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Abstract. Comparison theorems are foundational to our understanding of the geometric features

implied by various curvature constraints. This paper considers manifolds with a positive lower bound

on either scalar, 2-Ricci, or Ricci curvature, and contains a variety of theorems which provide sharp

relationships between this bound and notions of width. Some inequalities leverage geometric quantities

such as boundary mean curvature, while others involve topological conditions in the form of linking

requirements or homological constraints. In several of these results open and incomplete manifolds

are studied, one of which partially addresses a conjecture of Gromov in this setting. The majority

of results are accompanied by rigidity statements which isolate various model geometries – both

complete and incomplete – including a new characterization of round lens spaces, and other models

that have not appeared elsewhere. As a byproduct, we additionally give new and quantitative proofs

of several classical comparison statements such as Bonnet-Myers’ and Frankel’s Theorem, as well as a

version of Llarull’s Theorem and a notable fact concerning asymptotically flat manifolds. The results

that we present vary significantly in character, however a common theme is present in that the lead

role in each proof is played by spacetime harmonic functions, which are solutions to a certain elliptic

equation originally designed to study mass in mathematical general relativity.
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1. Introduction

In comparison geometry [19] one relates a geometric feature of a general Riemannian manifold
to that of some appropriate model geometry, often taken to be a simply connected space form.
These statements form a significant part of our geometric-analytic understanding of various curva-
ture conditions, and commonly come with associated rigidity statements which provide a revealing
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characterization of the model spaces. Prototypical examples include Toponogov’s triangle compari-
son for manifolds with a lower sectional curvature bound, and the Bonnet-Myers diameter estimate
for manifolds possessing uniformly positive Ricci curvature. Comparison and rigidity results lever-
aging the much weaker condition of a positive lower bound on scalar curvature are more ephemeral
and underlie many research programs in contemporary differential geometry.

Historically speaking, scalar curvature comparison theorems employ techniques and ideas from
the a priori disparate areas of spin geometry, minimal surface theory, and mathematical general
relativity. See [11] for a partial survey. In the present work, we strengthen a number of known scalar
and Ricci curvature comparison theorems from a novel and uniform perspective. The primary role
in our argumentation is played by a certain elliptic PDE known as the spacetime harmonic equation,
the basic facts of which are reviewed in Section 3. This equation originally appeared in [34], wherein
its solutions were used to study the total mass of initial data sets for Einstein’s equations. The tools
we develop here can be considered as generalizing Stern’s method of circle-valued harmonic maps on
3-manifolds [10, 60]. Moreover, there is a strong parallel to draw between our work and the emergent
techniques of Gromov’s µ-bubbles [31] and Cecchini-Zeidler’s Callias operators [15], which generalize
minimal surface and Dirac operator methods, respectively.

Compared to methods based on the analysis of Jacobi fields along geodesics or on µ-bubbles, the
techniques developed here always yield quantitative statements involving bulk integrals of geometric
quantities. Methods based on Dirac operator methods also yield quantitative statements, but have
the potential downside of relying on index-theoretic arguments to produce solutions to the relevant
elliptic equations. Solutions to the spacetime Laplace equation, on the other hand, are readily
obtained by a fixed point procedure with robust applicability.

Though the results presented here appear diverse, nearly all belong to a class of comparison
theorems we refer to as band-width inequalities. These inequalities analyze compact Riemannian
manifolds (M, g) whose boundary components are separated into two disjoint and non-empty collec-
tions ∂M = ∂−M ⊔∂+M . The data (M,∂±M, g) is referred to as a Riemannian band . A band-width
inequality – or simply band inequality – is an upper bound for a Riemannian band’s width, or rather
the distance d(∂−M,∂+M), in terms of the mean curvature of ∂M and a positive curvature lower
bound of some type. Taking a limit of band inequalities applied to regions exhausting a given closed
manifold allows one to prove interesting comparison theorems of a more classical flavor. One advan-
tage of our band-mentality is that it only requires analysis on compact regions within the manifold
of interest. We are able to exploit this feature and prove new theorems about open and incomplete
Riemannian manifolds. To our knowledge, Theorems A, C, and D are among the first comparison
theorems for general incomplete manifolds with full rigidity statements.

Below and throughout this work all manifolds are assumed to be connected, oriented, Hausdorff,
second-countable, and smooth. In Section 3.3 we discuss the alterations one must make to each
theorem presented below in the nonorientable case.

2. Statement of Results

There are a wide range of results presented in this paper, some of which are known facts proven
by new quantitative means, some of which are refinements of previous results, and others are novel.
For convenience of the reader, we have highlighted four results that are labelled as Main Theorems
to indicate the relative level of significance.

2.1. Manifolds with positive Ricci curvature. In Section 4.3 we conduct an analysis of space-
time harmonic functions on manifolds with a positive lower bound on Ricci curvature. The technical
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centerpiece of that section, Lemma 4.3, is a fundamental integral identity. This identity is used
to establish a band-width inequality, originally obtained by Croke-Kleiner [23, Theorem 3] via dis-
tance function comparison. Below and throughout, H denotes the mean curvature of a manifold’s
boundary with respect to the outward pointing unit normal vector.

Theorem 2.1. Let (Mn, ∂±M
n, g), n ≥ 3, be an n-dimensional Riemannian band. Consider H± :=

−min∂±Mn H, where H is the mean curvature with respect to the outer normal. If Ric ≥ (n − 1)g,
then the width satisfies

(2.1) d(∂−M
n, ∂+M

n) ≤ arctan
H−
n− 1

+ arctan
H+

n− 1
.

If additionally equality occurs in (2.1), then Mn splits isometrically as a warped product

(2.2) (Mn, g) ∼=
([

− arctan
H−
n− 1

, arctan
H+

n− 1

]
× Σn−1, dθ2 + cos2 θgΣ

)
,

where (Σn−1, gΣ) is a closed (n− 1)-manifold with RicΣ ≥ (n− 2)gΣ.

The next result concerns open Riemannian manifolds. If the ends of an open (Mn, g) are separated
into disjoint and non-empty classes E− and E+, the width d(E−, E+) of (M

n, E±, g) is the distance
between E− and E+, by which we mean the minimal length of paths traveling between E− and E+.
Related definitions and facts are discussed in Appendix C. By carefully taking limits within the proof
of Theorem 2.1 in the context of certain compact bands exhausting an open manifold, we establish
the following.

Main Theorem A. Let (Mn, g), n ≥ 3, be an open n-dimensional Riemannian manifold with a
closed hypersurface Σn−1 separating its ends into two disjoint nonempty classes E− and E+. If
Ric ≥ (n− 1)g, then

(2.3) d(Σn−1, E−) + d(Σn−1, E+) ≤ π.

If additionally equality is achieved in (2.3), then Mn splits isometrically as a warped product

(2.4) (Mn, g) ∼=
((

−π
2
,
π

2

)
× Σn−1, dθ2 + cos2 θgΣ

)
where gΣ is a metric on Σn−1 satisfying RicΣ ≥ (n− 2)gΣ.

The fundamentally new content of Main Theorem A is that it imposes no hypothesis of complete-
ness or control on the geometry of the manifold’s ends. Such results are rare – rigidity theorems
characterizing open and incomplete Riemannian manifolds include Theorems A, C, D, Zhu’s Theo-
rem [67, Theorem 1.4], and Gromov’s [31, Section 3.9]. In a similar spirit, Lee-Lesourd-Unger [40]
and Lesourd-Unger-Yau [41] use the method of µ-bubbles to study the the Riemannian positive mass
theorem on incomplete asymptotically flat manifolds. We also mention the work of Cecchini-Räde-
Zeidler [14] making use of both Dirac and µ-bubble methods to study the scalar curvature of open
and complete manifolds with at least two ends.

As an application, in Corollary 4.5 we apply Main Theorem A to open manifolds obtained by
removing a pair of points from a given closed Riemannian manifold. This leads to new proofs of the
classical Bonnet-Myers diameter estimate [51] and Cheng’s rigidity theorem [21].

In Section 4.2 we give a new and relatively simple argument showing the nonexistance of nonflat
asymptotically flat manifolds with nonnegative Ricci curvature. This fact was previously shown
by Zhang [66, Theorem 3.4] under even weaker decay assumptions on g. Moreover, Anderson [2,
Theorem 3.5] established a similar result as a consequence of Bishop-Gromov’s volume comparison,
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see also [4] and [5] for related results. In the special case that Ric = 0, a version of this result is due
to Schoen [57, Proposition 2], who employed harmonic coordinates and Bochner’s formula.

Theorem 2.2. Let (Mn, g), n ≥ 2 be a complete Riemannian manifold which is asymptotically flat1

of order q > 0. If Ric ≥ 0, then (Mn, g) is isometric to Euclidean space (Rn, δ).

The proof of this result utilizes Green’s functions, which may be viewed as a special case of
spacetime harmonic functions. In this regard, we mention the recent work of Munteanu-Wang [49, 50]
which also employs the use of Green’s functions to obtain rigid comparison theorems, but for 3-
manifolds with scalar curvature bounded from below.

2.2. 3-Manifolds of positive 2-Ricci curvature. Given a whole number k and a number κ, a
Riemannian manifold is said to have k-Ricci curvature at least κ if at each point the sum of the k
smallest eigenvalues of its Ricci endomorphism is at least κ. In Section 8, we analyse 3-manifolds with
positive 2-Ricci curvature. In general, the geometry of manifolds satisfying this curvature condition
is less constrained compared to positive Ricci curvature (1-Ricci curvature), but more constrained
compared to positive scalar curvature (3-Ricci curvature).

Remark 2.3. Interestingly, the class of closed 3-manifolds which support metrics of positive 2-Ricci
curvature coincides with those admitting positive scalar curvature metrics, which in the orientable
case is the collection

(2.5)
(
#k

i=1S
3/Γi

)
#
(
#l

j=1S
1 × S2

)
where S3/Γi are spherical space forms. To see this, first note that (2.5) contains all orientable positive
scalar curvature 3-manifolds, a fact which follows from the Poincaré conjecture [52] and earlier work
of Gromov-Lawson [33] and Schoen-Yau [58]. On the other hand, the round metrics on S3/Γi and the
product metric on S1 × S2 have positive 2-Ricci curvature. Finally, the surgery theorems of Hoelzel
[36] and Wolfson [63] apply in this context and show that all of (2.5) admit such metrics.

We next describe the appropriate band-width inequality tailored to the positive 2-Ricci curvature
condition.

Main Theorem B. Let (M3, ∂±M
3, g) be a 3-dimensional Riemannian band with no spherical

classes in H2(M
3;Z). Consider the sign reversed minimal outward mean curvature H0 = −min∂M3 H.

If (M3, g) has 2-Ricci curvature at least 4, then H0 > 0 and the width of the band satisfies

(2.6) w := d(∂−M
3, ∂+M

3) ≤ arctan(H0/2).

If additionally Ric ≥ 2g and equality is achieved in (2.6), then the universal cover of (M3, g) is
isometric to ([−w

2 ,
w
2 ]× R2, gΥ) where

(2.7) gΥ = dρ2 + ϕ2Υ(ρ)dx
2 + ψ2

Υ(ρ)dy
2, ρ ∈

[
−w

2
,
w

2

]
, (x, y) ∈ R2,

and

(2.8)

{
ϕΥ(ρ) = 2

1−Υ
2 cos1−Υ(ρ+ π

4 ) cos
Υ
2 (2ρ)

ψΥ(ρ) = 2
1−Υ
2 sin1−Υ(ρ+ π

4 ) cos
Υ
2 (2ρ)

for some Υ ∈ [0, 1].

1The definition of asymptotically flat manifolds is given in Section 4.2.
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The prototypical example of a band achieving the maximal width of Main Theorem B is a neigh-
borhood of the Clifford torus in the round 3-sphere, which is associated with the case Υ = 0. It
is interesting to point out that even though the curvature condition here is weaker than Ric ≥ 2g,
inequality (2.6) is stronger than the width inequality in Theorem 2.1. The homological restriction
of Main Theorem B is responsible for this strengthening. Notice also the more restrictive curvature
condition Ric ≥ 2g for the rigidity statements of the theorems stated in this subsection. This con-
dition is in fact necessary, as is illustrated by Example 2.6 below. Similarly to the previous band
inequalities, we establish a version of Main Theorem B for open and incomplete manifolds.

Main Theorem C. Let (M3, g) be an open 3-dimensional Riemannian manifold with a closed sur-
face Σ2 separating its ends into two disjoint nonempty classes E− and E+. Assume that H2(M

3;Z)
contains no spherical classes. If the 2-Ricci curvature of (M3, g) is at least 4, then

(2.9) d(Σ2, E−) + d(Σ2, E+) ≤
π

2
.

If additionally Ric ≥ 2g and equality is achieved in (2.9), then the universal cover of (M3, g) is
isometric to ((−π

4 ,
π
4 )× R2, gΥ) for some Υ ∈ [0, 1], where gΥ is as in Main Theorem B.

The above result is of a similar spirit to Zhu’s [67, Theorem 5.1], which was inspirational to the
present work. We point out that Main Theorem C fully settles the case of rigidity, which was only
partially addressed in the aforementioned paper, thereby resolving an inconsistency in the rigidity
statement of [67, Theorem 5.1].

Let us take a moment to place the previous two results in some context. Prior to the maturation
of the techniques mentioned here, it was unclear to what extent Llarull’s Theorem held for non-spin
manifolds. To this end, Gromov [30] adopted the following strategy. First construct wide toric bands
embedded as codimension-0 submanifolds in the round sphere. Then, given a map from a positive
scalar curvature manifold to the round sphere, apply a version of the torus band inequality (see
Theorem 2.10 below) – known to hold in dimensions less than 8, irrespective of the spin condition
– to the preimage of this band and thereby obtain an estimate on the map’s Lipschitz constant.
In this method, the sharpness of this Lipschitz constant estimate is highly dependent on the first
step wherein one seeks a codimension-1 embedded torus in the round sphere with a large normal
injectivity radius. In dimensions above 3, there appears to be no canonical choice of this torus
and though the construction of embedded high-dimensional tori in [30] is quite clever, the resulting
Lipschitz constant estimate is far from sharp. In dimension 3, however, there is an embedded torus
of maximal normal injectivity radius: the minimal Clifford torus in S3 and their lens space quotients.

As a consequence of Main Theorem C, we obtain the following corollary. It is a refinement of
the result [67, Corollary 1.7], which itself addressed a conjecture of Gromov [30] arising from the
above discussion. Below, given an embedded submanifold Σ2 in a Riemannian manifold (M3, g),
its normal injectivity radius will be denoted by Injn(Σ

2). Recall that this quantity represents the
largest distance from Σ2, such that all points within the radius admit a unique geodesic minimizing
distance to the surface.

Corollary 2.4. Let (M3, g) be a closed Riemannian manifold with 2-Ricci curvature at least 4. If
Σ2 ⊂M3 is a connected embedded closed surface of positive genus, then

Injn(Σ
2) ≤ π

4
.(2.10)



6 SVEN HIRSCH, DEMETRE KAZARAS, MARCUS KHURI, AND YIYUE ZHANG

If additionally Ric ≥ 2g and equality occurs in (2.10), then the universal cover of (M3, g) is isometric
to the round sphere and Σ2 lifts to the Clifford torus. Moreover, in this case (M3, g) is isometric to
a round sphere or a round lens space.

As a second application of Main Theorem C, one can give a rigid upper bound for the distance
between knots. Recall that a rational homology 3-sphere M3 is a closed oriented 3-manifold with
vanishing first and second Betti numbers. If K1 and K2 are embedded circles in such a manifold,
there is a 2-cycle Ci such that ∂Ci is a multiple of the torsion class [Ki] ∈ H1(M

3;Z) for i = 1, 2.
The knots K1 and K2 are linked if the signed transverse intersection of K1 and C2 is nonzero.

Corollary 2.5. Let (M3, g) be a closed 3-dimensional Riemannian manifold where M3 is a rational
homology sphere. Suppose that K1,K2 ⊂M3 are two linked knots. If the 2-Ricci curvature of (M3, g)
is at least 4, then d(K1,K2) ≤ π/2. If additionally Ric ≥ 2g and d(K1,K2) = π/2, then the universal
cover of (M3, g) is the round 3-sphere and K1 ∪ K2 lifts to the Hopf link. Moreover, in this case
(M3, g) is isometric to a round sphere or a round lens space.

We would like to emphasize that Corollaries 2.4 and 2.5 are, to the authors’ knowledge, the only
general comparison theorems which specifically characterize the class of round lens spaces. It is worth
pointing out the unrelated characterization of the round RP3 by Bray-Brendle-Eichmair-Neves [6] in
terms of the area of certain 2-cycles.

Example 2.6. There exists an explicit 1-parameter family of smooth and nonround metrics on S3

with 2-Ricci curvature at least 4, each of which contains an embedded torus of normal injectivity
radius equal to π/4. Furthermore, utilizing the ‘Hopf link’ or a thickening thereof, this family may be
employed to obtain counterexamples to the rigidity statements in Main Theorems B and C, as well
as Corollary 2.5, when the Ricci lower bound is not assumed. See Section 8.4 for details.

