ C(ε)

∫ 2

−2

∫
S2
e4u|vt|2 dvolg0dt.

Choosing ε = 1/2 and summing the above two inequalities produces

(3.20)

∫ t1

−t1

∫
S2

(|∇gΦt|2) + e4u|∇gvt|2) dvolg0dt ≤ CΞ2,

where for brevity we have set

Ξ =
(∫ 2

−2

∫
S2

[
|Φt|2 + e4u|vt|2 + e4u|∂t lnω|2|∇g0v|2

]
dvolg0dt

)1/2
.

Step 2. H2-estimates and C0-estimates. Observe that (3.18) and (3.19) yield

|LΦt| ≤ C(e2u|∇gvt| + |Φt| + e2u|vt| + e2u|∂t lnω||∇g0v|),
|Lvt| ≤ C(eu|∇gvt| + |∇gΦt| + |vt|).

and by (3.20) it follows that∫ t1

−t1

∫
S2

(|LΦt|2 + |Lvt|2) dvolg0dt ≤ CΞ2.

Next, fix a constant t2 ∈ (1, t1) and note that the interior H2-estimates then give

∥(Φt, vt)∥H2([−t2,t2]×S2) ≤ C
(
∥(Φt, vt)∥L2([−t1,t1]×S2) + ∥(LΦt, Lvt)∥L2([−t1,t1]×S2)

)
≤ CΞ.

Therefore, by the Sobolev embedding theorem we obtain

(3.21) max
[−t2,t2]×S2

(|Φt| + |vt|) ≤ CΞ.

This implies the first inequality in the proposition.

Step 3. By Step 2 and the Sobolev embedding theorem, we also have

(3.22) ∥∇gvt∥L6([−t2,t2]×S2) ≤ CΞ.

Now write the first equation of (3.18) as

LΦt = (sin θ)−2f,

where

f = sin2 θ(−b11 · ∇gvt − b12Φt − b13vt + b0).

Fix a constant t3 ∈ (1, t2), let P = (ϕ, θ) ∈ S2+\{N}, and take δ < t2−t3 with δ < distg0(P,N)/2.
Then for any t ∈ [−t3, t3], we find by Lemma 3.6 (i) with p = 6 that

|∇gΦt(t, P )| ≤ C(sin θ)−1
(
∥Φt∥L∞(Qδ(t,P )) + (sin θ)−

1
2 ∥f∥L6(Qδ(t,P ))

)
.

In addition, take any α ∈ (0, 1) and observe that (3.19) shows

|f | ≤ Cωα(|∇gvt| + |Φt| + |vt| + |(∂t lnω)e2u∇g0v|),
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so that (3.21) and (3.22) yield

∥f∥L6(Qδ(t,P )) ≤ Cωα
(
Ξ + ∥(∂t lnω)e2u∇g0v∥L∞([−t2,t2]×S2)

)
.

Therefore, by choosing α = 1/2 we obtain

(3.23) |∇gΦt(t, P )| ≤ Cω−1
(
Ξ + ∥(∂t lnω)e2u∇g0v∥L∞([−t2,t2]×S2)

)
.

In the following, α ∈ (0, 1) will again be arbitrary. By Proposition 3.7, for any t ∈ [−t2, t2]
we have

|vt| ≤ Cω3+α∥ω−2∇gv∥L2([−t1,t1]×S2)

≤ Cω3+α
(
∥e2u∂tv∥L2([−t1,t1]×S2) + ∥e2u∇g0v∥L2([−t1,t1]×S2)

)
.

Notice that the first term of the second line in this inequality is a part of Ξ, and therefore

(3.24) |vt| ≤ Cω3+α
(
Ξ + ∥e2u∇g0v∥L2([−2,2]×S2)

)
.

Similarly, for any t ∈ [−t2, t2] it holds that

(3.25) |∇g0v| ≤ Cω2+α
(
Ξ + ∥e2u∇g0v∥L2([−2,2]×S2)

)
.

Using this in (3.23) then shows that

(3.26) |∇gΦt| ≤ Cω−1
(
Ξ + ∥∂t lnω∥L∞([−2,2]×S2)∥e2u∇g0v∥L2([−2,2]×S2)

)
,

for any t ∈ [−t3, t3]. We point out that the decay order 3 + α in (3.24) is optimal. However,
(3.24) is not the desired estimate due to the absence of ∂t lnω with the L2-norm of e2u∇g0v.

Next, write the second equation of (3.18) as

Lvt + 4∇gu · ∇gvt = −b21 · ∇gΦt − b22vt.

By combining (3.26) with the estimate of b21 in (3.19), for any t ∈ [−t3, t3] we get

|b21 · ∇gΦt| ≤ Cω1+α
(
Ξ + ∥∂t lnω∥L∞([−2,2]×S2)∥e2u∇g0v∥L2([−2,2]×S2)

)
.(3.27)

Also in this domain, (3.24) implies that

|b22vt| = 4|∂2t lnω||vt| ≤ Cω3+α
(
Ξ + ∥∂2t lnω∥L∞([−2,2]×S2)∥e2u∇g0v∥L2([−2,2]×S2)

)
,

where C is a constant depending only on Λ, A1, and α. Moreover, let t4 ∈ (1, t3) and note that
Lemma 3.5 together with (3.21) produces

(3.28) |vt| ≤ Cω3+α
(
Ξ + ∥∂t lnω∥C1([−2,2]×S2)∥e2u∇g0v∥L2([−2,2]×S2)

)
for any t ∈ [−t4, t4], where again C is a positive constant depending only on Λ, A1, and α.
Observe that (3.28), rather than (3.24), is the desired estimate for vt.

In order to estimate derivatives of vt, write the second equation of (3.18) as

Lvt + 4∇gu · ∇gvt = −(sin θ)−2(sin θ)2(b21 · ∇gΦt + b22vt).

Then (3.27) and (3.28) show that the right-hand side is controlled for t ∈ [−t4, t4] by

(sin θ)2|b21 · ∇gΦt + b22vt| ≤ Cω3+α
(
Ξ + ∥∂t lnω∥C1([−2,2]×S2)∥e2u∇g0v∥L2([−2,2]×S2)

)
.

We may now fix t5 ∈ (1, t4) and apply the first part of Lemma 3.6 to obtain

(3.29) |∇gvt| ≤ Cω2+α
(
Ξ + ∥∂t lnω∥C1([−2,2]×S2)∥e2u∇g0v∥L2([−2,2]×S2)

)
,

for any t ∈ [−t5, t5]. This gives the desired estimate for ∇g0vt, but not ∂tvt.
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In order to improve the derivative estimate for Φt, write the first equation of (3.18) as

LΦt = f̃ , f̃ = b0 − b11 · ∇gvt − b12Φt − b13vt.

Combining (3.19), (3.25), (3.28), and (3.29) yields

|f̃ | ≤ C
(
Ξ + ∥∂t lnω∥C1([−2,2]×S2)∥e2u∇g0v∥L2([−2,2]×S2)

)
,

for any t ∈ [−t5, t5]. Fix t6 ∈ (1, t5), and observe that the interior W 2,p-estimates along with
(3.21) produce

|∇gΦt| ≤ C
(
∥Φt∥L∞([−t5,t5]×S2) + ∥f̃∥L∞([−t5,t5]×S2)

)
≤ C

(
Ξ + ∥∂t lnω∥C1([−2,2]×S2)∥e2u∇g0v∥L2([−2,2]×S2)

)
,

(3.30)

for any t ∈ [−1/2, 1/2]. This is the desired estimate for ∇gΦt; compare (3.30) with (3.26).
In summary, we have derived the desired estimates for ∂tΦ, ∂tv, ∂t∇g0v, and ∂t∇gΦ, as

expressed in (3.21), (3.28), (3.29), and (3.30), respectively. We point out that (3.29) does not
yield the appropriate estimate for ∂2t v. By a bootstrap argument using the second part of Lemma
3.6, one can establish the necessary estimates of higher order derivatives. We refer to Section 5
of Li-Tian [27] for more details concerning the bootstrap procedure. □

In a similar manner, we are able to estimate difference of two solutions.

Proposition 3.9. Let (Φ, v), (Φ̃, ṽ) ∈ H1((−2, 2) × S2) be weak solutions of (3.7) satisfying
(3.8), (3.9), and (3.10) for some positive constants Λ and a. Then on [−1, 1] × S2, for any
α ∈ (0, 1) and j, k = 0, 1, 2, 3, it holds that

|∂kt ∇j
g0(Φ − Φ̃)| + ωj−3−α|∂kt ∇j

g0(v − ṽ)|

≤ C
(∫ 2

−2

∫
S2
|Φ − Φ̃|2 + ω−4|v − ṽ|2 dvolg0ds

)1/2
,

where C is a positive constant depending only on a, α,Λ, and A1.

Proof. Set (w1, w2) = (Φ − Φ̃, v − ṽ) and ũ = Φ̃ − lnω. By (3.7), a simple subtraction yields

Lw1 − 2e4u|∇gv|2 + 2e4ũ|∇gṽ|2 = 0,

Lw2 + 4∇gu · ∇gv − 4∇gũ · ∇gṽ = 0.

Furthermore, a straightforward computation produces

e4u|∇gv|2 − e4ũ|∇gṽ|2 = e4u∇g(v + ṽ) · ∇gw2 + e4ũ|∇gṽ|2(e4w1 − 1),

and

∇gu · ∇gv −∇gũ · ∇gṽ = ∇gu · ∇gw2 + ∇gṽ · ∇gw1.

Therefore

Lw1 − 2e4u∇g(v + ṽ) · ∇gw2 − 2e4ũ|∇gṽ|2(e4w1 − 1) = 0,

Lw2 + 4∇gu · ∇gw2 + 4∇gṽ · ∇gw1 = 0.
(3.31)

We note that the term involving e4w1 − 1 in the first equation can be viewed as a linear term in
w1. Hence, the equation (3.31) has a similar structure as (3.17), with the terms involving lnω
absent here. We may proceed similarly as in the proof of Proposition 3.8; details are omitted. □
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4. Singular Harmonic Maps on the Sphere

In this section, we will classify singular harmonic maps on the sphere as well as their Jacobi
fields. The harmonic map equations from open sets of S2 to H2 can be written as

∆g0u− 2e4u|∇g0v|2 = 0,

∆g0v + 4∇g0u · ∇g0v = 0,
(4.1)

or equivalently,

divg0(∇g0u− 2e4uv∇g0v) = 0,

divg0(e4u∇g0v) = 0.

Let a,Λ > 0 be constants and set ω = sin θ. It will be assumed that (u + lnω, v) ∈ H1(S2)
satisfies

(4.2) |u+ lnω| ≤ Λ on S2,

(4.3)

∫
S2

(
|∇g0(u+ lnω)|2 + ω−4|∇g0v|2

)
dvolg0 <∞,

and

(4.4) v(N) = a and v(S) = −a in the trace sense.

Under the additional hypothesis of axisymmetry, meaning that the map is independent of the
coordinate ϕ, by analyzing the system of ODE all such solutions are explicitly given and param-
eterized by two parameters a and b. When b = 0, this corresponds to the extreme Kerr near
horizon geometry map. In the case that the harmonic map arises from the near horizon limit of
a smooth axisymmetric stationary vacuum spacetime, this result is known to the physics com-
munity; see the survey article by Kunduri-Lucietti [25, Theorem 4.3] and the references therein.
Similarly, when the harmonic map is assumed to be axisymmetric, Chruściel-Li-Weinstein [16,
Appendix B] obtain the same conclusion. Below, we will show that even without the symmetry
assumption, the same conclusion holds.