2.3. 3-Manifolds of positive scalar curvature. The methods used above to treat positive Ricci
and 2-Ricci curvature, may also be applied in the context of scalar curvautre. In Section 7 we study
the Lipschitz constants of maps from positive scalar curvature manifolds to the unit round 3-sphere
(S3, gS3). In particular, we show the following quantitative statement which recovers the illuminating
theorem of Llarull [44] in the special case of 3-manifolds satisfying a topological condition.

Theorem 2.7. Let (M3, g) be a closed 3-dimensional Riemannian manifold with H2(M
3;Z) = 0.

Suppose that ℓ : (M3, g) → (S3, gS3) is a C1 map of nonzero degree with Lipschitz norm Lip(ℓ) ≤ 1.
Then there exists a nonconstant spacetime harmonic function u on M3 which is C2,α-smooth away
from a finite set of points, for any α ∈ (0, 1), such that

(2.11)

ˆ
M3

(6−R)|∇u|dV ≥
ˆ
M3

∣∣∇2u+ cot(θ ◦ ℓ)|∇u| g
∣∣2

|∇u|
dV

where θ(x) denotes the spherical distance between a point x ∈ S3 and the north pole. If additionally
the scalar curvature satisfies R ≥ 6, then ℓ is an isometry.

Remark 2.8. In the statement of Theorem 2.7 we include the quantitative inequality (2.11). In fact,
as a biproduct of the techniques employed, all results in this manuscript could be stated in such terms,
but for brevity we only make this explicit here. It is worth noting that such quantitative statements
involving Hessians could have implications for associated stability questions, see for instance [18, 38].

Localized or rigid quantitative band-type versions of Llarull’s theorem are also possible. See [29],
[43], and [45] for very general results of this variety. In the following, let N and S denote the



RIGID COMPARISON GEOMETRY FOR RIEMANNIAN BANDS AND OPEN INCOMPLETE MANIFOLDS 7

north and south poles in S3. Given two numbers r1, r2 ∈ (0, π) such that r1 < r2, we will write
A[r1, r2] for the closed annular region in the unit round sphere consisting of points x ∈ S3 satisfying
θ(x) = dS3(x,N) ∈ [r1, r2].

Theorem 2.9. Let (M3, ∂±M
3, g) be a 3-dimensional Riemannian band such that both ∂+M

3 and
∂−M

3 are connected, and H2(M
3, ∂M3;Z) = 0. Suppose that 0 < r1 < r2 < π, and ℓ : M3 →

A[r1, r2] is a C1 map of nonzero degree with Lip(ℓ) ≤ 1. If R ≥ 6, then there must exist a point
x ∈ ∂M so that the outward normal mean curvature satisfies H(x) ≤ HgS3 (ℓ(x)). If additionally

H(x) ≥ HgS3 (ℓ(x)) for all points x ∈ ∂M3, then (M3, g) is isometric to an annular region in the
unit round 3-sphere.

Conjecturally, the extremal character of (S3, gS3) articulated by Theorem 2.7 is even more robust –
Gromov has suggested [30, Conjecture D] that the open and incomplete manifold formed by removing
finitely many points from the round sphere enjoys the same property. We confirm this statement
in the next result, for dimension 3 in the special case of a pair of antipodal points. See Gromov’s
four lectures on scalar curvature [31, Section 3.9] for an extended discussion and an alternative set
of arguments, for this and related extremality statements. See also the recent similar result [37,
Theorem 1.6] of Hu-Liu-Shi.

Main Theorem D. Let g be a Riemannian metric on S3 \ {N,S}. If g ≥ gS3, then there is a point
x ∈ S3 \ {N,S} where the scalar curvature satisfies R(x) ≤ 6. If additionally R ≥ 6, then g agrees
with the round metric gS3.

Prior to Llarull’s work, Gromov-Lawson [32] developed a homotopy-theoretic obstruction to the
existence of positive scalar curvature metrics on closed spin manifolds called enlargability . The
enlargability obstruction articulates the following heuristic: if scalar curvature is positive, at each
point there is at least one positive eigenvalue of the Ricci endomorphism and so the geometric logic of
Bonnet-Myers dictates that the manifold cannot expand dramatically in all directions simultaneously.
The n-torus, for instance, may be viewed as expanding in all directions by passing to covers, and
therefore cannot support a positive scalar curvature metric. Soon after this work, Gromov-Lawson
[33, Section 11] qualified this obstruction by showing a sharp upper bound on the width of torical
bands (Tn−1×[0, 1], g) of uniformly positive scalar curvature, a result which would be expounded upon
by Gromov in [30] and dubbed the Torical 2π

n -Inequality. In Section 5, we establish a generalized

form of this band-width inequality. We will refer to a nontrivial homology class c ∈ H2(M
3) as

spherical , if there is an embedding S2 ↪→M3 so that c is the image of the fundamental class [S2].

Theorem 2.10. Let (M3, ∂±M
3, g) be a 3-dimensional Riemannian band such that H2(M

3;Z)
contains no spherical classes. Consider the sign reversed minimal outward mean curvature H0 =
−min∂M3 H. If R ≥ 6, then H0 > 0 and the width of the band satisfies

(2.12) w := d(∂−M
3, ∂+M

3) ≤ 4

3
arctan(H0/2).

If additionally equality is achieved in (2.12), then M3 splits isometrically as a warped product

(2.13) (M3, g) ∼=
(
[−w/2, w/2]× T 2, ds2 + cos

4
3
(
3
2s
)
g0

)
,

where g0 is a flat metric on the torus T 2.

Remark 2.11. In analogy with Corollary 2.5, a straightforward consequence of Theorem 2.10 asserts
that the distance between linked knots in a rational homology 3-sphere with scalar curvature at least
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6 cannot exceed 2π/3. Compared to Corollary 2.5, however, this upper bound is never attained by a
smooth Riemannian manifold.

Contemporaneously to the present work, Chai-Wan [17, page 8] have established a version of
Theorem 2.10 for 3-dimensional initial data sets using a similar method. In [13, 15, 64], Cecchini and
Zeidler proved a variety of band-width inequalities in arbitrary dimensions using Callias operators.
We also point out Räde’s article [55] on band inequalities based on the method of µ-bubbles, as well
as the related rigidity statement [25, Corollary 1.4] of Eichmair-Galloway-Mendes.

Finally, in Section 6 we prove two waist inequalities, which articulate the heuristic that 3-
dimensional positive scalar curvature manifolds macroscopically resemble 1-dimensional complexes.
Informally speaking, Theorem 2.12 below asserts that a 3-manifold with scalar curvature at least
R0 > 0 admits a map to an interval whose fibers have average area bounded above in terms of R0.
Results of this flavor go back to Gromov-Lawson [32], and the state-of-the-art is due to Liokumovich-
Maximo [42].

Theorem 2.12. Let (M3, g) be a closed 3-dimensional Riemannian manifold with scalar curvature
bounded below by a positive constant, R ≥ R0 > 0. Assume that diam(M3) ≥ 4π√

3R0
, and let p, q ∈M3

be points whose mutual distance achieves the diameter. Then there exists a spacetime harmonic
function u ∈ C2,α(M3 \ {p, q}) ∩ C0,1(M3) for any α ∈ (0, 1) with min/max values u(p) = −1 and
u(q) = 1, such that

(2.14) Avg(Σt) ≤
16π

R0
(b2 + 1) ,

where Avg(Σt) is the average 2-dimensional Hausdorff measure of all u-level sets Σt = u−1(t), and
b2 denotes the second Betti number of M3.

The next result decomposes a positive scalar curvature 3-manifold into bands whose widths and
boundary areas are bounded above in terms of the smallest value of its scalar curvature. Theorem
2.13 closely resembles the “Slice” part of Chodosh-Li’s Slice-and-Dice construction [22, Section 6.3].
Below, given a function u : M3 → R, we use the notation n(t) for the number of path components
of the t-level set u−1(t). See Figure 1 for a schematic depiction of the following result.

Theorem 2.13. Let (M3, g) be a closed 3-dimensional Riemannian manifold with scalar curvature
bounded below by a positive constant, R ≥ R0 > 0. Then there exist a sequence of closed regions
{Vi}Ii=1 covering M3 which satisfy the following:

(1) The number of regions is bounded above by the diameter and scalar curvature lower bound

I − 1 ≤
√
3R0
4π diam(M3).

(2) For each i, the boundary ∂Vi is a C2 surface.
(3) Elements of the sequence only have nontrivial intersection with their neighbors, and the in-

tersection consists entirely of boundary components, that is, Vi ∩ Vj = ∅ unless j = i± 1, in
which case Vi ∩ Vj = ∂Vi ∩ ∂Vj.

(4) The average area of components in each intersection surface satisfies

(2.15)
|∂Vi ∩ ∂Vi+1|

Ni
≤ 16π

R0
, i = 1, . . . , I − 1,

where Ni denotes the number of components of ∂Vi ∩ ∂Vi+1.
(5) The intersection surfaces lie within a fixed distance to one another

(2.16) d(∂Vi−1 ∩ ∂Vi, ∂Vi ∩ ∂Vi+1) ≤
16π√
3R0

, i = 2, . . . , I − 1,
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with the first and last regions staying within a fixed Hausdorff distance to their boundaries

(2.17) dH(V1, ∂V1) + dH(VI , ∂VI) ≤
32π√
3R0

.

Acknowledgements. The authors would like to thank Hubert Bray, Simon Brendle, Simone Cec-
chini, Richard Schoen, Rudolf Zeidler, and Jintian Zhu for insightful discussions.

3. Preliminaries

3.1. Initial data sets. The main arguments of the present work rely on a common tool, namely the
spacetime harmonic function. To describe these functions, their properties, and their relevance to
comparison geometry, we require some preliminary notions. A triple (Mn, g, k) consisting of a Rie-
mannian manifold (Mn, g) and a symmetric 2-tensor k is called an initial data set . In mathematical
general relativity, such data represent a spatial slice of spacetime with induced metric g and second
fundamental form k, and can be thought of as initial conditions for the Einstein equations [39]. The
energy and momentum densities are important local invariants of the slice, and are given by

(3.1) µ =
1

2

(
R− |k|2 + (Trgk)

2
)
, J = div (k − (Trgk)g) .

These expressions arise directly from the Gauss-Codazzi relations associated with the embedding
into spacetime, by taking traces. From a physical perspective, these quantities agree with certain
components of the stress-energy tensor, which encodes relevant information concerning the matter
fields on spacetime. A typical requirement for the physical significance of (Mn, g, k) is the dominant
energy condition, which stipulates that µ ≥ |J | holds across Mn. Geometrically, this may be viewed
as a type of lower bound for scalar curvature.

In [34] the spacetime harmonic equation was introduced to study the total mass of asymptotically
flat 3-dimensional initial data sets. This equation is given by

(3.2) ∆u+ (Trgk) |∇u| = 0,

and solutions are referred to as spacetime harmonic functions. A fundamental property of these
functions is that they satisfy an integral inequality [34, Proposition 3.2], which relates the dominant
energy condition quantity µ− |J | with boundary geometry of the initial data set. The left-hand side
of equation (3.2) is equivalent to the trace of the spacetime Hessian

(3.3) ∇2
u := ∇2u+ |∇u|k,

which also plays a significant role in the integral inequality. For a discussion of the geometric meaning
of the spacetime Hessian, see the survey article [7]. In addition to providing a proof of the spacetime
positive mass theorem in [34], there have been various applications of spacetime harmonic functions
to both initial data sets and Riemannian geometry in [1, 7, 8, 9, 16, 17, 35, 61, 62].

3.2. Spacetime harmonic functions on bands and scalar curvature. Let (Mn, ∂±M
n, g) be

an n-dimensional Riemannian band. Given a function f ∈ Lip(Mn), we may define the symmetric
2-tensor k := fg and consider the auxiliary initial data set (Mn, g, k). Throughout the paper, our
arguments will focus on the spacetime harmonic functions associated with (Mn, g, k) having Dirichlet
boundary conditions. The following proposition is an immediate consequence of the more general
existence result discussed in [34, Section 4].



10 SVEN HIRSCH, DEMETRE KAZARAS, MARCUS KHURI, AND YIYUE ZHANG

Proposition 3.1. Let (Mn, ∂±M
n, g) be an n-dimensional Riemannian band, and consider a func-

tion f ∈ Lip(Mn), as well as constants c− < c+. Then for any α ∈ (0, 1), there exists a unique
solution u ∈ C2,α(Mn) of the spacetime harmonic Dirichlet problem

(3.4)

{
∆u+ nf |∇u| = 0 in Mn,

u = c± on ∂±M
n.

The next result expresses the fundamental integral inequality associated with spacetime harmonic
functions in the current setting, which is specialized to dimension 3. More precisely, if (M3, g, k = fg)
is an initial data set as described above, then a brief calculation shows that its energy and momentum
densities take the form

µ =
1

2
R+ 3f2, J = −2∇f,(3.5)

wherever f is differentiable. With this observation in mind, the more general inequality derived in
[34, Proposition 3.2] directly implies the following statement.

Lemma 3.2. Let (M3, ∂±M
3, g) be a 3-dimensional Riemannian band, and let f ∈ Lip(M3). If

u ∈ C2,α(M3), α ∈ (0, 1) solves boundary value problem (3.4), thenˆ
∂−M3

2|∇u|(2f −H)dA−
ˆ
∂+M3

2|∇u|(2f +H)dA

≥
ˆ
M3

(
|∇2

u|2

|∇u|
+ (R+ 6f2)|∇u| − 4⟨∇f,∇u⟩

)
dV −

ˆ c+

c−

4πχ(Σt)dt

(3.6)

where H is the outward mean curvature of ∂M3, and χ(Σt) is the Euler characteristic of regular level
sets Σt := u−1(t).

Remark 3.3. Even though the function f is only Lipschitz, Rademacher’s Theorem ensures that its
derivatives exist almost everywhere, justifying the appearance of ∇f in (3.6). Moreover, we claim
that the Euler characteristic integrand is a measurable function. To see this, note that as explained
in [34, Remark 3.3], the conclusion of Sard’s theorem holds for the function u even though it may fail
to be C3-smooth. Furthermore, u is a proper map and so its regular values form an open set of full
measure. Thus, for a regular value t0 of u, we find that the function t 7→ χ(Σt) is constant for all
levels t near t0. It follows that χ(Σt) is continuous almost everywhere, and is therefore measurable.

We now state a technical lemma which holds in all dimensions. It shows that there are Lipschitz
functions f with certain desirable properties. These functions will be used in later sections to
construct appropriate auxiliary spacetime second fundamental forms.

Lemma 3.4. Let (Mn, ∂±M
n, g) be an n-dimensional Riemannian band and denote the width by

w = dist(∂−M
n, ∂+M

n). Let a, b, ε > 0, and C > 1
a tan

(
π

2(1+ϵ)

)
be parameters. If w = bπ

a(1+ε) , then

there exists a function fε ∈ Lip(Mn) satisfying the following properties:

(1) fε is an increasing function of the the distance to ∂−M
n,

(2) there is a constant C1 depending only on a, b so that almost everywhere

a2f2ε (x)− b|∇fε(x)|+ 1 ≥ −C1ε, if
∣∣d(x, ∂−M)− w

2

∣∣ ≤ w

4
,

a2f2ε (x)− b|∇fε(x)|+ 1 ≥ 0, if
∣∣d(x, ∂−M)− w

2

∣∣ > w

4
,

(3.7)

(3) fε ≤ −C on ∂−M
n and fε ≥ C on ∂+M

n.
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Proof. Consider the 1-variable function

ϕε(τ) =

{
(1 + 10ε)τ if |τ | ≤ c,

τ + τ
|τ |10εc if |τ | ≥ c,

(3.8)

where

0 < c =
b

10εa

(
tan−1(aC)− wa

2b

)
<
w

20
.(3.9)

Next define

f̃ϵ(τ) =

{
1
a tan

(
a
bϕε

(
τ − w

2

))
if τ ≤ w,

L(τ) if τ > w,
(3.10)

where L is the unique linear function making f̃ϵ(τ) differentiable at τ = w. The desired function

may then be obtained by setting fϵ(x) = f̃ϵ(r(x)), where r(x) = d(x, ∂−M
n). □

3.3. Nonorientable manifolds. Throughout this work we assume that all manifolds are orientable.
Although many of the results presented hold as stated in the nonorientable case by passage to
the orientable double cover, some theorems require minor modifications which we address here.
This later collection consists of Theorem 2.10, and Main Theorems B and C. Before describing
those modifications, it is worth noting that nonorientable 3-manifolds never satisfy the homological
hypotheses of Theorem 2.7 and 2.9, since their rank 2 integral homology groups always contain a Z2

summand, a fact which can be derived from the universal coefficients theorem. Lastly, due to their
specialized nature, we refrain from asserting nonorientable versions of Corollary 2.5, and Theorems
2.12 and 2.13.