Proposition 4.1. Consider a weak solution of (4.1) with (u+lnω, v) ∈ H1(S2) satisfying (4.2),
(4.3), and (4.4). Then, (u, v) = (ua,b, va,b) where

ua,b(θ) = − ln sin θ − 1

2
ln

2a
√

1 − b2

1 + cos2 θ + 2b cos θ
,

va,b(θ) = a · b+ b cos2 θ + 2 cos θ

1 + cos2 θ + 2b cos θ
,

for some constant b ∈ (−1, 1).

Proof. Set U = u + lnω, and observe that the map (U, v) may be viewed as t-independent on
(−2, 2) × S2, so that it is a weak solution of (3.7) satisfying (3.8), (3.9), and (3.10). Therefore,
Theorem 3.4 implies that (U, v) ∈ C3(S2).
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We first work under the additional hypothesis of axisymmetry. The harmonic map (u, v) is
now regular in S2 \ {N,S}, and by assumption only depends on θ. For brevity, write ′ = d

dθ and
note that the harmonic map equations become

[sin θ(u′ − 2e4uvv′)]′ = 0, [sin θe4uv′]′ = 0,

for 0 < θ < π. This implies that

(4.5) u′ − 2e4uvv′ =
c1

sin θ
, e4uv′ =

c2
sin θ

,

for some constants c1 and c2. Inserting the second equation of (4.5) into the first produces

U ′ =
1

sin θ
(cos θ + 2c2v + c1).

Since U ∈ C3(S2) we must have U ′(0) = U ′(π) = 0, so that

1 + 2c2a+ c1 = 0, −1 − 2c2a+ c1 = 0,

or rather c1 = 0 and c2 = −1/(2a). The first equation of (4.5) then yields

(4.6)
1

4
e−4u + v2 = c23,

for some constant c3 > 0. Then solving for e4u, and substituting the result into the second
equation of (4.5) shows that

1

4(c23 − v2)
v′ +

1

2a sin θ
= 0.

We may now integrate the above first order ODE to find

1

8c3
ln
c3 + v

c3 − v
+

1

4a
ln

1 − cos θ

1 + cos θ
= c̃4, which implies

c3 + v

c3 − v

(1 − cos θ

1 + cos θ

) 2c3
a

= c24,

for some constants c̃4 and c4 > 0. Next, notice that by sending θ → 0, π we conclude that
c3 = a, and hence solving for v gives rise to

(4.7) v = a
c24(1 + cos θ)2 − (1 − cos θ)2

c24(1 + cos θ)2 + (1 − cos θ)2
.

Now use (4.6) to compute

u = −1

4
ln[4(a2 − v2)]

= −1

2
ln

4ac4(1 + cos θ)(1 − cos θ)

c24(1 + cos θ)2 + (1 − cos θ)2

= − ln sin θ − 1

2
ln

4ac4
c24(1 + cos θ)2 + (1 − cos θ)2

.

(4.8)

Lastly, by setting b =
c24−1

c24+1
the desired result follows, that is (u, v) = (ua,b, va,b).

In order to treat the general case, we will show that any harmonic map satisfying the hypothe-
ses of this proposition must in fact be axisymmetric. Denote Ψ = (u, v), and let f : S2 → S2 be
a rotation of the ϕ angular variable. Then since f is an isometry of the sphere, we have that
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f∗Ψ : S2 \ {N,S} → H2 is also harmonic. It follows that the distance function w = dH2(Ψ, f∗Ψ)
is subharmonic [45, Lemma 2],

(4.9) ∆g0w ≥ 0 on S2 \ {N,S}.

We now claim that the distance function vanishes at the north and south poles. For brevity
write f∗Ψ = (u∗, v∗) and U∗ = u∗ + lnω, then using a basic formula [42, page 1192] for the
distance between points in the hyperbolic plane yields

cosh (2w) = cosh(2(u− u∗)) + 2e2(u+u∗) (v − v∗)
2

= cosh(2(U − U∗)) +
2e2(U+U∗)

sin4 θ
(v − v∗)

2 .

According the Theorem 3.4, and the fact that the north and south poles are fixed points for the
rotation f , we have the expansions

U,U∗ = c± +O(sin θ), v, v∗ = ±a+O(sin3+α θ) as θ → 0, π,

for some constants α ∈ (0, 1) and c±. The claim now follows, and since w is a continuous
function on a compact manifold it is uniformly bounded, that is

(4.10) w ≤ C on S2, w(N) = w(S) = 0.

Properties (4.9) and (4.10) combine to show that w ≡ 0. This may be verified by either
using the expansions for v, v∗ above and the fact that (U, v) and (U∗, v∗) are C3(S2) to conclude
that w ∈ C2(S2) which allows for an application of the strong maximum principle, or with an
adaptation of the argument in [44, Lemma 8]. It follows that Ψ = f∗Ψ on S2 \{N,S}, and since
f was an arbitrary rotation the harmonic map must be axisymmetric. □

Remark 4.2. If we let s = 1
2 ln 1−cos θ

1+cos θ , then the axisymmetric harmonic map equations (or

equivalently the geodesic equation in the hyperbolic plane) becomes

u′′ − 2e4u(v′)2 = 0, v′′ + 4u′v′ = 0,

where ′ = d
ds here. In the new arclength variable s, the expressions (4.7) and (4.8) may be

rewritten as

u =
1

2
ln

[
1

2a
cosh(−2s+ λ)

]
, v = a tanh(−2s+ λ),

where λ = ln c4. Moreover, the constant b = tanhλ is associated with translations in the
s-parameter.

We will now characterize Jacobi fields, or rather solutions of the homogeneous linearized
harmonic map equations from S2 \ {N,S} to H2. In particular, it will be shown that any
solution admitting appropriate homogeneous Dirichlet boundary conditions at the north and
south poles, must arise as the first variation of a 1-parameter family of singular harmonic maps.
This fact is important, as it implies that the integrability condition of Allard-Almgren [6] is
satisfied, allowing for an improved rate of convergence to the tangent map.
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Let (ua,b, va,b) be a solution of (4.1) as in Proposition 4.1, for some constants a > 0 and
b ∈ (0, 1). Consider, for any φ = (φ1, φ2) with φ1, φ2 ∈ C2(S2 \ {N,S}), the equations

T1φ = ∆g0φ1 − 8e4ua,b |∇g0va,b|2φ1 − 4e4ua,b∇g0va,b · ∇g0φ2,

T2φ = e−4ua,bdivg0(e4ua,b∇g0φ2)) + 4∇g0va,b · ∇g0φ1.
(4.11)

The operator T = (T1, T2) arises from the linearization of the harmonic map equation (4.1) at
the solution (ua,b, va,b). Since (ua,b, va,b) is independent of ϕ, we have

(4.12) T1 =
1

sin2 θ
∂2ϕ + La,b,1, T2 =

1

sin2 θ
∂2ϕ + La,b,2,

where La,b = (La,b,1, La,b,2) is the axisymmetric linearized harmonic map operator at (ua,b, va,b),
given by

La,b,1φ =
1

sin θ
(sin θφ′

1)
′ − 8e4ua,b |v′a,b|2φ1 − 4e4ua,bv′a,bφ

′
2,

La,b,2φ =
1

sin θ
(sin θφ′

2)
′ + 4u′a,bφ

′
2 + 4v′a,bφ

′
1,

with ′ = ∂
∂θ . In (4.11), the coefficients of φ1 are regular, but the coefficients of φ2 have singu-

larities at N and S. Thus, additional requirements are to be imposed on φ2 at N and S. In the
following, we will study

T φ = 0 on S2 \ {N,S},(4.13)

with

(4.14) φ2(N) = φ2(S) = 0.

We now demonstrate that the operator T is self-adjoint in appropriate L2-spaces. Denote by
L2(S2, e4ua,b) the subspace of L2(S2) consisting of functions f with the bounded norm

∥f∥
L2(S2,e4ua,b ) =

(∫
S2
e4ua,bf2 dvolg0

)1/2
,

and by H1
0 (S2, e4ua,b) the closure of C∞

c (S2 \ {N,S}) under the norm

∥f∥
H1(S2,e4ua,b ) =

(∫
S2
e4ua,b(|∇g0f |2 + f2) dvolg0

)1/2
.

The inner products associated to these norms will be denoted with the braces ⟨·, ·⟩. Introduce
the bilinear form

B[φ,ψ] =

∫
S2

(
∇g0φ1 · ∇g0ψ1 + e4ua,b∇g0φ2 · ∇g0ψ2 + 8e4ua,b |∇g0va,b|2φ1ψ1

+ 4e4ua,bψ1∇g0va,b · ∇g0φ2 − 4e4ua,bψ2∇g0va,b · ∇g0φ1

)
dvolg0 ,

for any φ = (φ1, φ2), ψ = (ψ1, ψ2) ∈ H1(S2) ×H1
0 (S2, e4ua,b). If φ1 ∈ C2(S2) and φ2 ∈ C2

c (S2 \
{N,S}), then

B[φ,ψ] = −⟨T1φ,ψ1⟩L2(S2) − ⟨T2φ,ψ2⟩L2(S2,e4ua,b ).

Lemma 4.3. B[·, ·] is symmetric and nonnegative on H1(S2) ×H1
0 (S2, e4ua,b).
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Proof. For brevity, we write ∇ = ∇g0 and (u, v) = (ua,b, va,b). Then for any φ = (φ1, φ2) and
ψ = (ψ1, ψ2) ∈ H1(S2) ×H1

0 (S2, e4u), the quadratic form becomes

B[φ,ψ] =

∫
S2

(
∇φ1 · ∇ψ1 + e4u∇φ2 · ∇ψ2 + 8e4u|∇v|2φ1ψ1

+ 4e4uψ1∇v · ∇φ2 − 4e4uψ2∇v · ∇φ1

)
dvolg0 .

There are five terms in the integrand, and the first three are symmetric in φ and ψ, so consider
the last two terms. Set

I[φ,ψ] = e4uψ1∇v · ∇φ2 − e4uψ2∇v · ∇φ1,

and observe that a simple computation yields

I[φ,ψ] − I[ψ,φ] = e4u∇v · ∇(φ2ψ1) − e4u∇v · ∇(φ1ψ2).

Thus, integrating by parts and using div(e4u∇v) = 0 produces∫
S2
I[φ,ψ] dvolg0 =

∫
S2
I[ψ,φ] dvolg0 ,

which yields B[φ,ψ] = B[ψ,φ].
Next, take a φ = (φ1, φ2) ∈ H1(S2) ×H1

0 (S2, e4u) and set

J [φ] = |∇φ1|2 + e4u|∇φ2|2 + 8e4u|∇v|2φ2
1 + 4e4uφ1∇v · ∇φ2 − 4e4uφ2∇v · ∇φ1.

A straightforward computation yields

J [φ] = J1[φ] + J2[φ],

where

J1[φ] = |∇φ1 − 2e4u∇vφ2|2 + e4u|∇φ2 + 2∇vφ1 + 2∇uφ2|2 + 4e4u|∇vφ1 −∇uφ2|2,

and

J2[φ] = −4e4uφ2∇u · ∇φ2 − 8e4u|∇u|2φ2
2 − 4e8u|∇v|2φ2

2.

Note that J1[φ] ≥ 0. By using the first equation in (4.1), we have

J2[φ] = −2e4u∇u · ∇φ2
2 − 8e4u|∇u|2φ2

2 − 4e8u|∇v|2φ2
2 = −2div(e4u∇uφ2

2),

and hence ∫
S2
J2[φ] dvolg0 = 0.