We now briefly describe the changes required for the three results mentioned above in the nonori-
entable case. In this setting the assumptions of Theorem 2.10, Main Theorem B, and Main Theorem
C must be strengthened by imposing that there are no immersed spherical classes, which is to say
there are no spherical classes in the orientable double cover. In addition, the statement of Theorem
2.10 should be adjusted further to account for the fact that a nonorientable band achieving equality
in (2.12) will split as a warped product with a Klein bottle instead of a torus.

4. Spacetime Harmonic Functions and Ricci Curvature

In this section we analyze the interactions between spacetime harmonic functions and Ricci cur-
vature. As a precursor which illustrates the main approach, we give an elementary proof of Frankel’s
Theorem concerning minimal surfaces in manifolds with nonnegative Ricci curvature.

4.1. Minimal surfaces and nonnegative Ricci curvature.

Theorem 4.1. Let (Mn, g), n ≥ 2 be a compact Riemannian manifold with Ric ≥ 0. Suppose that
its boundary ∂Mn is minimal and consists of at least two components. Then Mn = I ×Σn−1 for an
interval I and a hypersurface Σn−1, and the metric splits as a product g = dt2 + gΣn−1.

Proof. Group the components of ∂Mn into two nonempty disjoint collections ∂−M
n and ∂+M

n with
∂−M

n ∪ ∂+Mn = ∂Mn. Let u be the harmonic function on Mn with u = ±1 on ∂±M
n. Then we
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have by Bochner’s formula and the minimality of ∂Mn
± that

0 ≤
ˆ
Mn

(|∇2u|2 +Ric(∇u,∇u))dV

=

ˆ
Mn

1

2
∆|∇u|2dV

=

ˆ
∂Mn

|∇u|∂n|∇u|dA

=−
ˆ
∂Mn

H|∇u|2

=0,

(4.1)

where n is the unit outer normal to ∂Mn and H is the mean curvature with respect to n. Hence
∇2u = 0 on Mn, which implies that Mn splits as a product. □

As a consequence to Theorem 4.1, we obtain the following result due to Frankel [26].

Corollary 4.2. Any two smooth minimal hypersurfaces Σn−1
1 ,Σn−1

2 in a closed Riemannian manifold
(Mn, g), n ≥ 2 with Ric > 0 must intersect.

Proof. Proceeding by contradiction, suppose that there are two connected and disjoint smooth min-
imal hypersurfaces Σn−1

1 and Σn−1
2 . Let Mn

1 be the component of Mn \ Σn−1
1 which contains Σn−1

2 .

Next, let Mn
2 be the metric completion of the component from Mn

1 \ Σn−1
2 which contains at least

two boundary components. Since its boundary is minimal, we may apply Theorem 4.1 to find that
Mn

2 splits as a product. In particular, the Ricci curvature of Mn
2 vanishes in at least one direction,

contradicting the assumption Ric > 0. □

4.2. Ricci curvature and asymptotically flat manifolds. Next, we study the Ricci curvature of
asymptotically flat manifolds. We say that a complete Riemannian manifold (Mn, g) is asymptotically
flat of order q > 0, if there exists a compact set Ω ⊂ Mn and a diffeomorphism ψ : Mn \ Ω →
⊔k
i=1 (Rn \B) for a whole number k and ball B ⊂ Rn, such that (ψ−1)∗g − δ = O2(ρ

−q) as ρ → ∞.
Here ρ is the radial coordinate of Rn, and δ denotes the standard flat metric, while the subindex 2
indicates additional decay for derivatives in the usual manner.

Proof of Theorem 2.2. First we reduce the theorem to the case in which Mn has a single end. If
(Mn, g) has two or more ends, then one may produce a line in Mn traversing two of its ends and
apply the Cheeger-Gromoll Splitting Theorem [20] to show that (Mn, g) splits isometrically as a
product with a compact manifold. This contradicts the asymptotically flat condition and so we may
assume Mn has a single end.

In dimension 2 this result follows from the Gauss-Bonnet formula. More precisely, when applied
to the interior of a large coordinate circle, we find that its Euler characteristic is no less than 1,
since the total geodesic curvature of its boundary curve is 2π + O(ρ−q). Then, using connectivity,
the Euler characteristic must be exactly 1. It follows that the total Gaussian curvature is zero, and
hence the manifold is flat, which yields the desired conclusion.

Now assume that n ≥ 3. Fix a point p ∈Mn and let v > 0 be the corresponding Green’s function,
which is to say ∆v = (2 − n)ωn−1δp and v → 0 as ρ → ∞, where ωn−1 is the volume of the unit
sphere Sn−1 ⊂ Rn. SinceMn is asymptotically flat, it is well-known that v = ρ2−n+O2(ρ

2−n−q), see

for instance [39, Corollary A.38]. Define the function u = v
1

2−n . Away from the point p, the function
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u solves

∆u = (n− 1)|∇u|2u−1.(4.2)

Moreover, we have by Bochner’s formula

1

2
∆((|∇u|2 − 1)u2−n)

=
1

2
u2−n∆|∇u|2 − 1

2
(|∇u|2 − 1)∆v − 2(n− 2)u1−n|∇u|2∇ννu

=u2−nRic(∇u,∇u) + u2−n|∇2u|2 + u2−n⟨∇∆u,∇u⟩ − 2(n− 2)∇ννu|∇u|2u1−n.

(4.3)

Furthermore

⟨∇∆u,∇u⟩ = 2(n− 1)|∇u|2u−1∇ννu− (n− 1)|∇u|4u−2,(4.4)

and

|∇2u− |∇u|2u−1g + u−1∇u⊗∇u|2

=|∇2u|2 + n|∇u|4u−2 + |∇u|4u−2 − 2|∇u|2u−1∆u+ 2|∇u|2u−1∇ννu− 2|∇u|4u−2

=|∇2u|2 + 2|∇u|2u−1∇ννu− (n− 1)|∇u|4u−2.

(4.5)

Let ε > 0 and consider the domain Mn
ε bounded between a geodesic sphere Sn−1

ε of radius ε
around p, and a coordinate sphere Sn−1

1/ε of radius 1
ε in the asymptotic end. Then integrating (4.3)

by parts and applying (4.4) and (4.5) producesˆ
Mn

ε

u2−n
(∣∣∇2u− |∇u|2u−1g + u−1∇u⊗∇u

∣∣2 +Ric(∇u,∇u)
)
dV

=

ˆ
Mn

ε

1

2
∆((|∇u|2 − 1)u2−n)dV

=

ˆ
Sn−1
ε

(
u2−n|∇u|∂n|∇u| −

n− 2

2
u1−n(|∇u|2 − 1)∂nu

)
dA

+

ˆ
Sn−1
1/ε

(
u2−n|∇u|∂n|∇u| −

n− 2

2
u1−n(|∇u|2 − 1)∂nu

)
dA.

(4.6)

where n denotes the unit outer normal to Mn
ε . Observe that u = ρ + o2(ρ) as ρ → ∞ from the

discussion above, and u = r + o2(r) as r → 0 where r(x) = d(x, p) is the distance to p, see for
instance [46, Theorem 2.4]. Taking ε→ 0 we find thatˆ

Mn

u2−n
(∣∣∇2u− |∇u|2u−1g + u−1∇u⊗∇u

∣∣2 +Ric(∇u,∇u)
)
dV = 0.(4.7)

The nonnegative Ricci curvature assumption allows us to conclude that

(4.8) ∇2u− |∇u|2u−1g + u−1∇u⊗∇u = 0

away from the point p, which in turn implies that ∇2u2 = 2|∇u|2g. In particular, ∇|∇u| = 0
which according to the asymptotics shows that |∇u| ≡ 1. The manifold then splits topologically
Mn \ {p} = (0,∞)× Σn−1, and the metric may be decomposed as

(4.9) g = du2 + gu,
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where gu is the induced metric on level sets Σu. Using (4.8), the second fundamental form IIu of
these level sets is given by

(4.10)
1

2
∂ugu = IIu =

∇2u|Σu

|∇u|
= u−1gu.

It follows that gu = u2gΣ for some metric gΣ on Σn−1. The structure of the metric indicates that
u(x) = r(x) is the distance function from p. It follows that (Σn−1, gΣ) is isometric to the round unit
sphere, yielding the desired result. □

4.3. A Bonnet-Myers Theorem with boundary. The proof of Theorem 2.1 relies on the follow-
ing fundamental integral formula for spacetime harmonic functions.

Lemma 4.3. Let (Mn, ∂±M
n, g), n ≥ 3 be a Riemannian band and let f ∈ Lip(Mn). Suppose that

u is a spacetime harmonic function solving the boundary value problem (3.4). Thenˆ
∂−Mn

|∇u|2−
n

n−1 (n(n− 2)f −H)dA−
ˆ
∂+Mn

|∇u|2−
n

n−1 (n(n− 2)f +H)dA

≥
ˆ
Mn

|∇u|−
n

n−1

(
|∇2

u|2 − n

n− 1
|∇|∇u|+ f∇u|2

)
dV

+

ˆ
Mn

|∇u|−
n

n−1

(
n2(n− 2)2

n− 1
f2|∇u|2 +Ric(∇u,∇u)− n(n− 2)|∇u|⟨∇f,∇u⟩

)
dV.

(4.11)

Remark 4.4. Let p ∈ Mn be such that ∇u(p) ̸= 0, and let {ei}ni=1 be an orthonormal frame at p

with en = ν = ∇u
|∇u| . Then at this point

|∇2
u|2 − n

n− 1
|∇|∇u|+ f∇u|2

≥
n−1∑
i=1

|∇iiu|2 −
1

n− 1
(∇ννu)

2 +
n− 2

n− 1

n∑
i=1

n∑
j=i+1

|∇iju|2

=

n−1∑
i=1

|∇iiu|2 −
1

n− 1

(
n−1∑
i=1

∇iiu

)2

+
n− 2

n− 1

n∑
i=1

n∑
j=i+1

|∇iju|2

=
1

2n− 2

∑
i ̸=j≤n−1

(∇iiu−∇jju)
2 +

n− 2

2n− 2

∑
i ̸=j

|∇iju|2.

(4.12)

If ∇u = 0 and |∇u| is differentiable (which holds almost everywhere), then |∇|∇u| + f∇u|2 = 0.
Thus, the second line of (4.11) is nonnegative.

Proof. Proposition 3.1 implies that u ∈ C2,β(Mn) for some β ∈ (0, 1) so that |∇u| is Lipschitz.
Consequently, |∇u| is differentiable outside a set of measure zero by Rademacher’s Theorem, and
hence |∇u| is W 1,p(Mn) for any p > 1. It follows that u ∈W 3,p(Mn) by elliptic regularity.

Set α = n−2
n−1 and for ε > 0 consider ψε =

√
|∇u|2 + ε2. With the help of of Bochner’s formula we

compute

∆ψα
ε =

α

2
ψα−2
ε ∆ψ2

ε +
α

2

(α
2
− 1
)
ψα−4
ε |∇ψ2

ε |2

=αψα−2
ε

(
|∇2u|2 +Ric(∇u,∇u) + ⟨∇u,∇∆u⟩

)
+
α

2

(α
2
− 1
)
ψα−4
ε |∇|∇u|2|2

=αψα−2
ε (|∇2u|2 +Ric(∇u,∇u) + ⟨∇u,∇∆u⟩+ (α− 2)ψ−2

ε |∇|∇u||2|∇u|2).

(4.13)



RIGID COMPARISON GEOMETRY FOR RIEMANNIAN BANDS AND OPEN INCOMPLETE MANIFOLDS 15

Using the spacetime Hessian identity

|∇2
u|2 := |∇2u+ f |∇u|g|2 = |∇2u|2 + nf2|∇u|2 + 2f |∇u|∆u = |∇2u|2 − nf2|∇u|2,(4.14)

as well as

(4.15) |∇|∇u||2 =
∣∣∇|∇u|+ f∇u

∣∣2 − f2|∇u|2 − 2f⟨∇|∇u|,∇u⟩,

produces

α−1∆ψα
ε =ψα−2

ε

(
|∇̄2u|2 + nf2|∇u|2 +Ric(∇u,∇u) + ⟨∇u,∇∆u⟩

)
+ (α− 2)ψα−4

ε |∇u|2
(∣∣∇|∇u|+ f∇u

∣∣2 − f2|∇u|2 − 2f⟨∇|∇u|,∇u⟩
)
.

(4.16)

To analyze the last term of the first line in (4.16), we calculate this expression in two different ways,
namely

ψα−2
ε ⟨∇u,∇∆u⟩ =div(∆u · ψα−2

ε ∇u)− (∆u)2ψα−2
ε −∆u⟨∇ψα−2

ε ,∇u⟩
=div(∆u · ψα−2

ε ∇u)− n2f2|∇u|2ψα−2
ε + n(α− 2)f |∇u|2ψα−4

ε ⟨∇|∇u|,∇u⟩
(4.17)

and

(4.18) ψα−2
ε ⟨∇u,∇∆u⟩ = −nψα−2

ε |∇u|⟨∇f,∇u⟩ − nfψα−2
ε ⟨∇u,∇|∇u|⟩.

Using a parameter λ to interpolate between (4.17) and (4.18), and inserting this into (4.16) gives

α−1ψ2−α
ε ∆ψα

ε

=|∇2
u|2 + nf2|∇u|2 +Ric(∇u,∇u)

+ (α− 2)
(∣∣∇|∇u|+ f∇u

∣∣2 − f2|∇u|2 − 2f⟨∇|∇u|,∇u⟩
)
ψ−2
ε |∇u|2

− n2λf2|∇u|2 + n(α− 2)λf |∇u|2ψ−2
ε ⟨∇|∇u|,∇u⟩+ λψ2−α

ε div(∆u · ψα−2
ε ∇u)

− n(1− λ)f⟨∇u,∇|∇u|⟩ − n(1− λ)|∇u|⟨∇f,∇u⟩.

(4.19)

Setting λ = 3− n yields

− 2(α− 2) + nλ(α− 2)− n(1− λ) = 0,(4.20)

and thus the coefficients of ⟨∇|∇u|,∇u⟩ incur many cancellations. Then a further reorganization of
terms produces the formula

α−1ψ2−α
ε ∆ψα

ε − (3− n)ψ2−α
ε div(∆u · ψα−2

ε ∇u)

=|∇2
u|2 − n

n− 1

∣∣∇|∇u|+ f∇u
∣∣2

+
n2(n− 2)2

n− 1
f2|∇u|2 − n(n− 2)|∇u|⟨∇f,∇u⟩+Ric(∇u,∇u)

+
nε2

n− 1

(∣∣∇|∇u|+ f∇u
∣∣2 − (n− 1)(n− 2)f⟨∇|∇u|,∇u⟩ − f2|∇u|2

)
ψ−2
ε .

(4.21)
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Finally, we multiply (4.21) by αψα−2
ε , integrate by parts, and study the boundary term. Let n be

the outer normal vector on ∂Mn, noting that n = −ν on ∂−M
n and n = ν on ∂+M

n, thenˆ
Mn

∆ψ
n−2
n−1
ε +

(n− 3)(n− 2)

n− 1
div(∆u · ψ− n

n−1∇u)dV

=

ˆ
∂Mn

∂nψ
n−2
n−1
ε +

(n− 3)(n− 2)

n− 1
∆u · ψ

− n
n−1

ε ∂nudA

=

ˆ
∂Mn

n− 2

n− 1
ψ
− n

n−1
ε |∇u|⟨n, ν⟩ (∇ννu+ (n− 3)∆u) dA

=

ˆ
∂−Mn

n− 2

n− 1
ψ
− n

n−1
ε |∇u|2(n(n− 2)f −H)dA

−
ˆ
∂+Mn

n− 2

n− 1
ψ
− n

n−1
ε |∇u|2(n(n− 2)f +H)dA.

(4.22)

In order to aid passage to the limit ε→ 0, observe that since α < 2, ψε ≥ |∇u|, and ψε ≥ ε we have

|∇|∇u|+ f∇u|2 − (n− 1)(n− 2)f⟨∇|∇u|,∇u⟩ − f2|∇u|2

=

∣∣∣∣∇|∇u| − n(n− 3)

2
f∇u

∣∣∣∣2 − n2(n− 3)2

4
f2|∇u|2

≥− n2(n− 3)2

4
f2ψ4−α

ε ε−(2−α).