As a consequence, we have B[φ,φ] ≥ 0. □

For the nonnegativity of B, we proved that its integrand can be decomposed as a sum of
squares modulo a divergence term. This actually follows from the fact that the target space H2

is of negative curvature. Indeed, the proof above simply utilizes an explicit form of the standard
index form obtained from the Jacobi equation. We will say that φ ∈ H1(S2) ×H1

0 (S2, e4ua,b) is
a weak solution of (4.13)-(4.14) if

B[φ,ψ] = 0,

for all ψ ∈ H1(S2) ×H1
0 (S2, e4ua,b).
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Proposition 4.4. Let (ua,b, va,b) be as in Proposition 4.1, for some a > 0 and b ∈ (0, 1). Suppose
that φ ∈ H1(S2) ×H1

0 (S2, e4ua,b) is a weak solution of (4.13)-(4.14). Then φ = λ(∂bua,b, ∂bva,b)
for some constant λ.

Proof. In a manner similar to the proof of Proposition 3.8, we can prove that φ ∈ C3,α(S2) for
any α ∈ (0, 1), and

∥(sin θ)j−3−α∇j
g0φ2∥L∞(S2) ≤ C

for j = 0, 1, 2, 3 where C is a positive constant depending on φ. In particular, this implies that
φ2(N) = φ2(S) = 0.

Next we claim that φ is axisymmetric, that is, independent of the variable ϕ. To see this,
expand in a Fourier series

φ(θ, ϕ) = ξ0(θ) +

∞∑
m=1

[
ξm(θ) cosmϕ+ ηm(θ) sinmϕ

]
,

for some functions ξm(θ) = (ξm,1(θ), ξm,2(θ)) with m ≥ 0 and ηm(θ) = (ηm,1(θ), ηm,2(θ)) with
m ≥ 1. A straightforward computation produces

B[φ,φ] =
∞∑

m=1

m2π

∫ π

0

(
(ξ2m,1 + η2m,1) + e4ua,b(ξ2m,2 + η2m,2)

) dθ

sin θ

+ B[ξ0, ξ0] +
1

2

∞∑
m=1

(
B[ξm, ξm] + B[ηm, ηm]

)
,

and thus Lemma 4.3 implies

B[φ,φ] ≥
∞∑

m=1

m2π

∫ π

0

(
(ξ2m,1 + η2m,1) + e4ua,b(ξ2m,2 + η2m,2)

) dθ

sin θ
≥ 0.

Furthermore, since φ is a weak solution we have that B[φ,φ] = 0. It follows that all ξm and ηm
are identically zero for m ≥ 1. Therefore φ(θ, ϕ) = ξ0(θ) is a function independent of ϕ.

Now, φ ∈ C2([0, π]) is a solution of the following boundary value problem:

La,b,1φ = La,b,2φ = 0 on [0, π],

φ2(0) = φ2(π) = 0.
(4.15)

Set φ∗ = (φ∗1, φ∗2) = (∂bua,b, ∂bva,b) and observe that La,bφ∗ = 0. Moreover, a straightforward
computation yields

φ∗ =
( b

2(1 − b2)
+

cos θ

1 + cos2 θ + 2b cos θ
,

a sin4 θ

(1 + cos2 θ + 2b cos θ)2

)
,

so that φ∗2(0) = φ∗2(π) = 0. Hence, φ∗ satisfies the boundary value problem (4.15).
Let us examine (4.15). Notice that the second equation La,b,2φ = 0 gives

(e4ua,b sin θφ′
2)

′ + 4e4ua,b sin θv′a,bφ
′
1 = 0,

and a calculation produces

e4ua,b sin θv′a,b = − 1

2a
.
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Therefore

e4ua,b sin θφ′
2 =

2

a
φ1 + c0,(4.16)

for some constant c0. Substituting this into the first equation La,b,1φ = 0 shows that

0 = (sin θφ′
1)

′ − 8 sin θe4ua,b |v′a,b|2φ1 − 4

(
2

a
φ1 + c0

)
v′a,b

= (sin θφ′
1)

′ − 8v′a,b

(
sin θe4ua,bv′a,b +

1

a

)
φ1 − 4c0v

′
a,b

= (sin θφ′
1)

′ − 4

a
v′a,bφ1 − 4c0v

′
a,b.

In particular, we conclude that φ1 = −ac0 is a solution.
Now write ψ = φ1 + ac0, and observe that this satisfies the homogenous equation

(4.17) (sin θψ′)′ − 4

a
v′a,bψ = 0.

We claim that φ∗1 is a solution of (4.17). To see this, one may simply compute the left-hand side
of (4.17) for ψ = φ∗1 to find it is zero. However, a quicker method is to compute the constant
c0 given by (4.16) for (φ∗1, φ∗2). In fact we have

c0 = e4ua,b sin θφ′
∗2 −

2

a
φ∗1 = lim

θ→0

(
e4ua,b sin θφ′

∗2 −
2

a
φ∗1

)
=

1

a(1 − b2)
− b

a(1 − b2)
− 1

a(1 + b)
= 0,

and the claim follows.
To find another linearly independent solution of (4.17), change variables to s(θ) = 1

2 ln 1−cos θ
1+cos θ ,

and note that s′ = 1
sin θ . Then (4.17) becomes

d2

ds2
ψ −

(4

a
v′a,b sin θ

)
ψ = 0 for s ∈ (−∞,∞).

By the standard variation of parameters, another linearly independent solution is given by
C(s)φ∗1 where d

dsC = |φ∗1|−2, or rather

C(s(θ)) =

∫ θ

π
2

|φ∗1(τ)|−2 1

sin τ
dτ

up to an additive constant. Since |φ∗1(0)|−1 ̸= 0, this solution blows-up as θ → 0. Thus, any
C2 solution of (4.17) on [0, π] is given by ψ = c1φ∗1, for some constant c1. As a consequence,
we have

φ1 = −c0a+ c1φ∗1.

Substituting the above expression into (4.16) yields

e4ua,b sin θφ′
2 =

2

a
(−c0a+ c1φ∗1) + c0 =

2c1
a
φ∗1 − c0

= c1e
4ua,b sin θφ′

∗2 − c0,
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and hence

φ2 − c1φ∗2 = −c0
∫ θ

0
e−4ua,b sin−1 τ dτ + c2,

for some constant c2. By (4.15), φ2 − c1φ∗2 is zero at 0 and π simultaneously, which implies
that c0 = c2 = 0. Therefore, φ1 = c1φ∗1 and φ2 = c1φ∗2. □

Proposition 4.4 asserts that zero is the least eigenvalue of T and that it is simple, under the
condition (4.14). In fact, it can be shown that there exists an orthonormal basis of L2(S2) ×
L2(S2, e4ua,b) formed by the eigenfunctions of T .

Remark 4.5. We note that (∂aua,b, ∂ava,b) satisfies the equations in (4.15). A straightforward
computation produces

(∂aua,b, ∂ava,b) =
(
− 1

2a
,
b+ b cos2 θ + 2 cos θ

1 + cos2 θ + 2b cos θ

)
,

showing that ∂ava,b(0) = 1 and ∂ava,b(π) = −1. Thus, (∂aua,b, ∂ava,b) does not satisfy the
boundary conditions in (4.15).

Proof of Theorem 2.2. This result follows directly from Propositions 4.1 and 4.4. □

5. Convergence: Translation Invariant Renormalization

In this section we will study the asymptotic behaviors of harmonic maps near the prescribed
singularity. Throughout this section it will always be assumed that ω is a positive smooth
function on S2 \ {N,S}, in particular independent of t, that satisfies

(5.1) lnω − ln sin θ ∈ C10(S2).

Consider weak solutions (Φ, v) ∈ H1
loc(R+ × S2) of the renormalized harmonic map system

LΦ − 2e4u|∇gv|2 = L lnω,

Lv + 4∇gu · ∇gv = 0.
(5.2)

We are interested in the beahavior as t → ∞, which in the realm of applications to stationary
vacuum spacetimes corresponds to the approach towards the degenerate black hole horizon. As
before we set u = Φ − lnω. In addition, it is assumed that there are positive constants Λ and a
such that

(5.3) |Φ| ≤ Λ on R+ × S2,

for any finite interval I ⊂ R+ we have

(5.4)

∫
I

∫
S2

(|∇gΦ|2 + ω−4|∇gv|2) dvolg0dt <∞,

and in the trace sense

(5.5) v = a on R+ × {N}, v = −a on R+ × {S}.

Observe that since ω is independent of t, the system (5.2) is translation invariant in t, and
Theorem 3.4 applies to yield regularity and uniform bounds for (Φ(t), v(t)) on the time interval
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[2,∞). Our first goal is to establish a crucial identity involving the renormalized harmonic map
energy on the 2-sphere

E(Φ, v) =
1

2

∫
S2

(|∇g0Φ|2 + e4u|∇g0v|2 + 2(L lnω)Φ) dvolg0 .(5.6)

It should be noted that L lnω = ∆g0ω, as ω is independent of t. The following result may be
viewed as yielding a type of monotonicity formula.

Proposition 5.1. Let ω satisfy (5.1) and (Φ, v) be a weak solution of (5.2) on R+×S2, satisfying
(5.3), (5.4), and (5.5) for some positive constants Λ and a. Then

d

dt

[1

2

∫
S2

(|∂tΦ|2 + e4u|∂tv|2)(t) dvolg0 − E(Φ(t), v(t))
]

=

∫
S2

(|∂tΦ|2 + e4u|∂tv|2)(t) dvolg0
(5.7)

for all t ∈ R+.

Proof. Multiply the first equation of (5.2) by ∂tΦ to find

|∂tΦ|2 − 1

2
∂t|∂tΦ|2 +

1

2
∂t|∇g0Φ|2 + (L lnω)∂tΦ

− divg0(∂tΦ∇g0Φ) + 2e4u∂tΦ|∇gv|2 = 0.

Next, multiply the second equation of (5.2) by e4u∂tv and use that ∂tu = ∂tΦ to produce

e4u|∂tv|2 −
1

2
∂t(e

4u|∂tv|2) +
1

2
∂t(e

4u|∇g0v|2)

− divg0(e4u∂tv∇g0v) − 2e4u∂tΦ|∇gv|2 = 0.

Adding the two previous equations then yields

|∂tΦ|2 + e4u|∂tv|2 −
1

2
∂t(|∂tΦ|2 + e4u|∂tv|2)

+
1

2
∂t
(
|∇g0Φ|2 + e4u|∇g0v|2 + 2(L lnω)Φ

)
− divg0(∂tΦ∇g0Φ + e4u∂tv∇g0v) = 0.

Finally, integrating this expression over S2 produces the desired formula (5.7). □

As a consequence we find that the t-portion of the renormalized energy is globally finite, and
obtain an initial decay statement for the derivatives of the renormalized map.

Corollary 5.2. Let ω satisfy (5.1) and (Φ, v) be a weak solution of (5.2) on R+×S2, satisfying
(5.3), (5.4), and (5.5) for some positive constants Λ and a. Then∫ ∞

2

∫
S2

(
|∂tΦ|2 + e4u|∂tv|2

)
dvolg0dt <∞,

and

lim
t→∞

max
S2

(
|∇l

g0∂
k
t

(
Φ(t, ·), v(t, ·)

)
| + e2u(t,·)|∂kt v(t, ·)|

)
= 0

for all k = 1, 2, 3 and l = 0, 1, 2, 3.
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Proof. By integrating (5.7) over (2, σ) for any σ > 2, using Theorem 3.4, and letting σ → ∞
produces the first conclusion. Since ω is independent of t and (5.2) is translation invariant in t,
the second conclusion then follows from Proposition 3.8 and the first conclusion. □

The next proposition shows a sequential convergence of energy to that of a renormalized
tangent map.

Proposition 5.3. Let ω satisfy (5.1) and (Φ, v) be a weak solution of (5.2) on R+×S2, satisfying
(5.3), (5.4), and (5.5) for some positive constants Λ and a. Then there is a sequence ti → ∞ as
i→ ∞, such that (Φ(ti), v(ti)) converges to some (Φ̄, v̄) in C3(S2), and

lim
i→∞

E(Φ(ti), v(ti)) = E(Φ̄, v̄).

Moreover, (ū, v̄) := (Φ̄ − lnω, v̄) satisfies

∆g0Φ̄ − 2e4ū|∇g0 v̄|2 = L lnω,

∆g0 v̄ + 4∇g0 ū · ∇g0 v̄ = 0,
(5.8)

on S2 \ {N,S}, and
v̄(N) = a, v̄(S) = −a.(5.9)

Proof. Take an arbitrary α ∈ (0, 1). By Theorem 3.4, for any t ∈ (2,∞) we have

∥(Φ(t, ·), v(t, ·))∥C3,α(S2) ≤ C,

for some constant C independent of t. The Arzela-Ascoli theorem then implies the first con-
clusion of the proposition, as well as (5.9). By Corollary 5.2 and equation (5.2), it follows that
(Φ̄ − lnω, v̄) satisfies (5.8). □

A priori, different sequences of times may lead to different limit energies. However, we show
that this in fact cannot happen with the following result.

Proposition 5.4. Let ω satisfy (5.1) and (Φ, v) be a weak solution of (5.2) on R+×S2, satisfying
(5.3), (5.4), and (5.5) for some positive constants Λ and a, and (Φ̄, v̄) be as in Proposition 5.3.
Then

E(Φ(t), v(t)) → E(Φ̄, v̄) as t→ ∞.

Moreover, for any t > 2 the following energy identity holds

E(Φ(t), v(t)) − E(Φ̄, v̄) =

∫ ∞

t

∫
S2

(
|∂tΦ|2 + e4u|∂tv|2

)
(s) dvolg0ds

+
1

2

∫
S2

(
|∂tΦ|2 + e4u|∂tv|2

)
(t) dvolg0 .

(5.10)

Proof. By Proposition 5.1, for any 5 < t1 < t2 we have

|E(Φ, v)(t1) − E(Φ, v)(t2)|

≤
∫ t2

t1

∫
S2

(
|∂tΦ|2 + e4u|∂tv|2)(s) dvolg0ds

+
1

2

∫
S2

(
|∂tΦ|2 + e4u|∂tv|2

)
(t1) dvolg0 +

1

2

∫
S2

(
|∂tΦ|2 + e4u|∂tv|2

)
(t2) dvolg0 .
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Then Corollary 5.2 implies that E(Φ(t), v(t)) converges as t → ∞, and Proposition 5.3 ensures
that the limit is E(Φ̄, v̄). Furthermore, identity (5.10) may be obtained by integrating (5.7) over
(t, σ), using Corollary 5.2, and letting σ → ∞. □

Having shown that the renormalized energies converge upon approach to the singularity, our
next task will be to improve this by estimating the convergence rate; the fundamental estimate
needed for this purpose is referred to as the  Lojasiewicz-Simon inequality. In order to achieve this
goal, we first introduce certain weighted Banach spaces. For any integer k ≥ 0 and α ∈ (0, 1),
denote by Ck

∗ (S2) the space of vector-valued functions φ = (φ1, φ2) ∈ Ck(S2) with the bounded
norm

|φ|∗k =
∑

0≤j≤k

{
max
S2

|∇j
g0φ1| + max

S2

(
ωj−3− 1

2 |∇j
g0φ2|

)}
,

and denote by Ck,α
∗ (S2) the space of functions φ ∈ Ck

∗ (S2) ∩ Ck,α(S2) with the bounded norm

|φ|∗k,α = |φ|∗k + ∥∇k
g0φ∥Cα(S2).

Furthermore, let L2(S2, ω−4) be the subspace of L2(S2) which consists of functions with the
bounded norm

∥f∥L2(S2,ω−4) =
(∫

S2
ω−4f2 dvolg0

)1/2
,

and let H1
0 (S2, ω−4) be the closure of C∞

c (S2 \ {N,S}) under the norm

∥f∥H1(S2,ω−4) =
(∫

S2
ω−4(|∇g0f |2 + f2) dvolg0

)1/2
.

Consider a weak solution (Φ, v) of (5.2), and (Φ̄, v̄) be a solution of (5.8). For convenience,
we will write

w = (w1, w2) = (Φ, v), w̄ = (w̄1, w̄2) = (Φ̄, v̄).

Then equation (5.2) may be rewritten as

∂2tw1 − ∂tw1 − 2e4u|∂tw2|2 + M1(w) = 0,

∂2tw2 − ∂tw2 + 4∂tu∂tw2 + M2(w) = 0,
(5.11)

where

M1(w) = ∆g0w1 − 2e4u|∇g0w2|2 − L lnω,

M2(w) = ∆g0w2 + 4∇g0u · ∇g0w2.
(5.12)

Observe that the energy E of (5.6) becomes

(5.13) E(w) =
1

2

∫
S2

(|∇g0w1|2 + e4u|∇g0w2|2 + 2(L lnω)w1) dvolg0 ,

and since w̄ = (Φ̄, v̄) is a solution of (5.8) we have that M(w̄) = (M1(w̄),M2(w̄)) = 0.
We will make use of two related weighted inner products, and for this reason we introduce the

following notation. Let h be a given positive function on S2 \ {N,S}. For any φ = (φ1, φ2), ζ =
(ζ1, ζ2) ∈ L2(S2) × L2(S2, ω−4) define

⟨φ, ζ⟩L2(S2,1×h) =

∫
S2

(
φ1ζ1 + hφ2ζ2) dvolg0 ,



30 HAN, KHURI, WEINSTEIN, AND XIONG

and

∥φ∥L2(S2,1×h) =
(∫

S2

(
φ2
1 + hφ2

2) dvolg0

)1/2
.

Here 1×h means that 1 is the weight for the first component, and h is the weight for the second
component. Below we will take either h = ω−4 or h = e4u. Notice that with |u + lnω| ≤ Λ as
in (5.3), the L2(S2, 1 × ω−4)-norms are equivalent to the L2(S2, 1 × e4u)-norms, that is

(5.14) e−2Λ∥φ∥L2(S2,1×ω−4) ≤ ∥φ∥L2(S2,1×e4u) ≤ e2Λ∥φ∥L2(S2,1×ω−4).

Although the weight h = ω−4 is independent of t and seems simpler, in certain situations it is
more advantageous to use the weight h = e4u, since it is directly related to equation (5.11). For
example, we may write (5.10) as

E(w(t)) − E(w̄) =

∫ ∞

t
∥∂tw(s)∥2L2(S2,1×e4u) ds+

1

2
∥∂tw(t)∥2L2(S2,1×e4u).(5.15)

This fundamental energy identity, as well as the next result concerning the  Lojasiewicz-Simon
inequality, play essential roles in our study of the uniqueness of tangent maps.

Proposition 5.5. Let α ∈ (0, 1) and (Φ̄, v̄) ∈ C3(S2) be a solution of (5.8)-(5.9). Then there
exist constants η > 0 and C̄ > 0, depending only on α and (Φ̄, v̄), such that

(5.16) |E(w) − E(w̄)|1/2 ≤ C̄∥M(w)∥L2(S2,1×ω−4)

for all w − w̄ ∈ C2,α
∗ (S2) with |w − w̄|∗2,α < η.

Proof. We first show that M = (M1,M2) is the Euler-Lagrange operator of E . To see this,

take any w− w̄ ∈ C2,α
∗ (S2) and ζ = (ζ1, ζ2) ∈ H1(S2)×H1(S2, ω−4), then the Fréchet derivative

of E at w and applied to ζ is given by

E ′(w)[ζ] =
d

ds

∣∣∣
s=0

E(w + sζ)

=

∫
S2

[
∇g0w1 · ∇g0ζ1 + (L lnω)ζ1 + 2e4u|∇g0w2|2ζ1

]
dvolg0

+

∫
S2
e4u∇g0w2 · ∇g0ζ2 dvolg0

= −
∫
S2

[
M1(w)ζ1 + e4uM2(w)ζ2

]
dvolg0 .

Therefore

E ′(w)[ζ] = −⟨M(w), ζ⟩L2(S2,1×e4u),

and by the Cauchy-Schwarz inequality we obtain∣∣E ′(w)[ζ]
∣∣ ≤ C∥M(w)∥L2(S2,1×ω−4)∥ζ∥L2(S2,1×ω−4).

Note that the constant C depends on w1, since u = w1 − lnω and the weight 1× e4u is replaced
by 1 × ω4 analogously to (5.14), however this dependence is removed with uniform control on
w− w̄ as expressed in the hypotheses. Furthermore, observe that E is an analytic functional on
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C2,α
∗ (S2) and that w̄ is a critical point, namely M(w̄) = 0. Hence, by the  Lojasiewicz-Simon

gradient inequality there exist constants η > 0, ϑ ∈ (0, 1/2], and C̄ > 0 such that

|E(w) − E(w̄)|1−ϑ ≤ C̄∥M(w)∥L2(S2,1×ω−4)

for all w − w̄ ∈ C2,α
∗ (S2) with |w − w̄|∗2,α < η. By Theorem 2.2 we must have ϑ = 1/2. For

details we refer to Theorem 3.1 of Simon [38], and also Theorem 3.10 of Chill [13]. □

We are now in a position to apply the method of Simon [38] to obtain convergence to the
tangent map. In the proof below we will adapt the arguments of [22].

Lemma 5.6. Let ω satisfy (5.1), w = (Φ, v) be a weak solution of (5.2) in R+ × S2 satisfying
(5.3), (5.4), and (5.5) for some positive constants Λ and a, let w̄ = (Φ̄, v̄) ∈ C3(S2) be a solution
of (5.8)-(5.9) as in Proposition 5.3. Then there exist positive constants γ, β, and C∗ depending
only on w̄ and Λ, such that for any t∗ ≥ 5 and σ > t∗ +5 the following holds. If for all t ∈ (t∗, σ]
the estimate

(5.17) ∥w(t) − w̄∥L2(S2,1×ω−4) < γ

is valid, then

(5.18) ∥w(t) − w(t′)∥L2(S2,1×ω−4) ≤ C∗e
−β(t−t∗)

for all t, t′ ∈ (t∗ + 1, σ − 1] with t ≤ t′.

Proof. The proof consists of two steps. In the first step (5.18) will be established under a stronger
assumption than (5.17), and in the second step it will be shown that the stronger assumption
may be relaxed to the desired hypothesis. Moreover, the weight 1 × e4u will be used in the first
step, while the weight 1 × ω−4 will be used in the second step. In what follows we will write
f ′ for the derivative of f with respect to t. As a preliminary observation, note that since ω is
independent of t we find for any t∗ < t ≤ t′ ≤ σ − 1 that

∥w(t) − w(t′)∥L2(S2,1×ω−4) =
∥∥∥∫ t′

t
w′(s)ds

∥∥∥
L2(S2,1×ω−4)

≤
∫ σ−1

t
∥w′(s)∥L2(S2,1×ω−4)ds.

Therefore it suffices to prove

(5.19)

∫ σ−1

t
∥w′(s)∥L2(S2,1×ω−4)ds ≤ C∗e

−β(t−t∗)

for all t ∈ (t∗ + 1, σ − 1], in order to obtain (5.18).
Step 1. Fix a constant α ∈ (0, 1), and let η > 0 be as in Proposition 5.5. We will assume that

for all t ∈ (t∗, σ] the estimate

(5.20) |w(t) − w̄|∗2,α < η

is valid, and then show that

(5.21)

∫ σ

t
∥w′(s)∥L2(S2,1×e4u)ds ≤ C∗e

−β(t−t∗)
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for all t ∈ (t∗, σ]. It should be pointed out that this inequality is slightly different from (5.19),
in particular due to the use of weight e4u instead of ω−4. For brevity, we will write

⟨·, ·⟩∗ = ⟨·, ·⟩L2(S2,1×e4u), ∥ · ∥∗ = ∥ · ∥L2(S2,1×e4u).