(4.23)

Therefore, the following integral formula holdsˆ
∂−Mn

n− 2

n− 1
ψ
− n

n−1
ε |∇u|2(n(n− 2)f −H)dA

−
ˆ
∂+Mn

n− 2

n− 1
ψ
− n

n−1
ε |∇u|2(n(n− 2)f +H)dA

≥
ˆ
Mn

n− 2

n− 1
ψ
− n

n−1
ε

(
|∇2

u|2 − n

n− 1
|∇|∇u|+ f∇u|2

)
dV −

ˆ
Mn

c(n)ε
n−2
n−1 f2dV

+

ˆ
Mn

n− 2

n− 1
ψ
− n

n−1
ε

(
n2(n− 2)2

n− 1
f2|∇u|2 − n(n− 2)|∇u|⟨∇f,∇u⟩+Ric(∇u,∇u)

)
dV,

(4.24)

where c(n) is a nonnegative constant depending on n. Since f2 is integrable, the term involving
c(n) converges to zero. Furthermore, the limit may be taken inside the integral of each term in the
last line of (4.24) using the dominated convergence theorem. Lastly, the remaining term involving
Hessian components has a nonnegative integrand by Remark 4.4, and thus may be treated with
Fatou’s lemma, yielding the desired result. □

Proof of Theorem 2.1. Suppose that the width of (Mn, ∂±M
n, g) satisfies

(4.25) w := d(∂−M
n, ∂+M

n) ≥ arctan
H−
n− 1

+ arctan
H+

n− 1
.

Define a 1-variable Lipschitz function

(4.26) f̃(τ) =

{
n−1

n(n−2) tan(τ − arctan H−
n−1) if τ ≤ τ̃ ,

L(τ) if τ ≥ τ̃ ,
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where τ̃ = max{arctan H+

n−1 + arctan H−
n−1 ,

π
4 + 1

2 arctan
H−
n−1} and L(τ) is the unique linear function

that makes f̃(τ) differentiable. From equation (4.26), f̃(τ) is strictly increasing with respect to τ .

Furthermore, f̃(τ) satisfies

(4.27)
n2(n− 2)2

n− 1
f̃2 − n(n− 2)f̃ ′ + n− 1 ≥ 0.

Denote f(x) = f̃(r(x)), where r(x) = d(x, ∂Mn
−) is the distance function to ∂−M

n, and note that f
satisfies n(n− 2)f ≤ H on ∂−M

n as well as n(n− 2)f ≥ −H on ∂+M
n. Let u be the corresponding

spacetime harmonic function in Proposition 3.1 with c− = 0, c+ = 1. By Lemma 4.3, Remark 4.4,
and equation (4.27) we have

0 ≥
ˆ
{∇u̸=0}

|∇u|−
n

n−1

 1

2n− 2

∑
i ̸=j≤n−1

(∇iiu−∇jju)
2 +

n− 2

2n− 2

∑
i ̸=j

|∇iju|2
 dV

+

ˆ
Mn

|∇u|2−
n

n−1 (Ric(ν, ν)− (n− 1))dV,

(4.28)

where we have used the Cauchy-Schwarz inequality ⟨∇f,∇u⟩ ≤ |∇f ||∇u| = f̃ ′|∇u| and where {ei}ni=1

is an orthonormal frame with en = ν. Therefore, at points where ∇u ̸= 0 we have

∇iju = 0 for i ̸= j, ∇iiu = ∇jju for i, j ≤ n− 1,(4.29)

Ric(ν, ν) = n− 1, ⟨∇f, ν⟩ = |∇f | where f is differentiable.(4.30)

Our first goal is to show that ∇u is nowhere vanishing. Equation (4.29) implies that ∇i|∇u| = 0,
i = 1, 2, . . . , n− 1, whenever ∇u ̸= 0. Therefore, connected components of level sets consist entirely
of either regular or critical points. Let t0 be the minimal value such that Σt0 = {u = t0} contains a
critical point, and note that by the Hopf Lemma t0 > 0. Denote by Σ′

t0 the connected component
of Σt0 which consists of critical points. Take a small geodesic ball Br(x0) ⊂ {u < t0} such that
∂Br(x0) ∩ Σ′

t0 ̸= ∅. Then u obtains its maximum on ∂Br(x0) ∩ Σ′
t0 , which contradicts the Hopf

Lemma. Hence, ∇u ̸= 0 everywhere and Mn = [0, 1] × Σ0 topologically splits as a product. This

allows us to write g = du2

|∇u|2 + gu where gu are the induced metrics on level sets.

According to (4.29), we have d(du/|∇u|) = 0. Since the de Rham class defined by du/|∇u| is trivial,
there exists a new coordinate s with s = 0 corresponding to ∂−M

n, and such that ds = du/|∇u|. In
fact, s agrees with the distance function r to ∂−M

n. Furthermore, as in the proof of Theorem 2.2,
using (4.29) and the spacetime harmonic equation ∆u = −nf |∇u| produces

(4.31) ∂ugu =
2∇2u|Σu

|∇u|
=

2Trgu(∇2u|Σu)

(n− 1)|∇u|
gu = −2(∇ννu+ nf |∇u|)

(n− 1)|∇u|
gu.

Next, observe that ∇ννu = ∂ν |∇u| is a function of u alone, and the same is true for f since s = r. It
follows that there is a function ψ = ψ(r) so that g = dr2 + ψ2(r)g0 for some metric g0 independent
of r.

To determine ψ, we use standard calculations for the curvature of warped product manifolds, and
(4.30), to find

n− 1 = Ric(ν, ν) =Ric(∂r, ∂r) = −(n− 1)
ψ′′

ψ
(r).(4.32)
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The function ψ is also subject to the boundary conditions

H− = (n− 1)
ψ′

ψ
(0), −H+ = (n− 1)

ψ′

ψ
(w).(4.33)

Therefore ψ(r) = a cos(r − arctan H−
n−1) for some a > 0, and

(4.34) w = arctan
H−
n− 1

+ arctan
H+

n− 1
.

A computation with the Gauss equations shows that Ric(g0) ≥ (n − 2)a2g0. Finally, setting θ =

r − arctan H−
n−1 and gΣ = a2g0 gives the stated result. □

4.4. Cheng’s rigidity and proof of Main Theorem A. In this section we prove Main Theorem
A, the Bonnet-Myers Theorem, and show Cheng’s rigidity. The latter two will be treated as a
consequence of the main theorem. The arguments for this result follow a similar logic to the proof of
Theorem 2.1, though the fact that Mn is open and incomplete poses enormous technical difficulties.
Ideally, we would like to solve the spacetime harmonic equation ∆u = −nf |∇u| onMn with f → ±∞
at E±, where f satisfies the differential inequality (4.27). Since the incompleteness ofMn makes this
infeasible, we instead solve the spacetime harmonic equation on compact bands {Mn

δ }δ>0 exhausting
Mn. The mean curvature of ∂Mn

δ is completely uncontrolled, and adjusting f to overcome this
comes at the cost of slightly violating the inequality in (4.27) in a fixed compact set. Decreasing
this violation while running through the exhausting bands, and passing to a limit gives rise to a
spacetime harmonic function satisfying a fundamental integral identity derived from Lemma 4.3.

Proof of Main Theorem A. Let Σn−1 ⊂ Mn be a closed hypersurface separating Mn into two con-
nected components Mn

± where E± is contained in Mn
±. Suppose that w− + w+ ≥ π where we define

w± as the minimum min(π, d(Σn−1, E±)), though we will soon see that w± < π. Consider the signed
distance to Σ given by ϱ(x) = ±d(x,Σ) when x ∈Mn

±. Let δ > 0 be a small parameter and consider

the band (M̃n
δ , ∂±M̃

n
δ , g) given by

M̃n
δ = {x ∈Mn : ϱ(x) ∈ [−w− + δ, w+ − δ]}(4.35)

where ∂±M̃n
δ is assigned based on the sign of ϱ. As an application of Lemma C.2, we have that M̃n

δ

is compact. To see this, first note that if w− = w+ then no further argument is needed. Now suppose
without loss of generality that w− is smaller than w+, and apply Lemma C.2 to the closed w− − δ
neighborhood N1 of Σ, showing that it is compact. This allows us to apply extension construction of
[48] to find a metric g′ on Mn which only differs from g on Mn

− \N1 and makes dg′(Σ
n−1, E−) = ∞.

Applying Lemma C.2 to the closed w+ − δ neighborhood N2 of Σn−1 in this new metric shows that

N2 is compact. We then conclude that the closed set M̃n
δ ⊂ N2 is compact.

Compactness of M̃n
δ is the crucial property which will allow us to apply Theorem 2.1 and its

proof. First, we will make a small perturbation of M̃n
δ to a new band Mn

δ such that ∂Mδ is smooth.

Using the version of Sard’s Theorem in [56], almost all δ′ are such that ∂M̃n
δ′ is Lipschitz. We may

consider a smooth hypersurface homologous and arbitrarily close to ∂M̃n
δ′ by, for instance, running

mean curvature flow for a short time [24]. Denote by Mn
δ the region bounded by these smooth

hypersurfaces, which we may assume has width at least (w− +w+)− 3δ. Furthermore, Theorem 2.1
implies that the width ofMn

δ cannot exceed π. Since these inequalities hold for all δ > 0 we conclude
that w− + w+ = π.
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Let us denote withHδ = sup∂Mn
δ
|H| whereH is the mean curvature of ∂Mn

δ . Slightly adjusting the

construction in Lemma 3.4 with a = b = n(n−2)
n−1 and appropriate ε, we find a function fδ ∈ Lip(Mn

δ )
satisfying the following

n2(n− 2)2

n− 1
f2δ (x) + n− 1− n(n− 2)|∇fδ(x)| ≥ −Cδ in B,

n2(n− 2)2

n− 1
f2δ (x) + n− 1− n(n− 2)|∇fδ(x)| ≥ 0 in Mn

δ \ B,

fδ ≤ − 1

n(n− 2)
Hδ on ∂−M

n
δ , fδ ≥

1

n(n− 2)
Hδ on ∂+M

n
δ ,

(4.36)

where B = {−w−
2 ≤ ϱ(x) ≤ w+

2 } and C is a constant independent of δ. Applying Proposition 3.1 with
fδ, we may consider a spacetime harmonic function uδ on Mn

δ with Dirichlet boundary conditions.
Fix a small ρ > 0 such that B ⊂ Mn

ρ and a point p ∈ Mn
ρ . By scaling and adding a constant to

uδ, we arrange for supMn
ρ
|∇uδ| = 1 and uδ(p) = 0. Integrating duδ along paths in Mn

ρ , we find

|uδ| ≤ diam(Mn
ρ ) on M

n
ρ .

Next, we apply the integral formula Lemma 4.3 and use the boundary conditions of fδ to find that

0 ≥
ˆ
Mn

δ

|∇uδ|−
n

n−1

(
|∇2

uδ|2 −
n

n− 1
|∇|∇uδ|+ fδ∇uδ|2

)
dV

+

ˆ
Mn

δ

|∇uδ|−
n

n−1 (Ric(∇uδ,∇uδ)− (n− 1)|∇uδ|2)dV

− Cδ

ˆ
B
(n− 2)|∇uδ|2−

n
n−1dV.

(4.37)

The next step is to take the limit δ → 0. Since |uδ| and |∇uδ| are uniformly bounded on Mn
ρ ,

standard Schauder estimates allow us find a subsequential C2,β limit, for some β ∈ (0, 1) of uδ on
Mn

ρ , which we denote by u. The function u solves the spacetime harmonic equation with f(x) =
n−1

n(n−2) tan(ϱ(x) +
w−−w+

2 ). Notice that u is nonconstant since supMn
ρ
|∇u| = 1. By Fatou’s Lemma

and boundedness of ∥uδ∥C2,β(Mn
ρ ), we may take a liminf of (4.37) to find

0 =

ˆ
Mn

ρ

|∇u|−
n

n−1

(
|∇2

u|2 − n

n− 1
|∇|∇u|+ f∇u|2

)
dV

+

ˆ
Mn

ρ

|∇u|−
n

n−1 (Ric(∇u,∇u)− (n− 1)|∇u|2)dV
(4.38)

and so the conditions (4.29) and (4.30) hold on Mn
ρ .

Since u is nonconstant, the image of u contains a nonempty interval. According to Sard’s Theorem,
we may consider a regular value t0 of u. We claim that u has no critical point within the interior of
Mn

ρ . If this fails, there is a critical value t1 which is closest value to t0. By symmetry of the following
argument, we will assume t0 < t1. As in the proof of Theorem 2.1, the component of Σt1 containing
a critical point must consist entirely of critical points. Then we may find a closed ball in u−1([t0, t1])
which intersects the critical component of Σt1 only along the boundary of the ball, contradicting the
Hopf Lemma. We conclude u has no interior critical points.
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As in the proof of Theorem 2.1, ∇u is parallel to ∇ϱ and hence ϱ can be considered as a function
of u on Mn

ρ . The arguments of the previous theorem show there is a constant b such that

(4.39) g = dϱ2 +
cos2(ϱ− b)

cos2 b
gΣ

on Mn
ρ , where gΣ is the induced metric on Σ. Since ρ was arbitrary, the splitting (4.39) holds along

Mn
0 := {x ∈Mn|ϱ(x) ∈ (−w−, w+)}. By rescaling gΣ and shifting the ϱ coordinate, we can conclude

that g = dθ2 + cos2(θ)g0 along Mn
0 where g0 is a metric on Σ with Ric(g0) ≥ (n − 2)g0. Since θ

ranges over (−π/2, π/2), no connected Riemannian n-manifold with at least two ends can properly
and isometrically contain (Mn

0 , dθ
2 + cos2(θ)g0). We conclude that Mn

0 = Mn and the proof is
complete. □

Next, we use Theorem A to give a new proof of Bonnet-Myers and the Cheng rigidity result
regarding complete manifolds with positive Ricci curvature and maximal diameter.

Corollary 4.5. Let (Mn, g), n ≥ 2 be a complete Riemannian manifold. If Ric ≥ (n − 1)g, then
the diameter satisfies diam(Mn, g) ≤ π. Moreover, equality occurs in the diameter estimate only if
(Mn, g) is isometric to the unit round sphere.

Proof. The result is classical, and so we only present arguments in dimensions n ≥ 3 where the new
proof applies. Let p, q be two points in Mn realizing the diameter diam(Mn, g). Fix a sufficiently
small ε > 0 so that the ε-sphere about p is smooth. Denote this sphere by Σn−1 and notice that
d(p,Σn−1) = ε and d(q,Σn−1) = w − ε. Now we may apply Main Theorem A to the open manifold
Mn \ {p, q} with the separating hypersurface Σn−1. The inequality w ≤ π follows.

In the case of equality w = π, Main Theorem A tells us we have the splitting

(4.40) (Mn \ {p, q}, g) =
((

−π
2
,
π

2

)
× Σn−1, dθ2 + cos2 θg0

)
where g0 is a scaling of the induced metric on Σn−1. It suffices to show that g0 is the unit round
metric on Sn−1. Note, however, that this follows immediately from the fact that the metric (4.40)
must extend smoothly across p and q. □

Remark 4.6. Lemma 4.3 is the only place where we use the assumption n ≥ 3 in the proofs of Theo-
rem 2.1 and Main Theorem A. We would like to point out that in dimension 2 a similar computation
yields ˆ

M2

Ric(ν, ν)dA+

ˆ
∂M2

Hds ≤ 0.(4.41)

Since Ric(ν, ν) is Gauss curvature, H is geodesic curvature, and the Euler characteristic of a con-
nected 2-dimensional band cannot exceed 0, inequality (4.41) is a weak version of Gauss-Bonnet’s
theorem. Inequality (4.41) follows by integrating ∆ log |∇u| for a harmonic function u with constant
Dirichlet boundary conditions, and applying the Bochner formula.

5. Torical Band Inequality and Rigidity

Proof of Theorem 2.10. Set w = d(∂−M
3, ∂+M

3) and let δ ∈ (0, 2π3 ) be such that 4
3arctan(H0/2) <

2π
3 − δ. Define

(5.1) w0 = min
{
w, 2π3 − δ

}
,
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and let f̃ ∈ C1(R+) be the increasing function given by

(5.2) f̃(τ) =

{
tan

(
3
2(τ − w0/2)

)
for 0 ≤ τ < w0,

3
2 sec

2(3w0/4) · (τ − w0) + tan(3w0/4) for τ ≥ w0.

Furthermore, denote the distance function to ∂−M
3 by r(x) = d(x, ∂−M

3), and set f = f̃ ◦ r ∈
Lip(M3). With the help of Proposition 3.1, we may solve the corresponding spacetime harmonic
Dirichlet boundary value problem

(5.3)

{
∆u+ 3f |∇u| = 0 in M3,

u = ±1 on ∂±M
3,

such that the solution u lies in C2,α(M3). Using the integral inequality of Lemma 3.2, we find that

4π

ˆ 1

−1
χ(Σt)dt+ 2

ˆ
∂−M3

(2f −H)|∇u|dA− 2

ˆ
∂+M3

(2f +H)|∇u|dA

≥
ˆ
M3

(
|∇2

u|2

|∇u|
+ (R+ 6f2)|∇u| − 4⟨∇f,∇u⟩

)
dV

(5.4)

where then mean curvature H is with respect to the outward normal. Note that even though f is
only Lipschitz, by Radamacher’s theorem its derivatives exist almost everywhere, justifying the use
of ∇f in the integral expression.