The process to establish (5.21) begins with the definition of an entropy-type function

H(t) =

∫ ∞

t
∥w′(s)∥2∗ds+ ε

[
E(w(t)) − E(w̄) + ⟨M(w(t)), w′(t)⟩∗

]
,(5.22)

for t > 0 and a positive constant ε to be fixed. Observe that (5.15) implies

H(t) = −1

2
∥w′(t)∥2∗ + (1 + ε)

[
E(w(t)) − E(w̄)

]
+ ε⟨M(w(t)), w′(t)⟩∗.(5.23)

Furthermore, recall that Φ′(t) → 0 and e2u(t)v′(t) → 0 uniformly on S2 as t → ∞ by Corollary
5.2, and that E(w(t)) → E(w̄) as t → ∞ by Proposition 5.4. Thus, H(t) → 0 as t → ∞. For
simplicity of notation, we will suppress the dependence on t below. Then a simple differentiation
of (5.22) produces

H ′ = −∥w′∥2∗ + ε
[
− ⟨M(w), w′⟩∗ + ⟨M(w), w′′⟩∗

+ ⟨M′(w)w′, w′⟩∗ + 4(e4uu′M2(w), w′
2)L2(S2)

]
,

where M′(w) is the linearized operator of M at w, and the last term is given by the usual
L2-inner product on S2 and arises from differentiating the weight e4u. We now write

H ′ = −∥w′∥2∗ − ε∥M(w)∥2∗ + ε[I1 + I2 + I3],(5.24)

where

I1 = ⟨M(w), w′′ − w′ + M(w)⟩∗, I2 = ⟨M′(w)w′, w′⟩∗, I3 = 4(e4uu′M2(w), w′
2)L2(S2).

To estimate I3, observe that since ω is independent of t we have u′ = Φ′ and hence |u′| ≤ C by
Theorem 3.4, so that

I3 ≤ C(e4u|M2(w)|, |w′
2|)L2(S2) ≤ C∥e2uw′

2∥L2(S2)∥e2uM2(w)∥L2(S2)

≤ C∥w′∥∗∥M(w)∥∗.
(5.25)

Next, by (5.11) and the definition of the L2(S2, 1 × e4u)-inner product, we find

I1 =

∫
S2

(
2e4u|v′|2M1(w) − 4e4uu′v′M2(w)

)
dvolg0 .

Furthermore, using Theorem 3.4 again yields e2u|v′| ≤ C and |u′| ≤ C, and hence

I1 ≤ C

∫
S2

(
e2u|v′|M1(w) + e4u|v′|M2(w)

)
dvolg0 ≤ C∥w′∥∗∥M(w)∥∗.(5.26)

Lastly, in order to estimate I2 note that (5.12) and ω′ = 0 produce

M′
1(w)w′ = ∆g0w

′
1 − 4e4u∇g0w2 · ∇g0w

′
2 − 8e4uu′|∇g0w2|2,

M′
2(w)w′ = ∆g0w

′
2 + 4∇g0u

′ · ∇g0w2 + 4∇g0u · ∇g0w
′
2,

and write

I2 =

∫
S2
J dvolg0
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where

J =
(
∆g0w

′
1 − 4e4u∇g0w2 · ∇g0w

′
2 − 8e4uu′|∇g0w2|2

)
w′
1

+ e4u
(
∆g0w

′
2 + 4∇g0u

′ · ∇g0w2 + 4∇g0u · ∇g0w
′
2

)
w′
2.

A straightforward computation gives

J = divg0

(
w′
1∇g0w

′
1 + e4uw′

2∇g0w
′
2

)
− |∇g0w

′
1|2 − e4u|∇g0w

′
2|2

− 4e4uw′
1∇g0w2 · ∇g0w

′
2 − 8e4uu′w′

1|∇g0w2|2 + 4e4uw′
2∇g0u

′ · ∇g0w2.

Moreover since u′ = w′
1, and e2u|∇g0w2| ≤ C by Theorem 3.4, we have

J ≤ divg0

(
w′
1∇g0w

′
1 + e4uw′

2∇g0w
′
2

)
− |∇g0w

′
1|2 − e4u|∇g0w

′
2|2

+ C
(
e2u|w′

1||∇g0w
′
2| + |w′

1|2 + e2u|w′
2||∇g0w

′
1|
)
.

In addition, with the help of Young’s inequality

J ≤ divg0

(
w′
1∇g0w

′
1 + e4uw′

2∇g0w
′
2

)
− 1

2

(
|∇g0w

′
1|2 + e4u|∇g0w

′
2|2

)
+ C

(
|w′

1|2 + e4u|w′
2|2

)
,

and hence

I2 ≤ C

∫
S2

(
|w′

1|2 + e4u|w′
2|2

)
dvolg0 ≤ C∥w′∥2∗.(5.27)

By substituting (5.25), (5.26), and (5.27) into (5.24), we obtain

H ′ ≤ −∥w′∥2∗ − ε∥M(w)∥2∗ + εC
(
∥w′∥∗∥M(w)∥∗ + ∥w′∥2∗

)
.

Furthermore, by fixing ε sufficiently small it follows that

H ′ ≤ −1

2
∥w′∥2∗ −

ε

2
∥M(w)∥2∗ ≤ −c0

(
∥w′∥∗ + ∥M(w)∥∗

)2
,(5.28)

where c0 is a positive constant. In particular H ′ ≤ 0, and consequently H ≥ 0 on (0,∞) since
H(t) → 0 as t→ ∞.

We now seek a differential inequality for H, that will allow us to determine its rate of decay.
Observe that (5.23) implies

H ≤ −1

2
∥w′∥2∗ + 2|E(w) − E(w̄)| + ∥M(w)∥∗∥w′∥∗

≤ 2|E(w) − E(w̄)| + ∥M(w)∥2∗,

where we used Cauchy’s inequality. We now restore t, and recall that η > 0 is as in Proposition
5.5. The assumption (5.20) then yields, via Proposition 5.5, that

|E(w(t)) − E(w̄)|1/2 ≤ C∥M(w(t))∥∗
for all t ∈ (t∗, σ], and hence

H(t) ≤ C∥M(w(t))∥2∗ ≤ C
(
∥w′(t)∥2∗ + ∥M(w(t))∥2∗

)
.(5.29)

Combining with (5.28) gives rise to

H(t) ≤ C
(
∥w′(t)∥∗ + ∥M(w(t))∥∗

)2 ≤ −CH ′(t),
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and thus

CH ′(t) +H(t) ≤ 0.(5.30)

Integrating this first-order differential inequality produces

(5.31) H(t) ≤ C∗e
−2β(t−t∗) for all t ∈ (t∗, σ],

where β and C∗ are positive constants.
This decay for H may be translated into decay for w′ as follows. Observe that an alternate

combination of (5.28) and (5.29), for t ∈ (t∗, σ], produces

−[H1/2(t)]′ = −1

2
H−1/2(t)H ′(t) ≥ c

(
∥w′(t)∥∗ + ∥M(w(t))∥∗

)
≥ c∥w′(t)∥∗.

Furthermore, integrating from t to σ then yields∫ σ

t
∥w′(t)∥∗ds ≤ C

(
H1/2(t) −H1/2(σ)

)
≤ CH1/2(t).

Therefore, (5.31) may be applied to obtain∫ σ

t
∥w′(t)∥∗ds ≤ C∗e

−β(t−t∗) for all t ∈ (t∗, σ].

This finishes the proof of (5.21).
Step 2. We now assume (5.17), and show how to choose γ in order to achieve (5.20). Note

that both w = (Φ, v) and w̄ = (Φ̄, v̄) satisfy equation (5.2). Therefore, by Proposition 3.9 and
(5.17) we have

|w(t) − w̄|∗2,α ≤ C
(∫ t+1

t−1
∥w(s) − w̄∥2L2(S2,1×ω−4)ds

)1/2
< Cγ,

for all t ∈ [t∗ + 1, σ − 1]. We may then choose γ such that Cγ < η, to find that (5.20) holds for
t ∈ (t∗ + 1, σ − 1]. The desired estimate (5.19) now follows from Step 1. □

The hypotheses of the previous result can be weakened. More precisely, the assumption
(5.17) requires closeness to the tangent map on a time interval, however this may be reduced to
closeness at a single time.

Lemma 5.7. Let ω satisfy (5.1), w = (Φ, v) be a weak solution of (5.2) in R+ × S2 satisfying
(5.3), (5.4), and (5.5) for some positive constants Λ and a, let w̄ = (Φ̄, v̄) ∈ C3(S2) be a solution
of (5.8)-(5.9) as in Proposition 5.3. Then there exist positive constants δ, β, and C depending
only on w̄ and Λ, such that the following holds. If for some t∗ ≥ 5 the estimate

(5.32) ∥w(t∗) − w̄∥L2(S2,1×ω−4) + |E(w(t∗)) − E(w̄)|1/2 < δ

is valid, then

(5.33) ∥w(σ) − w(t)∥L2(S2,1×ω−4) ≤ Ce−β(t−t∗)

for all σ ≥ t > t∗ + 1.
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Proof. We will make use of the weight 1×ω−4, and in particular will write ∥·∥∗ = ∥·∥L2(S2,1×ω−4)

for brevity. It should be emphasized that here, ∥ · ∥∗ represents a different norm from that in
the proof of Lemma 5.6, due to the choice of weight. First observe that if σ ≥ t ≥ t∗ then

∥w(σ) − w(t)∥2∗ =
∥∥∥∫ σ

t
w′(s)ds

∥∥∥2
∗
≤ (σ − t)

∫ σ

t
∥w′(s)∥2∗ds

≤ (σ − t)

∫ ∞

t∗

∥w′(s)∥2∗ds

≤ e4Λ(σ − t)
(
E(w(t∗)) − E(w̄)

)
,

where in the last inequality we replaced the weight ω−4 by e4u and used (5.15). Furthermore, if
in addition σ − t ≤ T then

∥w(σ) − w(t)∥∗ ≤ e2Λ
√
T |E(w(t∗)) − E(w̄)|1/2.(5.34)

Let γ, β, and C∗ be as in Lemma 5.6. Choose T > 5 such that

(5.35) C∗e
−βT <

1

4
γ,

and then choose δ (depending on T ) sufficiently small so that (5.32) implies

(5.36) e2Λ
√
T |E(w(t∗)) − E(w̄)|1/2 < 1

4
γ,

and

(5.37) ∥w(t∗) − w̄∥∗ <
1

4
γ.

By (5.34) and (5.36) we then have

(5.38) ∥w(σ) − w(t)∥∗ <
1

4
γ,

for all σ ≥ t ≥ t∗ with σ − t ≤ T . In particular, if t ∈ [t∗, t∗ + T ] then

∥w(t) − w(t∗)∥∗ <
1

4
γ,

and hence with the help of (5.37) we obtain

∥w(t) − w̄∥∗ ≤ ∥w(t) − w(t∗)∥∗ + ∥w(t∗) − w̄∥∗ <
1

4
γ +

1

4
γ =

1

2
γ.(5.39)

We now claim that

(5.40) ∥w(t) − w̄∥∗ <
3

4
γ for any t ≥ t∗.