First observe that the scalar curvature lower bound, the Cauchy-Schwarz inequality, the fact that
f̃ is an increasing function, and a straightforward computation yield

(R+ 6f2)|∇u| − 4⟨∇f,∇u⟩ =
[
6 + 6f̃2(r)− 4f̃ ′(r) + (R− 6)

]
|∇u|

+ 4f̃ ′(r)(|∇u| − ⟨∇r,∇u⟩)

≥(R− 6)|∇u|+ 4f̃ ′(r)(|∇u| − ⟨∇r,∇u⟩)
≥0,

(5.5)

away from a set of measure zero. Since H2(M ;Z) contains no spherical classes it holds that χ(Σt) ≤ 0
for all regular level sets of u. This last statement is a consequence of the maximum principle, which
implies that all components of Σt are homologically nontrivial. Combining this observation with (5.4)
and (5.5), we find that the boundary term of (5.4) must be nonnegative. Inspecting the boundary
term, we obtain

(5.6) 2f −H ≤ 2f̃(0) +H0 = −2 tan(3w0/4) +H0 on ∂−M
3,

(5.7) 2f +H ≥ 2f̃(w)−H0 ≥ 2 tan(3w0/4)−H0 on ∂+M
3,

and therefore

(5.8) w0 ≤
4

3
arctan(H0/2).

If w0 = 2π
3 − δ, then a contradiction is reached in light of the choice of δ. It follows that w0 = w,

and the desired inequality (2.12) is established. Note also that this implies H0 > 0.
We will now address the rigidity statement of the theorem. Assume that equality is achieved in

(2.12). Then the arguments above give rise to

(5.9) |∇2u+ fg|∇u|| = |∇2
u| = 0, R = 6, w =

4

3
arctan(H0/2),
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(5.10) ⟨∇r,∇u⟩ = |∇u| a.e., H = −H0 on ∂M, χ(Σt) = 0 for regular values t ∈ [−1, 1].

The first equation of (5.9) implies that whenever |∇u| ≠ 0 we have

(5.11) |∇ log |∇u|| ≤ |∇2u|
|∇u|

= 3 supM3 |f | ≤ C0,

where the constant C0 depends on the diameter of M3 and H0. Applying this estimate along curves
emanating from ∂M3, where |∇u| > 0 by the Hopf lemma, shows that |∇u| > 0 on all of M3. The
manifold is then topologically a cylinder M3 ∼= [−1, 1]× T 2, where we have also used the zero Euler
characteristic property of level sets in (5.10). Moreover, the metric splits as

(5.12) g =
du2

|∇u|2
+ gu,

where gu is a family of metrics on the 2-torus. Next, observe that if Y is a vector field tangent to a
level set Σt then the first equation of (5.9) yields

(5.13) Y (|∇u|) = ∇2u

(
∇u
|∇u|

, Y

)
= −f⟨∇u, Y ⟩ = 0,

so that |∇u| is constant on Σt. Furthermore, denoting ν = ∇u
|∇u| ,

(5.14) ∂u|∇u| =
〈
∇|∇u|, ∇u

|∇u|2

〉
= ∇2u

(
∇u
|∇u|

,
∇u
|∇u|2

)
= −f⟨ν, ν⟩ = −f.

From the structure of the metric (5.12) it is clear that the distance function from the zero level
set is a function of u alone, that is r = r(u) with r(0) = 0, r ∈ [0, w], and dr = |∇u|−1du. With a
slight abuse of notation, we will write gr = gu(r), Σr = Σu(r), and denote the second fundamental

form of level sets by IIr =
∇2u
|∇u| |Σr . Then the first equation of (5.9) produces

(5.15)
1

2
∂rgr = IIr = −f̃(r)gr.

Keeping in mind the formula for f̃ , it follows that

(5.16) gr = cos
4
3

(
3

2
(r − w/2)

)
g0,

for some metric g0 on T 2. Moreover, note that (5.15) shows the mean curvature of level sets is given

by Hr = −2f̃(r). The Riccati equation and two traces of the Gauss equations then imply

−2f̃ ′ = ∂rHr =− |IIr|2 − Ric(ν, ν)

=− 1

2

(
|IIr|2 +H2

r +R
)
+K

=− 3f̃2 − 3 +K,

(5.17)

where K is the Gaussian curvature of Σr. According to the ODE satisfied by f̃(r) for r ∈ [0, w],
we conclude that K = 0 and g0 is flat. Lastly, by setting s = r − w/2 ∈ [−w/2, w/2] we obtain the
desired form of the metric

(5.18) g = ds2 + cos
4
3
(
3
2s
)
g0.

□
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6. The Waist Inequalities

6.1. Proof of Theorem 2.12. The argument presented here will be somewhat similar to the strat-
egy employed for the torus band inequality of Theorem 2.10. Let R ≥ R0 > 0 and assume that
w := diam(M3) > 4π√

3R0
. Take points p, q ∈ M3 that realise the diameter so that d(p, q) = w, and

define the two distance functions rp(x) = d(x, p), rq(x) = d(x, q). Since Sard’s theorem holds for
distance functions [56], the critical values of rp and rq form a set of zero measure, and thus there
exists an r0 ∈ (0, w) which is regular for rp and such that w−r0 is regular for rq. Note that since the
distance functions may only be Lipschitz, the notion of a critical point must be suitably defined, and
regular level sets are only guaranteed to be Lipschitz hypersurfaces in general, see [56] for further
details. Consider the function f ∈ Lip(M3 \ {p, q}) given by

(6.1) f(x) =


− 2π

3w cot
(
π
wrp(x)

)
if x ∈ Br0(p),

− 2π
3w cot

(
π
wr0
)

if x ∈M3 \ (Br0(p) ∪Bw−r0(q)) ,

− 2π
3w cot

(
π − π

wrq(x)
)

if x ∈ Bw−r0(q),

and observe that a calculation shows the following holds wherever f is differentiable

(6.2) R0 + 6f2 − 4|∇f | ≥ R0 −
8π2

3w2
≥ 1

2
R0,

where the second inequality follows from the hypothesis w ≥ 4π√
3R0

.

For any small ε > 0, consider the Riemannian band (M3
ε , ∂±M

3
ε , g) given by

(6.3) M3
ε =M3 \ (Bε(p) ∪Bε(q)) , ∂−M

3
ε = ∂Bε(p), ∂+M

3
ε = ∂Bε(q).

Restricting our attention to ε > 0 small enough to guarantee the smoothness of ∂Bε(p) and ∂Bε(q),
consider the corresponding spacetime harmonic Dirichlet boundary value problem

(6.4)

{
∆uε + 3f |∇uε| = 0 in M3

ε ,

uε = ±1 on ∂±M
3
ε ,

and note that Proposition 3.1 guarantees the existence of a unique solution in C2,α(M3
ε ). The integral

inequality of Lemma 3.2 then gives

4π

ˆ 1

−1
χ(Σε

t )dt+ 2

ˆ
∂−M3

ε

(2f −H)|∇uε|dA− 2

ˆ
∂+M3

ε

(2f +H)|∇uε|dA

≥
ˆ
M3

ε

(
|∇2

uε|2

|∇uε|
+ (R+ 6f2)|∇uε| − 4⟨∇f,∇uε⟩

)
dV,

(6.5)

where Σε
t denotes the t-level sets of uε and H represents the boundary mean curvature with respect to

the outer normal. Observe that H = −2
ε +O(ε) and f = ∓ 2

3ε +O(ε) on the geodesic spheres ∂Bε(p)
and ∂Bε(q) as ε → 0, where ∓ is associated with p and q, respectively. Furthermore, according to
Lemma A.1, |∇uε| = O(1) on the boundary spheres as ε → 0. Combining these observations with
(6.2) and (6.5) produces

(6.6) 8π

ˆ 1

−1
nε(t)dt ≥

R0

2

ˆ
M3

ε

|∇uε|dV +O(ε),

where nε(t) denotes the number of spherical components of regular level sets Σε
t .

Arguing as in Remark 3.3, we see that for each ε > 0 the function nε : [−1, 1] → R is measurable.
We now claim that nε(t) ≤ b2(M

3) + 1 for almost every t and any sufficiently small ε, where b2(M
3)
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denotes the second Betti number. This follows by applying Lemma 6.1 below toM3
ε , taking S2 to be

the collection of spherical components of a given regular level set. This lemma is applicable because
the maximum principle ensures that no component of M3

ε \S2 is bounded entirely by a subcollection
of S2. Since ∂M3

ε consists of two spheres, and H2(M
3
ε , ∂M

3
ε )

∼= H2(M
3), the upper bound in Lemma

6.1 becomes b2(M
3) + 1. Next, apply Lemma A.1 to show that as ε → 0, uε subconverges on

compact subsets of M3 \ {p, q} to a spacetime harmonic function u ∈ C2,β(M3 \ {p, q}) ∩ C0,1(M3)
with α ∈ [0, β), such that u(p) = −1 and u(q) = 1. By combining these facts with Fatou’s Lemma,
the coarea formula, and (6.6), we find

(6.7)
32π

R0

(
b2(M

3) + 1
)
≥
ˆ
M3

|∇u|dV =

ˆ 1

−1
H2(Σt)dt,

where H2(Σt) is the 2-dimensional Hausdorff measure of the t-level set Σt of u. The desired inequality
(2.14) now follows from (6.7). It remains to establish the following topological estimate.

Lemma 6.1. Let M3 be a connected orientable compact 3-manifold whose boundary has b connected
components. Let S2 ⊂ M3 be a collection of disjoint two-sided embedded spheres with the property
that no component of M3 \ S2 is bounded entirely by a subcollection of spheres in S2. Then the
number of components in S2 cannot exceed rankH2(M

3, ∂M3;Z) + b− 1.

Proof. All (co)homology groups in this proof are understood to have integer coefficients. Consider
the triple (M3, ∂M3 ∪ S2, ∂M3) and the associated long exact sequence

(6.8)

0 H3(M
3, ∂M3) H3(M

3, ∂M3 ∪ S2)

H2(∂M
3 ∪ S2, ∂M3) H2(M

3, ∂M3) H2(M
3, ∂M3 ∪ S2) 0

Let U ⊂ M3 be a thickened copy of S2, retracting onto S2 and avoiding ∂M3. Also consider the
compact manifold N3 obtained by removing S2 from M3 and attaching two copies of S2 back to the
resulting edges. Evidently, the pair (N3, ∂N3) is homotopy equivalent to (M3 \ S2, ∂M3 ∪ (U \ S2)).
Using excision and Poincaré-Lefschetz duality, we have the following chain of isomorphisms

H3(M
3, ∂M3 ∪ S2) ∼= H3(M

3, ∂M3 ∪ U) ∼= H3(M
3 \ S2, ∂M3 ∪ (U \ S2))

∼= H3(N
3, ∂N3) ∼= H0(N3).

(6.9)

Notice that k := rankH0(N3) represents the number of components ofM3\S2. We claim that k ≤ b.
Indeed, since components of M3 \ S2 cannot be bounded entirely by spheres in S2, each component
of M3 \ S2 contains at least one component of ∂M3. Next, due to the fact that the alternating sum
of the ranks of abelian groups in a long exact sequence vanishes, (6.8) and (6.9) imply

rankH2(∂M
3 ∪ S2, ∂M3) =rankH2(M

3, ∂M3)− rankH2(M
3, ∂M3 ∪ S2)

+ rankH3(M
3, ∂M3 ∪ S2)− rankH3(M

3, ∂M3)

=rankH2(M
3, ∂M3)− rankH2(M

3, ∂M3 ∪ S2) + k − 1

≤rankH2(M
3, ∂M3) + b− 1.

(6.10)

Since rankH2(∂M
3 ∪ S2, ∂M3) is the number of components of S2, the lemma follows. □
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6.2. Proof of Theorem 2.13. Let (M3, g) be closed with scalar curvature satisfying R ≥ R0 > 0,
and set w0 := 4π√

3R0
. Take p ∈ M3 and consider the distance function rp(x) = d(x, p). As in the

previous subsection, we recall that critical values of rp form a null set according to the version of
Sard’s theorem given in [56], and therefore a regular value may be chosen arbitrarily close to 2w0;
we will assume that this has been done and for simplicity will continue to denote the value by 2w0.
The geodesic sphere ∂B2w0(p) then forms a (possibly empty) codimension-1 Lipschitz submanifold.
If this surface is empty, set V1 = B2w0(p) =M3 and there is nothing more to show. If it is nonempty,
take a smooth approximating surface S1 which bounds a closed region B1 that is arbitrarily close
in Hausdorff distance to B2w0(p); this approximation may be obtained by running mean curvature
flow for a short time [24]. Fix δ1 > 0 appropriately small and let r1(x) = d(x, S1), then appealing
to [56] we may assume that w0

2 + δ1 is a regular value for r1. Now consider the Riemannian band

(M3
1 , ∂±M

3
1 , g) in which M3

1 = {x ∈ M3 | r1(x) ≤ w0
2 + δ1}, with ∂−M

3
1 (∂+M

3
1 ) denoting the

boundary components having nontrivial (trivial) intersection with B1. As before, the surfaces ∂±M
3
1

may be replaced with smooth approximations if necessary, and by abuse of notation the relevant
band having these smooth approximations as boundary will be denoted in the same way. Note that
by definition of the sets involved, ∂−M

3
1 is nonempty. If ∂+M

3
1 = ∅ then M3 ⊂ B1 ∪M3

1 , so that
by setting V1 = M3 the argument is complete. Otherwise, we will seek a surface of controlled area
within the band that may be found as a spacetime harmonic function level set.

Let ε > 0 be small such that w0
2 −ε is regular for r1, and consider the function fε ∈ Lip(M3

1 ) given
by

(6.11) fε(x) =



− 2π
3w0

tan
(

π
w0
r1(x)

)
if r1(x) ≤ w0

2 − ε and x ∈ B1,

− 2π
3w0

cot
(

επ
w0

)
if r1(x) >

w0
2 − ε and x ∈ B1,

2π
3w0

tan
(

π
w0
r1(x)

)
if r1(x) ≤ w0

2 − ε and x /∈ B1,

2π
3w0

cot
(

επ
w0

)
if r1(x) >

w0
2 − ε and x /∈ B1.

Observe that a calculation yields almost everywhere

(6.12) R0 + 6f2ε − 4|∇fε| ≥ R0 −
8π2

3w2
0

=
1

2
R0

and for ε fixed sufficiently small we have

(6.13) 2fε −H < 0 on ∂−M
3
1 , 2fε +H > 0 on ∂+M

3
1 ,

where H denotes the boundary mean curvature with respect to the outer normal. Furthermore,
Proposition 3.1 gives a unique solution in C2,α(M3

1 ) to the corresponding spacetime harmonic Dirich-
let boundary value problem

(6.14)

{
∆u1 + 3fε|∇u1| = 0 in M3

1 ,

u1 = ±1 on ∂±M
3
1 .

Therefore, in a manner similar to that of Section 6.1, we may then apply the integral inequality of
Lemma 3.2 together with the coarea formula to obtain

(6.15) 8π

ˆ 1

−1
N1(t)dt ≥ 4π

ˆ 1

−1
χ(Σ1

t )dt ≥
R0

2

ˆ
M3

1

|∇u1|dV =
R0

2

ˆ 1

−1
H2(Σ1

t )dt,

where N1(t) denotes the number of components of regular level sets Σ1
t = u−1

1 (t) and H2 indicates
2-dimensional Hausdorff measure. It follows that there exists a regular value t1 ∈ [−1, 1] such that
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V1
V2

V3

V3

V4

V4

Σ2
Σ3

Σ1

(M3, g)

Figure 1. The decomposition of M3 into regions {Vi}Ii=1.

the ‘normalized area’ of the level set satisfies the bound

(6.16) A(Σ1
t1) := N1(t1)

−1H2(Σ1
t1) ≤

16π

R0
.

Now set V1 =
(
B1 \M3

1

)
∪ u−1

1 ([−1, t1]), and note that the entirety of V1 lies within a controlled

distance to its boundary ∂V1 = Σ1
t1 , that is,

(6.17) max
x∈V1

d(x, ∂V1) ≤ 5w0

if δ1 is small enough.
Next, let B2w0(∂V1) be the set of points in M3 of distance less than or equal to 2w0 from ∂V1. As

before, using the version of Sard’s theorem presented in [56], we may assume that this number has
been replaced with a nearby one which is a regular value for the distance function while keeping the
same notation. Set S2 = [∂B2w0(∂V1)] \ V1 to be the collection of boundary points disjoint from V1.
If this surface is empty define V2 to be the closure of B2w0(∂V1) \ V1, and there is nothing more to
show since

(6.18) max
x∈V2

d(x, ∂V2) ≤ 2w0.