Notice that this shows that (5.17) holds for any t > t∗, and therefore by (5.18) of Lemma 5.6
the desired estimate

∥w(σ) − w(t)∥∗ ≤ C∗e
−β(t−t∗),

is valid for all σ ≥ t > t∗ + 1.
It remains to establish (5.40), which will be accomplished by a contradiction argument. Set

t = sup{t ≥ t∗ | ∥w(s) − w̄∥∗ < 3γ/4 for all s ∈ [t∗, t]},
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and note that according to (5.39) we have that t is well-defined with t > t∗ + T . If t <∞ then

∥w(t) − w̄∥∗ ≤
3

4
γ

for all t ∈ [t∗, t], and by (5.38) we find

∥w(t) − w(t)∥∗ <
1

4
γ

for all t ∈ [t, t+ T ]. For t in this same range it follows that

∥w(t) − w̄∥∗ ≤ ∥w(t) − w(t)∥∗ + ∥w(t) − w̄∥∗ <
1

4
γ +

3

4
γ = γ.

As a consequence, (5.17) holds for t ∈ [t∗, t+ T ], and therefore we may apply (5.18) of Lemma
5.6 with t = t∗ + T and an arbitrary t′ ∈ [t, t+ T − 1], together with (5.35), to obtain

(5.41) ∥w(t′) − w(t∗ + T )∥∗ ≤ C∗e
−βT <

1

4
γ.

Using this and (5.39) with t = t∗ + T produces

∥w(t′) − w̄∥∗ ≤ ∥w(t′) − w(t∗ + T )∥∗ + ∥w(t∗ + T ) − w̄∥∗

<
1

4
γ +

1

2
γ =

3

4
γ,

for any t′ ∈ [t∗, t + T − 1]. It follows that a contradiction is achieved with the definition of t.
We conclude that t = ∞, and hence (5.40) is established. □

With all of the preparatory work now completed, we are ready establish the uniqueness of
limit points for the harmonic map upon approach to the prescribed singularity.

Theorem 5.8. Let ω satisfy (5.1), and let w = (Φ, v) be a weak solution of (5.2) in R+ × S2
satisfying (5.3), (5.4), and (5.5) for some positive constants Λ and a. Then w(t) → w̄ in
C3(S2) as t→ ∞, for some solution w̄ = (Φ̄, v̄) ∈ C3(S2) of (5.8)-(5.9), and there exist positive
constants β, C depending only on Λ, w̄ such that

|
(
Φ(t), v(t)

)
− (Φ̄, v̄)|∗2 ≤ Ce−βt

for all t ∈ (0,∞).

Proof. By Theorem 3.4 and Proposition 5.3, there exists a sequence of positive times ti → ∞ such
that w(ti) → w̄ in C3

∗ (S2) and E(w(ti)) → E(w̄) as i→ ∞, for some solution w̄ = (Φ̄, v̄) ∈ C3(S2)
of (5.8), (5.9). Take t∗ = ti for a sufficiently large i such that (5.32) holds. It follows that (5.33)
is valid for all σ ≥ t > t∗ + 1. Therefore w(t) converges to w̄ in L2(S2, 1 × ω−4) as t → ∞.
Moreover, by taking σ → ∞ in (5.33) we find that

∥w(t) − w̄∥L2(S2,1×ω−4) ≤ Ce−β(t−t∗) for all t > t∗ + 1.

As in Step 2 of the proof for Lemma 5.6, the weighted Hölder norm may be estimated by

|w(t) − w̄|∗2 ≤ C
(∫ t+1

t−1
∥w(s) − w̄∥2L2(S2,1×ω−4)ds

)1/2

for all t > t∗ + 2, and hence for t in the same range we have

|w(t) − w̄|∗2 ≤ Ce−β(t−t∗),
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yielding the desired result. □

Proof of Theorem 2.1. Since e′(u+ln(r sin θ), v) ∈ L1
loc(B1\{0}), it may be verified that (Φ, v) =

(u + ln sin θ, v) is a weak solution of (5.2) satisfying (5.3), (5.4), and (5.5). Then Theorem

2.1 follows from Proposition 3.9 and Theorem 5.8, by taking ω = sin θ and setting (Φ̃, ṽ) =
(Φ̄, v̄). □

6. Convergence: Linear Growth Renormalization

The purpose of this section is to study asymptotics of the harmonic map at spatial infinity,
which corresponds to the asymptotically flat end of the associated stationary vacuum spacetime.
In terms of the notation established at the beginning of this work, the radial coordinate t = − ln r
will then be restricted to the range R− = (−∞, 0), and we will use the renormalization function

(6.1) ω = e−t sin θ,

which in cylindrical coordinates is simply ρ. Notice that this renormalization function is not
independent of t, in contrast to the translation invariant renormalization used in the previous
section. Moreover, this dependence on t will require additional care when applying the results
of Section 3. When the invariant renormalization function is needed below it will be denoted by
ω̄ = sin θ.

We will study the asymptotic behavior of solutions (Φ, v) ∈ H1
loc(R−×S2) to the renormalized

harmonic map system

LΦ − 2e4u|∇gv|2 = L lnω,

Lv + 4∇gu · ∇gv = 0,
(6.2)

as t→ −∞. Observe that with this renormalization we have L lnω = 0. Here and hereafter, the
unrenormalized and renormalized harmonic map component functions u and Φ will be related
by u = Φ− lnω. Furthermore, it will be assumed that there are positive constants Λ and a such
that

(6.3) |Φ| + |v| ≤ Λ in R− × S2,

for any finite interval I ⊂ R− we have

(6.4)

∫
I

∫
S2

(|∇gΦ|2 + ω−4|∇gv|2) dvolg0dt <∞,

and in the trace sense

(6.5) v = a on R− × {N}, v = −a on R− × {S},

where N and S represent the north and south poles of S2. The next result may be viewed as a
compilation of Theorem 3.4, Proposition 3.7, and Proposition 3.8 tailored to the current setting.

Proposition 6.1. Let (Φ, v) ∈ H1
loc(R−×S2) be a weak solution of (6.2) satisfying (6.3), (6.4),

and (6.5) for some positive constants Λ and a. Then for any T < −2, integers j,m = 0, 1, 2, 3,
k = 1, 2, 3, and parameter α ∈ (0, 1), the following estimates hold

|∂mt (Φ, e2T v)|C3((T−1,T+1)×S2) ≤ C,
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g0∂

m
t (v − a)

∣∣ ≤ Cω̄3+α−j∥ω̄−2∇gv∥L2((T−2,T+2)×S2) on [T − 1, T + 1] × S2+,∣∣∇j
g0∂

m
t (v + a)

∣∣ ≤ Cω̄3+α−j∥ω̄−2∇gv∥L2((T−2,T+2)×S2) on [T − 1, T + 1] × S2−,

and

|∂kt ∇j
g0Φ| + e2T ω̄j−3−α|∂kt ∇j

g0v|

≤ C
(∫ T+2

T−2

∫
S2

(
|∂tΦ|2 + e4u|∇gv|2

)
dvolg0dt

)1/2
on [T − 1, T + 1] × S2,

for some positive constant C depending only on α, a, and Λ.

Proof. For t ∈ (−2, 2) consider the functions

(6.6) Φ̃(t, ·) = Φ(T + t, ·), ṽ(t, ·) = e2T v(T + t, ·), ũ(t, ·) = Φ̃(t, ·) − lnω(t, ·),

and observe that by (6.2) and L lnω = 0 they satisfy the equations

LΦ̃ − 2e4ũ|∇gṽ|2 = 0,

Lṽ + 4∇gũ · ∇gṽ = 0,

on (−2, 2) × S2. Furthermore, boundary conditions (6.5) are satisfied with a replaced by e2Ta.
We may then apply Theorem 3.4, Proposition 3.7, and Proposition 3.8 to obtain

|∂mt (Φ̃, ṽ)|C3((−1,1)×S2) ≤ C,

∣∣∇j
g0∂

m
t (ṽ − e2Ta)

∣∣ ≤ Cω̄3+α−j∥ω̄−2∇gṽ∥L2((−2,2)×S2) on [−1, 1] × S2+,∣∣∇j
g0∂

m
t (ṽ + e2Ta)

∣∣ ≤ Cω̄3+α−j∥ω̄−2∇gṽ∥L2((−2,2)×S2) on [−1, 1] × S2−,

and

|∂kt ∇j
g0Φ̃| + ω̄j−3−α|∂kt ∇j

g0 ṽ| ≤ C
(∫ 2

−2

∫
S2

(
|∂tΦ̃|2 + e4ũ|∇gṽ|2

)
dvolg0dt

)1/2

on [−1, 1]×S2, for j,m = 0, 1, 2, 3, k = 1, 2, 3, and α ∈ (0, 1). Note that the positive constant C
depends only on α, a, and Λ, and in order to satisfy the hypotheses of Proposition 3.8 we have
used the relations ∂t lnω = −1 and L lnω = 0. The desired result now follows by translating
back to the original map (Φ, v). □

It is possible to use standard energy estimates to bound the weighted gradient of v, and
thereby improve some of the estimates for the twist potential.

Proposition 6.2. Let (Φ, v) ∈ H1
loc(R−×S2) be a weak solution of (6.2) satisfying (6.3), (6.4),

and (6.5) for some positive constants Λ and a. Then for any T < −3, integers j,m = 0, 1, 2, 3,
and parameter α ∈ (0, 1), the following estimates hold∣∣∇j

g0∂
m
t (v − a)

∣∣ ≤ Cω̄3+α−j on [T − 1, T + 1] × S2+,∣∣∇j
g0∂

m
t (v + a)

∣∣ ≤ Cω̄3+α−j on [T − 1, T + 1] × S2−,
(6.7)

for some positive constant C depending only on α, a, and Λ.
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Proof. Let Φ̃(t, ·) and ũ(t, ·) be given as in (6.6) for T < −3 and t ∈ (−3, 3), and define
v̂(t, ·) = v(T + t, ·). Then

(6.8) divg(e4ũ∇gv̂)(t) = e−4Tdivg(e4u(T+t)∇gv(T + t)) = 0 on (−3, 3) × S2,

with v̂(t,N) = a and v̂(t, S) = −a. By applying Lemma 3.5 to v̂, while using (6.3) as well as
the estimates for Φ in Proposition 6.1, we obtain

|(v̂ − a)| ≤ Cω̄3+α on (− 5
2
, 5

2
) × S2+,

|(v̂ + a)| ≤ Cω̄3+α on (− 5
2
, 5

2
) × S2−,

where α ∈ (0, 1) is arbitrary and C is a positive constant depending only on α, a, and Λ. We
may now use local energy estimates for (6.8), viewed as a linear equation of v̂ ± a, to obtain
bounds for weighted derivatives of v̂. More precisely, multiplying the equation by v̂± a with an
appropriate cut-off function and integrating by parts produces

∥ω̄−2∇gv̂∥L2((−2,2)×Ŝ2±) ≤ C∥ω̄−2(v̂ ± a)∥L2((− 5
2 ,

5
2 )×S2±) ≤ C,

where Ŝ2± is a domain in the sphere that is slightly smaller than S2±. It follows that

∥ω̄−2∇gv∥L2((T−2,T+2)×S2) ≤ C,

and the desired result is then a consequence of Proposition 6.1. □

The asymptotic analysis of harmonic maps near spatial infinity will reduce to the asymptotic
behavior of two associated linear equations, which are studied in the next two results. The
fact that the analysis reduces to the study of two linear equations, indicates that the system
effectively decouples in this regime.

Lemma 6.3. Let Φ ∈ C2(R− × S2) be a bounded solution of

LΦ = f on R− × S2,

where f ∈ C0(R−×S2) satisfies |f | ≤ Keβt for some positive constants β and K. If β is not an
integer, then there exist a constant c0 and degree l spherical harmonics Yl, for l = 0, · · · , [β]−1,
such that for any α ∈ (0, 1) the following expansion holds

|Φ(t) − c0 − Y0e
t − · · · − Y[β]−1e

[β]t|C1,α(S2) ≤ Ceβt,

where C is a positive constant depending only on α, β, K, and the L∞-norm of Φ on R− × S2.