If it is nonempty then take a smooth approximating surface, still denoted by S2, which serves as
a portion of the boundary for a closed region B2 that is arbitrarily close in Hausdorff distance to
B2w0(∂V1) \ V1; as before this approximation may be obtained by running mean curvature flow for
a short time [24]. Fix δ2 > 0 appropriately small and such that w0

2 + δ2 is a regular value for

r2(x) = d(x, S2). Consider the Riemannian band (M3
2 , ∂±M

3
2 , g) in which M3

2 = {x ∈ M3 | r2(x) ≤
w0
2 + δ2}, with ∂−M

3
2 (∂+M

3
2 ) representing the boundary components having nontrivial (trivial)

intersection with B2. If necessary, we replace the surfaces ∂±M
3
2 with smooth approximations, and

will continue to denote the resulting band having smooth boundary with the same notation. Note
that by definition of the sets involved, ∂−M

3
2 is nonempty. If ∂+M

3
2 = ∅, then set V2 = B2 ∪M3

2 and
the argument is complete, since (6.18) holds with 3w0 on the right-hand side. On the other hand, if
this portion of the boundary is nonempty, then as above we may find a surface Σ2

t2 ⊂M3
2 that arises

as a spacetime harmonic function level set u−1
2 (t2) and satisfies

(6.19) A(Σ2
t2) := N2(t2)

−1H2(Σ2
t2) ≤

16π

R0
,

where N2(t2) indicates the number of components. Now set V2 =
(
B2 \M3

2

)
∪ u−1

2 ([−1, t2]), and
observe that the distance between the two level sets satisfies

(6.20) d(Σ1
t1 ,Σ

2
t2) ≤ 4w0

if δ2 is small enough.
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This procedure may be continued until M3 is exhausted. It gives rise to an inductive sequence
of closed regions V1, . . . , VI that cover M3, see Figure 1. The boundaries ∂Vi of these regions are
regular level sets of spacetime harmonic functions, and are thus C2 smooth. Furthermore, members
of the sequence only have nontrivial intersection with their neighbors, and the intersection consists
of boundary components. More precisely, Vi ∩ Vj = ∅ unless j = i± 1 and Vi ∩ Vj = ∂Vi ∩ ∂Vj . The
intersection surfaces have controlled ‘averaged area’

(6.21) A(∂Vi ∩ ∂Vi+1) ≤
16π

R0
, i = 1, . . . , I − 1,

and they lie within a fixed distance to one another

(6.22) d(∂Vi−1 ∩ ∂Vi, ∂Vi ∩ ∂Vi+1) ≤ 4w0, i = 2, . . . , I − 1,

with the first and last regions staying within a bounded Hausdorff distance to their boundaries

(6.23) dH(V1, ∂V1) ≤ 5w0, dH(VI , ∂VI) ≤ 3w0.

Lastly, the maximum number of regions needed to exhaust the manifold may be estimated in terms
of diameter as follows

(6.24) w0(I − 1) ≤ diam(M3).

7. The Lipschitz Constant of Maps From M3 → S3

This section is devoted to Theorems 2.7, 2.9, and Main Theorem D. Before beginning, we introduce
a few notations used in this section. Recall from Section 2 that A[r1, r2] denotes the annular region
in the unit sphere (S3, gS3) centered about the north pole N ∈ S3 with inner and outer radii r1
and r2, respectively. Consider a 3-dimensional Riemannian band (M3, ∂±M

3, g). We say that a

map ℓ : M3 → A[r1, r2] has nonzero degree if ℓ(∂−M) ⊂ ∂BS3

r2 (N), ℓ(∂+M) ⊂ ∂BS3

r1 (N), and

ℓ∗ : H3(M
3, ∂M3;Z) → H3(A[r1, r2], ∂A[r1, r2];Z) is nontrivial. We use θ : S3 → [0, π] to denote the

spherical distance θ(x) = dS3(x,N).

7.1. Proof of Theorem 2.9. It suffices to show that if H(x) ≥ HgS3 (ℓ(x)) for all x ∈ ∂M3, then

the band is isometric to A[r1, r2]. We will therefore proceed with this mean curvature hypothesis.
Set f(x) = cot(θ ◦ ℓ(x)) and let u ∈ C2,α(M3) be the corresponding spacetime harmonic function
with Dirichlet conditions u = ±1 on ∂±M

3 supplied by Proposition 3.1. By assumption, the outward
mean curvature of ∂M3 satisfies H + 2f ≥ 0 on ∂+M

3 and H − 2f ≥ 0 on ∂−M
3. Moreover, using

the topological assumptions onM3 and Lemma 6.1, the number of spherical components of a regular
level set Σt of u cannot exceed 1 so that χ(Σt) ≤ 2. The integral formula of Lemma 3.2 then produces

ˆ
M3

(
|∇2

u|2

|∇u|
+ (R+ 6f2)|∇u| − 4⟨∇f,∇u⟩

)
dV

≤4π

ˆ 1

−1
χ(Σt)dt− 2

ˆ
∂M3

(H|∇u|+ 2n(u)f)dA

≤4π

ˆ 1

−1
χ(Σt)dt

≤16π,

(7.1)

where n is the outward unit vector to ∂M3.
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First we analyse the bulk integrand. Using the scalar curvature lower bound, the Lipschitz condi-
tion on ℓ, Cauchy-Schwartz, the co-area formula, and elementary trigonometric identities,ˆ

M3

(
(R+ 6f2)|∇u| − 4⟨∇f,∇u⟩

)
dV

≥
ˆ
M3

(
6 csc2 (θ ◦ ℓ(x))− 4 csc2(θ ◦ l(x))|Dℓ|

)
|∇u|dV

≥
ˆ
M3

2 csc2(θ ◦ ℓ)|∇u|dV

=

ˆ 1

−1

ˆ
Σt

2 csc2(θ ◦ ℓ)dAdt

≥
ˆ 1

−1

ˆ
ℓ(Σt)

2 csc2 θdAS3dt

(7.2)

where dAS3 denotes the area element of ℓ(Σt) ⊂ S3 induced from the round metric. Observe that
the last integral over ℓ(Σt) represents double the area of this surface with respect to the metric

(7.3) csc2 θgS3 = csc2 θ(dθ2 + sin2 θgS2) = csc2 θdθ2 + gS2 ,

which is a product metric on the cylinder (0, π)×S2. The minimum area for a homologically nontrivial
surface in this cylinder is given by 4π, which is achieved by cross-sections. Since the degree of ℓ is
non-zero, and Σt is homologous to ∂−M , ℓ(Σt) is such a homologically nontrivial surface. It follows
that

(7.4)

ˆ 1

−1

ˆ
ℓ(Σt)

2 csc2 θdAS3dt ≥ 16π.

Combining (7.1), (7.2), and (7.4) forces all of the above inequalities to be equalities. From (7.1),

we have ∇2
u = 0, which allows us to integrate the fact that |∇u| > 0 on ∂M3 inwards and conclude

|∇u| ≠ 0 throughout M3. Now we inspect the inequalities in (7.2). From the first inequality there,
∇u must be parallel to ∇(θ ◦ ℓ), and from the last inequality, ℓ|Σt is area preserving. In other words,

(7.5)

〈
Dℓ

(
∇u
|∇u|

)
, ∇̃θ

〉
= −1, | det(Dℓ|Σt)| = 1,

where ∇̃ is the gradient from (S3, gS3). Combined with |Dℓ| ≤ 1, we find that ℓ is a local isometry.
Since A[r1, r2] has no nontrivial covers, ℓ is globally isometric and the result follows.

7.2. Proof of Theorem 2.7. We will postpone the proof of the inequality (2.11) until the end and
first focus on the rigidity statement. Our strategy is as follows: produce an appropriate exhaustion of
M3 by bands, solve a spacetime harmonic equation on these bands, apply the calculations performed
in the proof of Theorem 2.9, and then take a limit. In the step (7.1), it was crucial that the Euler
characteristic of regular level sets satisfied χ(Σt) ≤ 2. In order to arrange for this, some care must
be taken in constructing the bands within M3.

To begin, Sard’s Theorem guarantees that almost all points of S3 are regular for ℓ, and in particular
we may find antipodal regular values which we choose and denote by {N,S}. Enumerate the points
in ℓ−1(N) by N0, N1, . . . , Nk and points of ℓ−1(S) by S0, S1, . . . , Sl. Let δ > 0 be a parameter which

will eventually be taken to 0. Let U j
δ and V i

δ be open neighborhoods around Nj and Si such that

ℓ(U j
δ ) = BS3

δ (N), ℓ(V i
δ ) = BS3

δ (S) for j = 0, 1, . . . , k and i = 0, 1, . . . , l. Setting aside the first regions

in the list, define Nδ = ∪k
j=1U

j
δ and Sδ = ∪l

i=1V
i
δ . Since ℓ is regular at ℓ−1({S,N}), there exists
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Cℓ > 0 such that U j
δ ⊂ BCℓδ(Nj) and V

i
δ ⊂ BCℓδ(Si) for j = 0, 1, . . . , k and i = 0, 1, . . . , l. See Figure

2 for a depiction of these sets.

U1
δ

U2
δU0

δ

V 1
δ

V 2
δV 0

δ

Σt

(M3, g) ℓ

N

S

ℓ(Σt)

.

.

.

.

.

.
.

.

Figure 2. Schematic description of the construction used in the proof of Theorem
2.7, including a level set Σt of uε,δ.

Fix once and for all a radius r1 > 0 such that U0
r1 , · · · , U

k
r1 and V 0

r1 , · · · , V
l
r1 are disjoint. For

small ε, we will construct functions fε,δ on M3 \ (U0
ε ∪ V 0

ε ) in a manner similar to Lemma 3.4. The
important difference is that here, fε,δ is defined using ℓ and θ and must blow up only near N0, S0.
For sufficiently small ε ∈ (0, r1), δ ∈ (0, ε), and a fixed r0 ∈ (0, r1), define fε,δ by

(7.6) fε,δ(x) =


cot(ψ0

ε ◦ θ ◦ ℓ(x)) if x ∈ U0
r1 ∪ V

0
r1 \ (U0

ε ∪ V 0
ε ),

cot(θ ◦ ℓ(x)) if x ∈M3 \ (Nδ ∪ Sδ ∪ U0
r1 ∪ V

0
r1),

cot(ψδ ◦ θ ◦ ℓ(x)) if x ∈ Nδ ∪ Sδ,

where

(7.7) ψδ(θ) =


1
2δθ

2 + 1
2δ if θ ≤ δ,

θ if δ ≤ θ ≤ π − δ,

π − [ 12δ (π − θ)2 + 1
2δ] if θ ≥ π − δ,

prevents fε,δ from blowing up near N1, . . . , Nk, S1, . . . , Sl, and

(7.8) ψ0
ε(θ) =



θ − ε if ε ≤ θ ≤ r0,

θ − ε+ εψ( θ−r0
r1−r0

) if r0 ≤ θ ≤ r1,

θ if r1 ≤ θ ≤ π − r1,

θ + εψ( θ−π+r1
r1−r0

) if π − r1 ≤ θ ≤ π − r0,

θ + ε if π − r0 ≤ θ ≤ π − ε,

forces fε,δ to blow up slightly before reaching N0, S0. Above, ψ is a fixed smooth cut-off function
on [0, 1] satisfying ψ(0) = 0, ψ(1) = 1, ψ′(0) = ψ′(1) = 0, and 0 ≤ ψ′(x) ≤ 2. This ensures
1 ≤ d

dθψ
0
ε ≤ 1 + 2ε

r1−r0
.
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Next, we collect some properties of fε,δ. Note that fε,δ ∈ Liploc(M
3\(U0

ε ∪ V 0
ε )) and is hence

differentiable almost everywhere. Using Lip(ℓ) ≤ 1, the following differential inequalities hold almost
everywhere:

(7.9) 3 + 3f2ε,δ − 2|∇fε,δ| ≥ csc2 θ in M3 \ (Nδ ∪ Sδ ∪ U0
r1 ∪ V

0
r1),

(7.10) 3 + 3f2ε,δ − 2|∇fε,δ| ≥ 3 csc2[ψδ(θ)]− 2δ−1θ csc2[ψδ(θ)] > 0 in Nδ,

(7.11) 3 + 3f2ε,δ − 2|∇fε,δ| ≥ csc2(θ − ε) ≥ csc2 θ in U0
r0 ,

and

3 + 3f2ε,δ − 2|∇fε,δ| ≥3 csc2(ψ0
ε ◦ θ)− 2

(
1 +

2ε

r1 − r0

)
csc2(ψ0

ε ◦ θ)

≥
(
1− 4ε

r1 − r0

)
csc2 θ

≥ csc2 θ − Cr0,r1ε

(7.12)

in the region U0
r1 \ U

0
r0 . Similar inequalities may be shown to hold in the regions V 0

r1 and Sδ.

For ε1 > ε, consider the band (M3
ε1 , ∂±M

3
ε1) where M3

ε1 = M3 \ (U0
ε1 ∪ V 0

ε1), ∂−M
3
ε1 = ∂V 0

ε1 ,

and ∂+M
3
ε1 = ∂U0

ε1 . Since fε,δ blows up at ∂U0
ε and ∂V 0

ε , and ℓ is regular at {N,S}, we can find

ε1 ∈ (ε, 2ε) such that |Hε1 | ≤ 2|fε,δ| on ∂M3
ε1 where Hε1 is the outward mean curvature of the

boundary. Now use Proposition 3.1 to solve the spacetime harmonic boundary value problem

(7.13)

{
∆uε,δ + 3fε,δ|∇uε,δ| = 0 in M3

ε1 ,

uε,δ = ±1 on ∂±M
3
ε1 .

Let n denote the outward unit normal to ∂M3
ε1 . Applying the integral formula (3.2), one finds

ˆ
M3

ε1

(
1

2

|∇2
uε,δ|2

|∇uε,δ|
+

1

2
R|∇uε,δ|+ 3f2ε,δ|∇uε,δ| − 2⟨∇fε,δ,∇uε,δ⟩

)
dV

≤−
ˆ
∂M3

ε1

(|∇uε,δ|Hε1 + 2fε,δn(uε,δ))dA+

ˆ 1

−1
2πχ(Σt)dt.

(7.14)

On ∂±M
3
ε1 , we have Hε1 ± 2fε,δ ≥ 0 and, due to the Dirichlet conditions, n(uε,δ) = ±|∇uε,δ|. We

conclude that the boundary term in (7.14) is nonpositive. Furthermore, it follows from the previous
estimates (7.9)–(7.12) thatˆ

M3
ε1

(
1

2
R|∇uε,δ|+ 3f2ε,δ|∇uε,δ| − 2⟨∇fε,δ,∇uε,δ⟩

)
dV

≥
ˆ
M3

ε1

(3 + 3f2ε,δ − 2|∇fε,δ|)|∇uε,δ|dV +

ˆ
M3

ε1

1
2 |∇uε,δ|(R− 6)dV

≥
ˆ
M3

ε1
\(Nδ∪Sδ)

|∇uε,δ| csc2 θdV − Cr0,r1ε

ˆ
B
|∇uε,δ|dV

≥
ˆ
[−1,1]\Iε,δ

ˆ
{uε,δ=t}

csc2 θdAdt− Cr0,r1ε

ˆ
B
|∇uε,δ|dV

≥4π (2− |Iε,δ|)− Cr0,r1ε

ˆ
B
|∇uε,δ|dV,

(7.15)
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where B = (U0
r1 \ U

0
r0) ∪ (V 0

r1 \ V
0
r0) and Iε,δ = {t ∈ [−1, 1] | {uε,δ = t} ∩ (Sδ ∪ Nδ) ̸= ∅}. Note that

we have used the coarea formula, and an estimate similar to (7.4) in order to arrive at (7.15). Since
U i
δ ⊂ BCℓδ(Ni), V

i
δ ⊂ BCℓδ(Si), the gradient estimate Theorem B.2 implies

(7.16) |Iε,δ| ≤
k∑

i=1

2Cℓδ supU i
δ
|∇uε,δ|+

l∑
i=1

2Cℓδ supV i
δ
|∇uε,δ| ≤ C1δ,

where C1 depends on k, l, Cℓ, and a Ricci curvature lower bound in neighborhoods of Sδ ∪ Nδ.
Moreover by Lemma 6.1 and H2(M

3,Z) = 0, we have χ(Σt) ≤ 2. Hence (7.14), (7.15), and (7.16)
yield

ˆ
M3

ε1

1

2

|∇2
uε,δ|2

|∇uε,δ|
dV ≤4πC1δ + Cr0,r1ε

ˆ
B
|∇uε,δ|dV

≤4πC1δ + Cr0,r1ε|B| supB |∇uε,δ|.
(7.17)

The next step is to take a limit of uε,δ. Fixing ε and letting δ → 0, fε,δ are uniformly bounded
on any compact subset in M3

ε1 \ (ℓ
−1(N)∪ ℓ−1(S)). Thus, uε,δ subsequently converges to uε in C2,α,

for some α ∈ (0, 1). Moreover, we have limδ→0 supB |∇uε,δ| > 0. Otherwise, uε is a constant by the
Hopf Lemma, which contradicts the Dirichlet condition on ∂M3

ε1 . Therefore, for any ε > 0, we can
choose a δ = δ(ε) with 0 < δ < ε such that δ < ε supB |∇uε,δ|. In what follows we will assume that
δ is chosen in this way.