Proof. This is based on a well-known argument, and thus we only outline the main points which
are included for completeness. Let {Xm}∞m=0 be an orthonormal basis of eigenfunctions for
L2(S2), more precisely −∆g0Xm = λmXm with

λ0 = 0 < λ1 = λ2 = λ3 = 2 < λ4 ≤ · · · → ∞.

We may expand Φ and f according to these spherical harmonics as

Φ(t) =
∞∑

m=0

Φm(t)Xm, f(t) = eβt
∞∑

m=0

fm(t)Xm,
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where the fm(t) are uniformly bounded in t. Then, the equation LΦ = f becomes

∞∑
m=0

(
Φ′′
m − Φ′

m − λmΦm − e−βtfm
)
Xm = 0,

and hence

Φ′′
m − Φ′

m − λmΦm − e−βtfm = 0 on R−.

The two characteristic roots are given by

1

2

(
1 ±

√
1 + 4λm

)
.

Moreover, since λm = i(i+ 1) for some integer i ≥ 0, the corresponding characteristic roots are
in fact i + 1 and −i. We now discard the negative characteristic root, since the solution Φ is
assumed to be bounded. In the homogeneous case when f = 0, we then have Φm(t) = cie

(i+1)t

for some constant ci. In conclusion, any bounded solution Φ of LΦ = 0 can be expressed as

Φ(t) = c0 +
∞∑
i=0

Yie
(i+1)t,

where c0 is a constant and Yi are spherical harmonics of degree i. The L∞ version of the
expansion stated in this lemma now follows from standard ODE analysis. Finally, the C1,α

expansion may be obtained by scaled interior Schauder estimates. □

We now treat the asymptotic linear equation associated with the twist potential function v,
from the harmonic map system.

Lemma 6.4. Let ξ ∈ C3,α(R− × S2), α ∈ (0, 1) be a bounded solution of

∂2t ξ + 3∂tξ + ω̄4div(ω̄−4∇g0ξ) = f on R− × S2,
ξ(t,N) = ξ(t, S) = 0 for t ∈ R−,

where for some positive constants β and K the function f ∈ C1,α(R− × S2) satisfies

|f | ≤ Keβt sin2 θ on R− × S2.(6.9)

If β ̸= 1 then

|ξ| ≤ Ceβt sin3+α θ for β < 1,

|ξ − c1e
tω̄4| ≤ Ceγt sin3+α θ for β > 1,

(6.10)

where c1, C > 0, and γ > 1 are constants depending only on α, β, K, and the L∞-norm of ξ on
R− × S2. If additionally ∂tf satisfies (6.9), then ∂tξ satisfies (6.10). Moreover if β = 1, then ξ
may have a factor of t in the expansion at order et.

Proof. By Corollary 4.1 of [27] there exists a constant C such that

(6.11)

∫
S2
w2ω̄−6 dvolg0 ≤ C

∫
S2
|∇g0w|2ω̄−4 dvolg0 ,
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for all w ∈ H1
0 (S2, ω̄−4). Then, for any 2 < p < ∞, Hölder’s inequality and the Sobolev

inequality on S2 produce∫
S2
|w|pω̄−4 dvolg0 ≤

(∫
S2
w2ω̄−6 dvolg0

)2/3(∫
S2
w3p−4 dvolg0

)1/3

≤ C
(∫

S2
|∇g0w|2ω̄−4 dvolg0

)p/2
,

where the constant C depends only on p. This implies that H1
0 (S2, ω̄−4) is compactly embedded

in L2(S2, ω̄−4), where this latter space consists of L2-functions on S2 with respect to the measure
ω̄−4dvolg0 . These observations may be used to show that the standard L2-theory for elliptic
equations in divergence form applies to the degenerate equation

ω̄4divg0(ω̄−4∇g0w) = h on S2.

In particular, for any h ∈ L2(S2, ω̄−4) there exists a unique solution w ∈ H1
0 (S2, ω̄−4), and

∥∇g0w∥L2(S2,ω̄−4) ≤ C∥h∥L2(S2,ω̄−4)

for some universal constant C. Moreover, for the eigenvalue problem

ω̄4divg0(ω̄−4∇g0w) = −µw on S2,

there exists a sequence of real eigenvalues µ1 < µ2 ≤ · · · converging to infinity, along with an
associated sequence of eigenfunctions {φi}∞i=1 that form an orthonormal basis of L2(S2, ω̄−4).

Consider an eigenpair (µ,w). We may apply a De Giorgi iteration as in the proof of [32,
Theorem 1] to obtain

sup
S2

|w| ≤ C∥w∥L2(S2,ω̄−4).

It then follows from Lemma 3.5 that w ∈ C3,α(S2), for any α ∈ (0, 1), and

|w| ≤ Cω̄3+α on S2

where C is a constant depending only on α, µ, and the L∞-norm of w. Note that ω̄4 ∈
H1

0 (S2, ω̄−4) and

ω̄4divg0(ω̄−4∇g0ω̄
4) = −4ω̄4.

Hence, 4 is an eigenvalue and ω̄4 is a corresponding eigenfunction. Since ω̄4 > 0 on S2 \ {N,S},
we conclude that 4 is the smallest eigenvalue, that is µ1 = 4.

Next, we will establish an L2-decay based on expansions in terms of the orthonormal basis
{φi}∞i=1. Write

ξ(t) =

∞∑
i=1

ξi(t)φi, f(t) =

∞∑
i=1

fi(t)φi,

and observe that
∞∑
i=1

(ξ′′i (t) + 3ξ′i(t) − µiξi(t) + fi(t))φi = 0,

so that

ξ′′i (t) + 3ξ′i(t) − µiξi(t) + fi(t) = 0.
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The two characteristic roots of this equation are

1

2

(
− 3 ±

√
9 + 4µi

)
.

In particular, these become 1 and −4 when i = 1. By standard ODE analysis, we then have

∥ξ(t)∥L2(S2,ω̄−4) ≤ Ceβt if β < 1,

∥ξ(t) − c1e
tω̄4∥L2(S2,ω̄−4) ≤ Ceγt if β > 1,

for some constants c1, C, and γ > 1.
The L2-decay may be transformed into pointwise decay in the following way. For any t0 < −1

and τ ∈ (−1, 1) set

ξ̃(τ, ·) =

{
e−βt0ξ(t0 + τ, ·) if β < 1,

e−γt0(ξ(t0 + τ, ·) − c3e
t0+τ ω̄4) if β > 1,

and

f̃(τ, ·) =

{
e−βt0f(t0 + τ, ·) if β < 1,

e−γt0f(t0 + τ, ·) if β > 1.

Then ∥ξ̃(τ)∥L2(S2,ω̄−4) ≤ C, |f̃ | ≤ Cω̄2, and

∂τ (ω̄−4e3τ∂τ ξ̃) + divg0(ω̄−4e3τ∇g0 ξ̃) = ω̄−4e3τ f̃ .

Thus, a De Giorgi iteration as in [32, Theorem 1] produces

sup
(−1/2,1/2)×S2

|ξ̃| ≤ C
(
∥ξ̃/ω̄2∥L2((−1,1)×S2) + ∥f̃/ω̄2∥L∞((−1,1)×S2)

)
≤ C.

We may then employ [27, Lemma 4.4], for any α ∈ (0, 1), to obtain

sup
(−1/4,1/4)×S2

(|ξ̃|ω̄−3−α) ≤ C.

This yields the desired result (6.10).
Finally, assume that ∂tf satisfies (6.9), and observe that

∂τ (ω̄−4e3τ∂τ ξ̃τ ) + divg0(ω̄−4e3τ∇g0 ξ̃τ ) = ω̄−4e3τ f̃τ ,

where ξ̃τ = ∂τ ξ̃ and f̃τ = ∂τ f̃ . By the energy estimates for the equation of ξ̃, it is straightforward
to see that

∥ξ̃τ/ω̄2∥L2((−3/4,3/4)×S2) ≤ C.

Similarly, we have

sup
(−1/4,1/4)×S2

(|ξ̃τ |ω̄−3−α) ≤ C.

Therefore, ∂tξ satisfies (6.10). □

Remark 6.5. It should be noted that for any constant a ∈ R, the function

v0(θ) =
1

2
a cos θ(3 − cos2 θ)(6.12)
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appearing in the extreme Kerr harmonic map, satisfies the zero eigenvalue equation from the
proof of Lemma 6.4. However, since v0 does not vanish at the poles it does not lie in the space
L2(S2, ω̄−4), and is thus not considered as a member of the orthonormal basis {φi}∞i=1.

Remark 6.6. We shall now compute some eigenvalues and eigenfunctions that are releveant to
the previous lemma. Consider

(6.13) ω̄4divg0(ω̄−4∇g0w) = −λw on S2 \ {N,S}, w ∈ L2(S2, ω̄−4),

and use the separation of variables ansatz w(θ, ϕ) = η(θ) cos(m(ϕ− ϕ0)) for m = 0, 1, . . . where
ϕ0 is a constant. Under this assumption equation (6.13) may rewritten as

sin5 θ
d

dθ

(
1

sin3 θ

dη

dθ

)
+ λ sin2 θ η −m2η = 0, η ∈ H = L2([0, π], ω̄−3).

Making the substitutions x = cos θ and λ = ℓ(ℓ+ 3) produces

(6.14) (1 − x2)2η′′ + 2x(1 − x2) η′ +
(
ℓ(ℓ+ 3)(1 − x2) −m2

)
η = 0,

where η′ = dη
dx . It is straightforward to check that η(x) = (1−x2) y(x) satisfies (6.14) if and only

if y(x) satisfies the general Legendre equation of degree ℓ+ 1 and order n =
√
m2 + 4, that is

(1 − x2)2y′′ − 2x(1 − x2) y′ +
(
(ℓ+ 1)(ℓ+ 2)(1 − x2) − n2

)
y = 0.

Thus we conclude that η(x) = (1 − x2)
(
aPn

ℓ+1(x) + bQn
ℓ+1(x)

)
, where Pn

ℓ+1 and Qn
ℓ+1 are the

associated Legendre functions of the first and second kind respectively, and a, b are constants.
For applications to stationary vacuum black holes, the relevant harmonic maps are axisymmetric,
in which case we may restrict attention to m = 0. In this situation, n = 2 and Q2

ℓ+1 has a simple

pole at the endpoint x = 1. It follows that (1 − x2)Q2
ℓ+1(1) ̸= 0, and hence cannot be in H.

Similarly, if ℓ ̸∈ N then P 2
ℓ+1 has a simple pole at the endpoint x = −1. We conclude that

λℓ = ℓ(ℓ + 3) are eigenvalues for each for ℓ ∈ N, with eigenfunctions wℓ(θ) = sin2 θP 2
ℓ+1(cos θ).

Moreover, by Rodrigues’ formula

P 2
ℓ+1(x) =

1 − x2

2ℓ+1(ℓ+ 1)!

dℓ+3

dxℓ+3
(x2 − 1)ℓ+1,

and thus the eigenfunctions may be rewritten as

wℓ(θ) =
sin4 θ

2ℓ+1(ℓ+ 1)!
pℓ(cos θ),

where pℓ is a polynomial of degree ℓ−1. Lastly, note that since µ2 ≤ λ2 = 10, the decay constant
γ of Lemma 6.4 is not greater than 2.

We are ready to prove the main result in this section, which offers an asymptotic expansion
at infinity for the renoramlized harmonic map.