Let Ω be a connected compact subset of M3\(ℓ−1(N) ∪ ℓ−1(S)) containing B. We scale uε,δ to
prevent uε,δ from converging to a constant as ε and δ tend to 0. Namely, fix p ∈ Ω and let

ûε,δ(x) := (supΩ |∇uε,δ|)−1(uε,δ(x)− uε,δ(p)).(7.18)

Then ûε,δ is still a solution to ∆ûε,δ + fε,δ|∇ûε,δ| = 0, and thus integral formulas such as (7.17) still
hold for ûε,δ. On Ω, we have |∇ûε,δ| ≤ 1 and |ûε,δ| ≤ diam(Ω). Since fε,δ is uniformly bounded on

Ω, we have uniform C2,α estimates for ûε,δ. By passing a subsequence, ûε,δ converges to u in C2,β

for β ∈ (0, α) with fε,δ(x) → f(x) := cot(θ ◦ ℓ(x)) on Ω for ε→ 0. Because supΩ |∇ûε,δ| = 1, we also
have supΩ |∇u| = 1. Thus, u is not a constant function. Define Ωi = {x ∈ Ω : |∇u(x)| ≥ i−1}. For ε
small enough, we obtain |∇ûε,δ| ≥ 1

2i in Ωi. Moreover

(7.19) lim
ε→0

|∇2
ûε,δ|2

|∇ûε,δ|
(x) =

|∇2
u|2

|∇u|
(x), for all x ∈ Ωi.

Using equation (7.17) and applying Fatou’s lemma produces

(7.20) 0 = lim inf
ε→0

ˆ
Ω

|∇2
ûε,δ|2

|∇ûε,δ|
dV ≥ lim inf

ε→0

ˆ
Ωi

|∇2
ûε,δ|2

|∇ûε,δ|
dV ≥

ˆ
Ωi

|∇2
u|2

|∇u|
dV.

Therefore, ∇2
u = ∇2u + f |∇u|g = 0 on Ωi, for any i ∈ N. Suppose x0 ∈ Ω satisfies |∇u|(x0) = 1.

For any q ∈ Ω, let γ : [0, 1] → Ω be a curve connecting x0 and q, then ∇γ′ |∇u| = −f∇γ′u holds
wherever |∇u| ≠ 0. The ODE for |∇u| implies |∇u|(q) ̸= 0, and therefore, |∇u| ≠ 0 on Ω. To finally
see that (M3, g) must be the round sphere, we use the fact that ℓ satisfies the same equation as (7.5)

(7.21)

〈
Dℓ

(
∇u
|∇u|

)
, ∇̃θ

〉
= −1, |det(Dℓ|Σt)| = 1, on Ω.

Consequently, after taking a exhaustion of M3, ℓ locally isometric on M3. Since ℓ is also a proper,
it is a covering map onto S3. It follows that ℓ is a global isometry.
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The proof will be complete upon establishing the general inequality (2.11) in Theorem 2.7. Its
proof requires only slight modifications to the above argument, which will now be explained. In the
sequence of inequalities (7.15), we no longer throw away the term involving R− 6. Next, instead of
considering the rescaled functions ûε,δ, we directly estimate and take a limit of uε,δ, in a similar fashion
to the final steps in the proof of Theorem 2.12. A standard diagonal argument utilizing the uniform
C0 control of uε,δ from the maximum principle shows that a subsequence of uε,δ converges in C2,β,
β ∈ (0, α), to a spacetime harmonic function u on any subset of M3 which is compactly contained
in the complement of ℓ−1(N) ∪ ℓ−1(S). Furthermore, in order to facilitate the interchange of limit
and integral, notice that by applying Lemma A.1 near N0, S0 and Theorem B.2 near N1, . . . , Nk and
S1, . . . , Sl, we obtain a global uniform gradient bound for uε,δ throughout M3

ε1 . It should by pointed

out that the hypothesis (A.1) of Lemma A.1 with C ≥ n−1
n = 2

3 may be confirmed directly from the
definition of fδ,ε with the aid of a Taylor expansion of cotangent together with the Lipschitz norm
restriction for ℓ, while the hypothesis of Theorem B.2 involving C0 is satisfied by virture of (7.9)-
(7.12). Moreover, the proof of Lemma A.1 implies something slightly stronger, namely ±uε,δ ≥ 1

2
in a small but uniform neighborhood of N0 and S0, respectively, which crucially implies that u is
nonconstant. Combined with the arguments in the previous paragraph, we may take a limit of the
integral inequality (7.14) as ε, δ → 0 to find

(7.22)

ˆ
M3

|∇u|(6−R)dV ≥
ˆ
M3

∣∣∇2u+ cot(θ ◦ ℓ)|∇u| g
∣∣2

|∇u|
dV.

Note that the uniform gradient bounds allow for an application of the dominated convergence theorem
to give the left-hand side of this inequality, whereas the right-hand side is obtained by Fatou’s lemma
as before.

7.3. Proof of Main Theorem D. Recall that θ(x) = dS3(x,N) and let S3
ε = {x ∈ S3 : ε ≤ θ(x) ≤

π − ε}. Then {S3
ε}ε>0 is an exhaustion of S3 \ {N,S}. Fix a constant 0 < r0 <

π
2 . Similar to the

previous proof and Lemma 3.4, there exist functions fε ∈ Lip(S3
ε ) such that

3 + 3f2ε − 2|∇fε| ≥ csc2 θ almost everywhere in S3
ε\S3

r0 ,

3 + 3f2ε − 2|∇fε| ≥ csc2 θ − Cε almost everywhere in S3
r0 ,

H + 2fε ≥ 0 on {θ(x) = ε},
H − 2fε ≥ 0 on {θ(x) = π − ε},
fε → cot θ in C0

loc(S
3 \ {N,S}) as ε→ 0,

(7.23)

where H is with respect to the unit outer normal and the constant C > 0 is independent of ε. Let
uε be the solution to the spacetime harmonic equation

∆uε + 3fε|∇u| = 0 in S3
ϵ ,

uε = 1 on {θ = ε},
uε = −1 on {θ = π − ε}.

(7.24)

As in the previous argument above line (7.17), the regular level sets Σt of uε satisfy χ(Σt) ≤ 2, and
we obtain the same estimates as in (7.15). We can now implement the arguments at the end of the
proof of Theorem 2.7, taking ℓ to be the identity map on S3 \{N,S}. It follows that ℓ is an isometry,
yielding the desired result.
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8. 2-Ricci Positive Bands

In this section we study 3-dimensional bands with positive 2-Ricci curvature. In the preceding
three sections, the integral inequality of Lemma 3.2 was fundamental in analysing the positive scalar
curvature condition. The following lemma provides a modification of this integral inequality suited
to the positive 2-Ricci curvature condition.

Lemma 8.1. Let (M3, ∂±M
3, g) be a 3-dimensional Riemannian band, and let f ∈ Lip(M3). If

u ∈ C2,α, α ∈ (0, 1) solves boundary value problem (3.4), then
ˆ
∂−M3

|∇u|
(
3

2
f −H

)
dA−

ˆ
∂+M3

|∇u|
(
3

2
f +H

)
dA+

ˆ 1

−1
4πχ(Σt)dt

≥
ˆ 1

−1

ˆ
Σt

(
|∇Σ|∇u||2 + (∇ννu+ 3

2f |∇u|)
2

|∇u|2
+

(
R− Ric(ν, ν) +

9

4
f2 − 3

2
⟨∇f, ν⟩

))
dAdt

(8.1)

where ν = ∇u
|∇u| on regular level sets Σt, and H is the mean curvature of the boundary with respect to

the unit outward normal.

Proof. The calculation is similar to the proof of Lemma 3.2. The key here is the following unusual
application of the Gauss and Codazzi equations, first known to the present authors from [67]. Along
regular u-level sets

(8.2) Ric(ν, ν) = R− Ric(ν, ν) +H2 − |II|2 − 2K,

where II, H, and K denote the second fundamental form, mean curvature, and Gauss curvature

respectively, of the level sets. Combining (8.2) with the fact that II = ∇2u|Σ
|∇u| and ∆u+ 3f |∇u| = 0,

yields

Ric(ν, ν)

=R− Ric(ν, ν) +
1

|∇u|2
(∆u−∇ννu)

2 − |∇2u|Σ|2

|∇u|2
− 2K

=R− Ric(ν, ν) +
1

|∇u|2
(∆u−∇ννu)

2 − 1

|∇u|2
(|∇2u|2 − 2|∇|∇u||2 + (∇ννu)

2)− 2K

=R− Ric(ν, ν) +
1

|∇u|2
(
(∆u)2 − 2∆u∇ννu− |∇2u|2 + 2|∇|∇u||2

)
− 2K

=R− Ric(ν, ν) + 9f2 +
6

|∇u|
f∇ννu− 1

|∇u|2
(|∇2u|2 − 2|∇|∇u||2)− 2K

(8.3)

along regular level sets.
In order to deal with critical points of u, let δ be a positive parameter and consider the quantity

φ =
√

|∇u|2 + δ. Calculating with the Bochner formula,

∆φ =
1

φ

[
1

2
∆|∇u|2 − |∇u|2

φ2
|∇|∇u||2

]
≥ 1

φ
(|∇2u|2 +Ric(∇u,∇u)− |∇|∇u||2 + ⟨∇u,∇∆u⟩)

=
1

φ
(|∇2u|2 +Ric(∇u,∇u)− |∇|∇u||2 − 3|∇u|⟨∇u,∇f⟩ − 3f |∇u|∇ννu).

(8.4)
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Combining (8.3) and (8.4) gives

∆φ ≥ 1

φ
(|∇2u|2 − |∇|∇u||2 − 3|∇u|⟨∇u,∇f⟩ − 3f |∇u|∇ννu)

+
|∇u|2

φ

(
R− Ric(ν, ν) + 9f2 +

6

|∇u|
f∇ννu− 1

|∇u|2
(|∇2u|2 − 2|∇|∇u||2)− 2K

)
=
1

φ
(|∇|∇u||2 − 3|∇u|⟨∇u,∇f⟩+ 3f |∇u|∇ννu) +

|∇u|2

φ

(
R− Ric(ν, ν) + 9f2 − 2K

)
.

(8.5)

Moreover, inserting the identity

9

2
f2|∇u| = −3

2
f∆u = −3

2
div(f∇u) + 3

2
⟨∇f,∇u⟩(8.6)

into (8.5) leads to

∆φ ≥ 1

φ

(
|∇|∇u||2 − 3

2
|∇u|⟨∇u,∇f⟩+ 3f |∇u|∇ννu

)
+

|∇u|2

φ

(
R− Ric(ν, ν) +

9

2
f2 − 2K

)
− 3|∇u|

2φ
div(f∇u).

(8.7)

Finally, we calculate the square

(8.8)

(
∇ννu+

3

2
f |∇u|

)2

= (∇ννu)
2 +

9

4
f2|∇u|2 + 3f |∇u|∇ννu,

and combine with (8.7) to arrive at the primary pointwise identity

∆φ ≥ 1

φ

(
|∇Σ|∇u||2 +

(
∇ννu+

3

2
f |∇u|

)2

− 3

2
|∇u|⟨∇u,∇f⟩

)

+
|∇u|2

φ

(
R− Ric(ν, ν) +

9

4
f2 − 2K

)
− 3|∇u|

2φ
div(f∇u).

(8.9)

The next step is to integrate (8.9), and take δ → 0. Since (8.9) only holds along regular level
sets, this process is delicate. However, a similar process is carried out in [34] and [60], so we will be
brief. Let A ⊂ [−1, 1] be an open set containing the critical values of u and let B ⊂ [−1, 1] be its
compliment. Integrate (8.9) over u−1(B) to find

ˆ
u−1(B)

(
∆φ+

3|∇u|
2φ

div(f∇u)
)
dV

≥
ˆ
u−1(B)

1

φ

(
|∇Σ|∇u||2 +

(
∇ννu+

3

2
f |∇u|

)2
)
dV

+

ˆ
u−1(B)

|∇u|2

φ

(
R− Ric(ν, ν) +

9

4
f2 − 2K − 3

2
⟨∇f, ν⟩

)
dV.

(8.10)
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To help control the integral over u−1(A), we return to ∆φ and estimate it in a different way. Along
regular level sets we may use (8.4) and |∇2u|Σ|2 ≥ 1

2 |Tr(∇
2u|Σ)|2 to obtain

∆φ ≥ 1

φ
(|∇2u|2 +Ric(∇u,∇u)− |∇|∇u||2 − 3|∇u|⟨∇u,∇f⟩ − 3f |∇u|∇ννu)

≥ 1

φ
(|∇2u|Σ|2 − C1|∇u|2 − 3|∇u|2|∇f | − 3f |∇u|∇ννu)

≥ 1

φ

(
1

2
(∇ννu+ 3f |∇u|)2 − 3f |∇u|∇ννu

)
− (C1 + 3|∇f |)|∇u|

≥ − C2|∇u|,

(8.11)

where C1 and C2 are positive constants depending only on |Ric | and |∇f |. Similarly, the other
integrand on the left-hand side of (8.10) can be controlled by

div(f∇u) = f∆u+ ⟨∇f,∇u⟩ ≥ −3f2|∇u| − |∇f ||∇u| ≥ −C3|∇u|,(8.12)

where C3 > 0 only depends on |∇f | and f . As a consequence of the coarea formula and Sard’s
Theorem, we may restrict attention to regular level sets and apply (8.11), (8.12), to findˆ

u−1(A)

(
∆φ+

3

2
div(f∇u)

)
dV =

ˆ
A

ˆ
Σt

1

|∇u|

(
∆φ+

3

2
div(f∇u)

)
dAdt

≥−
ˆ
A

ˆ
Σt

(
C2 +

3C3

2

)
dAdt

=−
ˆ
u−1(A)

(
C2 +

3C3

2

)
|∇u|dV.

(8.13)

Therefore, a further application of (8.11), (8.12) shows thatˆ
u−1(B)

(
∆φ+

3|∇u|
2φ

div(f∇u)
)
dV

≤
ˆ
M3

(
∆φ+

3

2
div(f∇u)

)
dV +

ˆ
u−1(A)

(
C2 +

3C3

2

)
|∇u|dV

+

ˆ
u−1(B)

3C3

2

(
1− |∇u|

φ

)
|∇u|dV.

(8.14)

Let us now integrate the first term on the right-hand side in (8.14) by parts, apply (8.10), and
rearrange the inequality to findˆ

∂M3

(
|∇u|
φ

n(|∇u|) + 3

2
fn(u)

)
dA

≥
ˆ
u−1(B)

1

φ

(
|∇Σ|∇u||2 +

(
∇ννu+

3

2
f |∇u|

)2
)
dV

+

ˆ
u−1(B)

|∇u|2

φ

(
R− Ric(ν, ν) +

9

4
f2 − 2K − 3

2
⟨∇f, ν⟩

)
dV

−
ˆ
u−1(A)

(
C2 +

3C3

2

)
|∇u|dV −

ˆ
u−1(B)

3C3

2

(
1− |∇u|

φ

)
|∇u|dV,

(8.15)

where n denotes the unit outward normal to ∂M3. This inequality will be applied with a sequence
Ai ⊂ [−1, 1] such that limi→∞ |Ai| = 0, which is permissible by Sard’s Theorem, and with Bi = Ac

i .
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Notice that first taking δ → 0 ensures that the last term of (8.15) tends to zero. Furthermore, by
the coarea formula and the Gauss-Bonnet Theorem we find

lim
δ→0

ˆ
u−1(Bi)

|∇u|2

φ
KdV =

ˆ
Bi

2πχ(Σt)dt.(8.16)

Now observe that Lemma 6.1 implies that the Euler characteristic of a regular level set χ(Σt) is
bounded from above uniformly in t. This allows us to apply the Reverse Fatou’s Lemma. To explain
this step, consider the function Fi(t) which takes the value χ(Σt) if t ∈ Bi, and 0 otherwise. Arguing
as in Remark 3.3, the functions Fi are measurable, and hence

lim sup
i→∞

ˆ
Bi

χ(Σt)dt = lim sup
i→∞

ˆ 1

−1
Fi(t)dt ≤

ˆ 1

−1
lim sup
i→∞

Fi(t)dt =

ˆ 1

−1
χ(Σt)dt.(8.17)

To finish, take a limsup in i of (8.15) and use Fatou’s Lemma for the first term on the right-hand
side, as well as the dominated convergence theorem for all remaining integrals. Lastly, noting that
n = ±ν on ∂±M

3 in the boundary term, and using the spacetime harmonic equation as in the proof
of Lemma 4.3, we arrive at the desired integral identity. □

8.1. Proof of Main Theorem B. Let (M3, ∂±M
3, g) be as in the hypotheses of Main Theorem B,

and suppose that the width w = d(∂−M
3, ∂+M

3) satisfies w ≥ arctan(H0/2). If H0 ≤ 0, one may
follow the arguments below with f ≡ 0 to obtain a contradiction. Therefore, we will now assume
that H0 > 0 and choose f in a different way. Namely set

(8.18) f̃(τ) =

{
4
3 tan(2τ − arctan(H0/2)) if τ ≤ arctan(H0/2),

L(τ) otherwise,

where L is the unique 1-variable linear function making f̃ a C1 function, and define the Lipschitz
function f(x) = f̃(r(x)) where we use the notation r(x) = d(x, ∂−M

3). This choice of f ensures that

4 +
9

4
f2 − 3

2
|∇f | ≥ 0(8.19)

holds almost everywhere. Observe that H ± 3
2f ≥ 0 on ∂±M

3, and this is a strict inequality at some

point of ∂M3 unless r ≡ arctan(H0/2) on ∂+M
3 and H ≡ −H0 holds across ∂M3. As usual, let u

be the unique spacetime harmonic function associated with this f such that u = ±1 on ∂±M , which
is guaranteed by Proposition 3.1. Since it is assumed that M3 has no spherical classes, the Euler
characteristic of any homologically nontrivial surface is nonpositive, and in particular χ(Σt) ≤ 0 for
all regular level sets of u.