Theorem 6.7. Let (Φ, v) ∈ H1
loc(R− × S2) be a weak solution of (6.2) satisfying (6.3), (6.4),

and (6.5) for some positive constants Λ and a. Then there exist constants c0, c1, C and degree
0, 1, and 2 spherical harmonics Y0, Y1, and Y2 respectively, such that for all t ≤ −1 the following
expansions hold

(6.15) |Φ(t) − c0 − etY0 − e2tY1 − e3tY2|C3(S2) ≤ Ce(3+β)t,
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and

(6.16) |v(t) − v0(θ) − c1e
tω̄4|C3(S2) ≤ Ce(1+β)t,

for some β ∈ (0, 1) and where v0 is given by (6.12). Moreover, corresponding asymptotics are
valid for the t-derivatives of (Φ, v).

Proof. Write the first equation of (6.2) as LΦ = f , where

f = 2e4u|∇gv|2 = e4tω̄−4e4Φ
(
|∂tv|2 + |∇g0v|2).

By the estimates for Φ in Proposition 6.1, and the estimates for v in Proposition 6.2, we have

|f | ≤ Ce4tω̄−4ω̄4+2α ≤ Ce4tω̄2α ≤ Ce4t

for any α ∈ (0, 1). Moreover, by Lemma 6.3 there exist constants c0, C, Y0 and degree 1 and 2
spherical harmonics Y1 and Y2 respectively, such that

|Φ(t) − c0 − etY0 − e2tY1 − e3tY2|C1,σ(S2) ≤ Ce(3+β)t

for any σ, β ∈ (0, 1) and all t ≤ −1. In order to improve this estimate to involve C3-norms, we
note that

|∇g0f | ≤ Ce4tω̄−5ω̄4+2α ≤ Ce4tω̄2α−1 ≤ Ce4t

if α ∈ (1/2, 1). In fact, by choosing σ ∈ (0, 1) sufficiently small depending on α, we find

|∇g0f |Cσ(S2) ≤ Ce4t.

Hence the methods of Lemma 6.3 yield

|Φ(t) − c0 − etY0 − e2tY1 − e3tY2|C3,σ(S2) ≤ Ce(3+β)t,

which gives (6.15). Furthermore, estimates of t-derivatives may be obtained in a similar manner.
For example we have

|∂tΦ(t) − etY0 − 2e2tY1 − 3e3tY2|C3,σ(S2) ≤ Ce(3+β)t,

along with an analogous estimate for ∂2t Φ. In particular, it follows that

(6.17) |∂tΦ| + |∂2t Φ| ≤ Cet, |∇g0Φ| + |∇g0∂tΦ| ≤ Ce2t.

Consider now the equation satisfied by v. Observe that

Lv + 4∇gu · ∇gv = ∂2t v + 3∂tv + ∆g0v − 4∇g0 ln ω̄ · ∇g0v + 4∇gΦ · ∇gv

= ∂2t v + 3∂tv + ω̄4divg0(ω̄−4∇g0v) + 4∇gΦ · ∇gv,

so that the second equation of (6.2) may be expressed as

∂2t v + 3∂tv + ω̄4divg0(ω̄−4∇g0v) = h,

where

h = −4∇gΦ · ∇gv = −4∇g0Φ · ∇g0v − 4∂tΦ∂tv.

By Remark 6.5, we have ω̄4divg0(ω̄−4∇g0v0) = 0. Therefore, if ξ = v − v0 then

∂2t ξ + 3∂tξ + ω̄4divg0(ω̄−4∇g0ξ) = h.

Notice that (6.7) gives

(6.18) |∇g0v| + |∇g0∂tv| ≤ Cω̄2+α, |∂tv| + |∂2t v| ≤ Cω̄3+α,
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which together with (6.17) produces

|h| ≤ Ce2tω̄2+α + Cetω̄3+α ≤ Cetω̄2+α,

and similarly

|∂th| ≤ Cetω̄2+α.

We may now apply Lemma 6.4 to obtain

|∂tv| = |∂tξ| ≤ Ceδtω̄3+α,

for any δ ∈ (0, 1). Moreover, by using the above estimate of ∂tv instead of the one in (6.18), it
follows that

|h| ≤ Ce(1+δ)tω̄2+α.

Applying Lemma 6.4 again prouces

|ξ − c1e
tω̄4| ≤ Ce(1+β)tω̄3+α,

for some constants β ∈ (0, 1), c1, and C > 0. The desired expansion (6.16) with C3-norms
now follows from Lemma 3.6. Similar arguments yield the corresponding estimates for the
t-derivatives. □

Proof of Theorem 2.3. The hypotheses guarantee the applicability of Theorems 3.4 and 6.7, from
which the desired result follows. □

7. Near Horizon Geometry and Conical Singularities

In this section we will give an application of the asymptotic analysis presented in previous
sections to the classification of near horizon geometries, and will give a geometric interpretation
of the parameter b appearing in the expression of tangent maps at punctures. For the notation
and background, we refer to the last portion of Section 2.

7.1. Near horizon limit: proof of Theorem 2.5. Near horizon geometries (NHGs) arise
through a limiting process in the vicinity of a degenerate (extreme) black hole, which infinitely
magnifies the spacetime geometry at the horizon, see [25] for a detailed review. In the physics
literature, a rigorous justification of the so called near horizon limit that gives rise to the NHG, is
often not addressed. Here we will prove that this limit exists as a consequence of the asymptotic
analysis studied in this work.

Consider a puncture pl at the intersection of two axis rod closures Γl and Γl+1, lying to the
south and north of the puncture. We may introduce polar coordinates (r, θ) centered at this
point, such that ρ = r sin θ and z = r cos θ. As usual, write u = Φ− ln sin θ so that U = Φ+ln r,
then the spacetime metric becomes

(7.1) g = −r2e2Φdτ2 + e−2Φ sin2 θ(dϕ+ wdτ)2 + e−2Φ+2α

(
dr2

r2
+ dθ2

)
.

The NHG metric is obtained from the scaling r = ϵr̄, τ = ϵ−1τ̄ , ϕ = ϕ̄+ Ωϵ−1τ̄ by letting ϵ→ 0,
where Ω is the angular velocity of the black hole. Moreover, justification and computation of
this near horizon limit will follow from the expansion of the metric coefficients that is implied
by Theorems 2.1 and 2.2. To begin, observe that without loss of generality it may be assumed
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that v = ±a on Γl+1, Γl respectively, for some a > 0. Then for all sufficiently small r this result
yields

Φ(r, θ) = Φ̄(θ) +O(rβ) = −1

2
ln

2a
√

1 − b2

1 + cos2 θ + 2b cos θ
+O(rβ),

v(r, θ) = v̄(θ) +O(rβ) = a · b+ b cos2 θ + 2 cos θ

1 + cos2 θ + 2b cos θ
+O(rβ),

(7.2)

where β > 0 and b ∈ (−1, 1).
It remains to calculate the expansions for α and w. Using the relations

∂ρ = sin θ∂r +
cos θ

r
∂θ, ∂z = cos θ∂r −

sin θ

r
∂θ,

together with (2.11), and the estimates

(7.3) r|∂rΦ| + |∂θ(Φ − Φ̄)| = O(rβ), (sin θ)−7/2r|∂rv| + (sin θ)−5/2|∂θ(v − v̄)| = O(rβ),

which follow from Proposition 3.9, we have

r∂rα = r sin θ∂ρα + r cos θ∂zα

= r sin θ
[
2uρ+ 1

ρ +ρ(u2ρ−u2z+e4u(v2ρ−v2z))
]
+r cos θ

[
2uz+ρ(2uρuz+2e4uvρvz)

]
= 1 − sin2 θ

[
(Φ̄θ − cot θ)2 + e4uv̄2θ

]
+O(rβ)

= O(rβ),

where in the last equality we employed the expression for Φ̄ as well as (4.5) to find

Φ̄θ = − sin θ(cos θ + b)

1 + cos2 θ + 2b cos θ
,

e4uv̄2θ = sin2 θ
4a2

e−4Φ̄ +O(rβ) =
a(1 − b2) sin2 θ

(1 + cos2 θ + 2b cos θ)2
+O(rβ).

Similar manipulations give rise to

∂θα = − sin θ cos θ + 2 sin2 θΦ̄θ + sin θ cos θ
(
Φ̄2
θ + e4uv̄2θ

)
+O(rβ)

= − sin θ cos θ − sin3 θ(cos θ + 2b)

1 + cos2 θ + 2b cos θ
+O(rβ).

It follows that

(7.4) α(r, θ) = ln
(
1 + cos2 θ + 2b cos θ

)
+ α0 +O(rβ) =: ᾱ(θ) +O(rβ),

where α0 is a constant of integration.
We will now compute the expansion of w. Observe that with the help of (2.10) and (7.3) we

have

r∂rw = r sin θ∂ρw + r cos θ∂zw

= r sin θ
(
2ρe4uvz

)
− r cos θ

(
2ρe4uvρ

)
= 2r2 sin θe4u

[
sin θ

(
cos θvr − sin θ

r vθ
)
− cos θ

(
sin θvr + cos θ

r vθ
)]

= −2re4Φ̄
v̄θ

sin3 θ
+O

( r1+β

sin1/2 θ

)
,
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and similarly

∂θw = r cos θ∂ρw − r sin θ∂zw

= r cos θ
(
2ρe4uvz

)
+ r sin θ

(
2ρe4uvρ

)
= 2r2 sin θe4u

[
cos θ

(
cos θvr − sin θ

r vθ
)

+ sin θ
(
sin θvr + cos θ

r vθ
)]

= 2r2e4Φ
vr

sin3 θ

= O(r1+β).

It follows that

(7.5) w = w0 − 2re4Φ̄
v̄θ

sin3 θ
+O

( r1+β

sin1/2 θ

)
= w0 +

r

a
+O

( r1+β

sin1/2 θ

)
,

where (4.5) has been used in the last equality and w0 is an integration constant that represents
the sign reversed angular velocity of the black hole, −Ω. We may now apply the expansions
(7.2), (7.4), and (7.5) to take the near horizon limit in (7.1) and obtain the near horizon metric

gNH = −r̄2e2Φ̄dτ̄2 + e−2Φ̄ sin2 θ
(
dϕ̄+

r̄

a
dτ̄

)2
+ e−2Φ̄+2ᾱ

(dr̄2
r̄2

+ dθ2
)

= −r̄2
(1 + cos2 θ + 2b cos θ

2a
√

1 − b2

)
dτ̄2 +

2a
√

1 − b2 sin2 θ

1 + cos2 θ + 2b cos θ

(
dϕ̄+

r̄

a
dτ̄

)2

+
a
√

1 − b2

2
(1 + cos2 θ + 2b cos θ)

(dr̄2
r̄2

+ dθ2
)
.

The integration constant of (7.4) has been chosen so that e2α0 = 1/4, which yields the near
horizon metric of the extreme Kerr black hole (extremal Kerr throat metric) [8] when a = 2J
and b = 0, where J denotes angular momentum.

7.2. Angle defect at punctures: proof of Theorem 2.4. We will now show that the pa-
rameter b ∈ (−1, 1), that appears in the tangent map and near horizon geometry of an extreme
black hole, completely determines the difference of logarithmic angle defects associated with
the two neighboring axis rods. Namely, consider the two axis rods Γl and Γl+1 lying directly
to the south and north of the puncture pl, each having logarithmic angle defect bl and bl+1,
respectively. According to (2.12) and (7.4) we find that

bl+1 − bl = lim
r→0

(α(r, 0) −α(r, π)) = ln

(
1 + b

1 − b

)
⇔ b = tanh

(
bl+1 − bl

2

)
.

In particular, the case b = 0 corresponds to a ‘balanced horizon’, in that conical singularities on
both sides of the black hole may be relieved by choosing the constant α0 in (7.4) appropriately.
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