By combining all of the above observations, Lemma 8.1 implies that

(8.20) 0 ≥
ˆ 1

−1

ˆ
Σt

(
|∇Σ|∇u||2 + (∇ννu+ 3

2f |∇u|)
2

|∇u|2
+R− Ric(ν, ν)− 4

)
dAdt,

where we have used the Cauchy-Schwarz inequality ⟨∇f, ν⟩ ≤ |∇f |. Since R − Ric(ν, ν) is at least
4, the right-hand side of (8.20) is nonnegative. It follows that the boundary term of Lemma 8.1
vanishes and, as discussed above, the width estimate w ≤ arctan(H0/2) follows.

Now assume that Ric ≥ 2g, and w = arctan(H0/2). Let us collect all the information gained from
attaining equality in the inequalities leading to the width estimate above. Inspecting the integrand
of (8.20), we find that

∇Σ|∇u| ≡ 0, ∇ννu+
3

2
f |∇u| ≡ 0, R− Ric(ν, ν) = 4,(8.21)
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whenever |∇u| ≠ 0. As is typical at this stage, ∇u is actually nonzero everywhere. Indeed, by the
Hopf Lemma and Dirichlet conditions, n(u) = ±|∇u| is nonzero on ∂±M

3. To see that ∇u ̸= 0
on the interior of M3, the first two equations of (8.21) can be used to consider an ODE for |∇u|
along a curve connecting a boundary point to any interior point, allowing us to conclude that it is
impossible for |∇u| to become zero. Moving along, from equality in line (8.20), we know that ∇f
is parallel to ∇u wherever ∇f exists. It follows that ∇r = ν almost everywhere. Since ν is C1,α, r
cannot have any critical points. Lastly, since the boundary term of (8.1) must vanish, we know that
the boundary mean curvature takes the constant value H ≡ −H0.

Now we investigate the consequences of the above information. Consider an orthonormal frame
{e1, e2, e3} where e3 = ∇r. Greek indices will be reserved for e1, e2, while Latin indices will be
used when referring to all three vector fields. Because ∇r = ν, it holds that u can be viewed as a
function of r. Let Hr be the mean curvature of the level set of r with respect to ∇r, then using
∇ννu+ 3

2f |∇u| = 0, we obtain

(8.22) Hr =
∆u−∇ννu

|∇u|
= −3

2
f = −2 tan

(
2r − arctan

H0

2

)
.

Moreover, since Ric ≥ 2g and R− Ric33 = 4, we find that Ric11 = 2 and Ric22 = 2. It follows that

(8.23) 2(1 + ε2) ≤ Ric(eα + εe3, eα + εe3) = 2 + 2εRicα3+ε
2Ric33

for any ε ∈ R, which forces Ricα3 = 0 for α = 1, 2. A similar argument shows that Ric12 = 0.
Next, the contracted second Bianchi identity and R− Ric33 = 4 imply that

(8.24) ∇3Ric33+∇αRic3α =
1

2
e3(R) =

1

2
e3(Ric33).

Furthermore, using the facts that ⟨∇e3e3, e3⟩ = 0 and Ric3α = 0, we have

∇3Ric33 = e3(Ric33)− 2Ric(∇e3e3, e3) = e3(Ric33).(8.25)

Since ⟨∇eαe3, eα⟩ = −⟨∇eαeα, e3⟩ = Hr, the previous calculations of the Ricci tensor produce

∇αRic3α =eα(Ric3α)− Ric(∇eαe3, eα)− Ric(e3,∇eαeα)

=− 2Hr +Hr Ric33 .
(8.26)

Combining (8.24), (8.25), and (8.26) then shows that Ric33 satisfies the equation

∂r Ric33+2Hr Ric33 = 4Hr.(8.27)

It will now be established that Ric33 is constant on level sets. To see this, first observe that

1

2
e1(Ric33) =

1

2
e1(R)

=∇e3 Ric13+∇αRic1α

=− Ric(∇e3e1, e3)− Ric(e1,∇e3e3)− Ric(∇eαe1, eα)− Ric(e1,∇eαeα).

(8.28)

Since

(8.29) ⟨e1,∇e3e3⟩ =
〈
e1,∇e3

∇u
|∇u|

〉
=

∇2u(e1, e3)

|∇u|
=

∇e1 |∇u|
|∇u|

= 0,

it follows from calculations above that Ric(∇e3e1, e3) = 0 and Ric(e1,∇e3e3) = 0. Furthermore

Ric(∇eαe1, eα) + Ric(e1,∇eαeα) = Ric22⟨∇e2e1, e2⟩+Ric11⟨e1,∇e2e2⟩ = 2∇e2⟨e1, e2⟩ = 0.(8.30)

Therefore e1(Ric33) = 0, and similarly e2(Ric33) = 0, yielding the desired constancy.
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Using (8.22), (8.27), and Ric33 ≥ 2, we now obtain Ric33 = 2 + c0 sec
2(2r − arctan H0

2 ) for some
constant c0 ≥ 0. Subtracting the identities

2 = Ric11 = σ(e1, e2) + σ(e1, e3),(8.31)

2 = Ric22 = σ(e1, e2) + σ(e2, e3),(8.32)

produces a coincidence of sectional curvatures σ(e1, e3) = σ(e2, e3) and, subsequently Ric33 =

2σ(e1, e3). Introducing the shifted coordinate ρ = r − 1
2 arctan

H0
2 , we will abuse notation and

use Σρ to denote the level sets of ρ. As a consequence of the above, we obtain a simple expression
for the sectional curvature

(8.33) σ(Y, e3) =
1

2
Ric33 = 1 +

1

2
c0 sec

2(2ρ), Y ∈ TΣρ.

Following [67, Alternative Proof of Corrollary 1.7], we consider the Riccati equation

(8.34) ∂ρ(∇2ρ) + (∇2ρ)2 = −R(·,∇ρ)∇ρ

where, crucially, ∇2ρ is viewed as an endomorphism of T ∗M3 and (∇2ρ)2 is a composition of endo-
morphisms. Let λ1 ≤ λ2 denote the principle curvatures of Σρ, considered as functions on M3. By
(8.33) and (8.34), their restrictions to an integral curve of ∇ρ satisfy

(8.35) λ′α + λ2α = −1− 1

2
c0 sec

2(2ρ), α = 1, 2,

where ′ denotes the ∂ρ derivative. Note that (8.22) implies

(8.36) λ1 + λ2 = Hr = −2 tan(2ρ),

and thus λ′1 + λ′2 = −4 sec2(2ρ). Summing (8.35) with both α = 1, 2, we are lead to

(8.37) |II|2 = λ21 + λ22 = 4 sec2(2ρ)− 2− c0 sec
2(2ρ).

As a consequence of (8.36) and (8.37), c0 ≤ 2. Equations (8.36) and (8.37) also allow one to
algebraically solve for the principal curvatures

(8.38) λ1 = − tan(2ρ)−
√
1− c0

2
sec(2ρ), λ2 = − tan(2ρ) +

√
1− c0

2
sec(2ρ),

as long as c0 ≤ 2. At this point we can apply the twice contracted Gauss equations on the surfaces
Σρ, to compute the Gauss curvature

K =
R

2
− Ric33−

|II|2

2
+
H2

r

2

=2− 1

2

(
2 + c0 sec

2(2ρ)
)
− 1

2

(
4 sec2(2ρ)− 2− c0 sec

2(2ρ)
)
+ 2 tan2(2ρ)

=2 + 2 tan2(2ρ)− 2 sec2(2ρ) = 0.

(8.39)

It will be useful to consider two cases. If c0 = 2, then (8.38) shows that each level set Σρ is
umbilic. Then g splits as g = dρ2 + gρ, and we have the equation ∂ρgρ = −2 tan(2ρ)gρ. Integrating
this equation yields gρ = cos(2ρ)g0, where g0 is a flat metric on the torus. It follows that, upon
passing to the universal cover, (M3, g) takes the form (2.7) for δ = 1.

For the rest of the proof, assume that c0 ∈ [0, 2). In this case, λ1 < λ2 and the level sets

are never umbilic. Let us now work on the universal cover M̃3 where the level sets Σρ are lifted

to planar surfaces Σ̃ρ. On M̃3, we may choose a new global orthonormal frame, also denoted by
{e1, e2, e3 = ∇ρ}, such that eα is the principal direction corresponding to λα, for α = 1, 2. Such a
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global frame exists since Σ̃ρ is contractible and thus the eigenspaces of II form trivial bundles. Since

Σ̃0 is nonumbilic, near any point we may find a local coordinate chart {x1, x2, ρ} so that ∂1, ∂2 are

orthogonal to∇ρ and, along Σ̃0, x
1 and x2 are lines of curvature coordinates, which is to say ∂1 = c1e1

and ∂2 = c2e2 for some smooth functions c1 and c2 defined locally on Σ̃0. In these coordinates, gρ
and II satisfy the following evolution equations, written in terms of symmetric (0, 2)-tensors:

∂ρII − II2 = −
(
1 + 1

2c0 sec
2(2ρ)

)
gρ,

∂ρgρ = 2II,

g0 = c21(dx
1)2 + c22(dx

2)2,

II|Σ0 = λ1c
2
1(dx

1)2 + λ2c
2
2(dx

2)2.

(8.40)

Solving (8.40) yields the diagonalized expressions

(8.41) gρ = c̄21(dx
1)2 + c̄22(dx

2)2, II = λ1c̄
2
1(dx

1)2 + λ2c̄
2
2(dx

2)2,

where c̄α(ρ, x1, x2) = ϕα(ρ)cα(x1, x2) and the function ϕα(ρ) satisfies

(8.42) ∂ρϕα = λαϕα, ϕα(0) = 1.

Using the formula for λα, one finds the following explicit expressions

ϕ1 = [sec(2ρ) + tan(2ρ)]−
1−Υ
2 cos

1
2 (2ρ) = 2

1−Υ
2 cos1−Υ(ρ+

π

4
) cos

Υ
2 (2ρ),

ϕ2 = [sec(2ρ) + tan(2ρ)]
1−Υ
2 cos

1
2 (2ρ) = 2

1−Υ
2 sin1−Υ(ρ+

π

4
) cos

Υ
2 (2ρ),

(8.43)

where Υ = 1−
√
1− c0

2 .

The rest of the proof is devoted to showing that e1 and e2 are coordinate vector fields on Σ̃0. After
accomplishing this, we may choose xα so that cα ≡ 1, giving the desired form of g. To this end, on

M̃3 consider the smooth functions a, b defined by [e1, e2] = ae1 + be2. Denoting the connection on

Σ̃ρ by ∇̂, we compute

(8.44) ∇̂e1e2 = ae1, ∇̂e2e1 = −be2, ∇̂e1e1 = −ae2, ∇̂e2e2 = be1.

Using these expressions, we may compute the level set curvature ⟨R̂(e1, e2)e1, e2⟩ in terms of a and
b. Since the level sets are flat, it follows that

0 =⟨∇̂e1∇̂e2e1 − ∇̂e2∇̂e1e1 − ∇̂[e1,e2]e1, e2⟩

=⟨∇̂e1(−be2)− ∇̂e2(−ae2)− ∇̂ae1+be2e1, e2⟩
=e1(−b) + e2(a) + a2 + b2.

(8.45)

On the other hand, ∂α = c̄αeα and so

(8.46) 0 = [∂1, ∂2] = [c̄1e1, c̄2e2] = c̄1(e1(c̄2))e2 − c̄2(e2(c̄1))e1 + c̄1c̄2(ae1 + be2).

Collecting coefficients in the above produces ∂1c̄2 = c̄1e1(c̄2) = −bc̄1c̄2 and ∂2c̄1 = c̄2e2(c1) = ac̄1c̄2.
Since c̄α(ρ, x1, x2) = ϕα(ρ)cα(x1, x2), we obtain

(8.47) a(ρ, x1, x2) = ϕ−1
2 (ρ)a(0, x1, x2), b(ρ, x1, x2) = ϕ−1

1 (ρ)b(0, x1, x2).
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Combining this with equation (8.45) implies

0 =c̄ −1
1 ∂1(−b) + c̄ −1

2 ∂2(a) + a2 + b2

=ϕ−2
1 (ρ)c−1

1 (x1, x2)∂1(−b(0, x1, x2)) + ϕ−2
1 (ρ)b2(0, x1, x2)

+ ϕ−2
2 (ρ)c−1

2 (x1, x2)∂2(a(0, x1, x2)) + ϕ−2
2 (ρ)a2(0, x1, x2).

(8.48)

As ϕ1 ̸= ϕ2, equation (8.48) yields the following simple identities for a and b along Σ̃0, namely

(8.49) e1(b) = b2, e2(a) = −a2.

If a ̸= 0 at some point on Σ̃0, then e2(a
−1) = 1. Because the integral curve γ(t) of e2 exists for

all time, there exists a point γ(t0) such that a−1(γ(t0)) = 0, which is a contradiction. A similar

argument applies to b, andhence a = b ≡ 0. In particular, [e1, e2] = 0 holds on Σ̃0, finishing the
proof.

8.2. Proof of Main Theorem C. The proof will be similar to that of Main Theorem A. Let
Σ2 ⊂ M3 be the closed surface separating M3 into two connected components M3

±, where E± is
contained in M3

±. Suppose that w− + w+ ≥ π/2 where w± is the minimum min{π/2, d(Σ2, E±)},
though we will soon see that the later quantity is always smaller. Consider the signed distance to

Σ2 given by ϱ(x) = ±d(x,Σ2), when x ∈M3
±. For δ > 0, consider the band (M̃3

δ , ∂±M̃
3
δ , g) given by

M̃3
δ = {x ∈M3 : ϱ(x) ∈ [−w− + δ, w+ − δ]},(8.50)

where the assignment ∂±M
3
δ respects E±. Importantly, M̃3

δ is compact as a consequence of Lemma

C.2. As in the proof of Main Theorem A, there is small perturbation of M̃3
δ to a band (M3

δ , ∂±M
3
δ )

with smooth boundary and width at least (w− + w+) − 3δ. In light of Main Theorem B, one can
conclude the width estimate w− + w+ = π/2.

Now assume that Ric ≥ 2g. Define Hδ = sup∂M3
δ
|H|, where H is the mean curvature of ∂M3

δ .

Slightly adjusting Lemma 3.4 with a = 3/4, b = 3/8, and appropriate ε, we find a function fδ ∈
Lip(M3

δ ) satisfying the following

4 +
9

4
f2δ − 3

2
|∇fδ(x)| ≥ −Cδ in B,

4 +
9

4
f2δ − 3

2
|∇fδ(x)| ≥ 0 in Mn

δ \ B,

3fδ ≤ −2Hδ on ∂−M
3
δ , 3fδ ≥ 2Hδ on ∂+M

3
δ ,

(8.51)

where B = {−w−
2 ≤ ϱ(x) ≤ w+

2 } and C is independent of δ. The existence result Proposition 3.1 with

fδ, yields a spacetime harmonic function uδ on M3
δ with Dirichlet boundary conditions. Fix a small

ρ > 0 such that B ⊂ M3
ρ , and a point p ∈ M3

ρ . By scaling and adding a constant to uδ, we arrange

for supM3
ρ
|∇uδ| = 1, and uδ(p) = 0. Integrating duδ along paths shows that |uδ| ≤ diam(M3

ρ ) on

M3
ρ .
Next, apply the integral formula Lemma 8.1 and use the boundary conditions of fδ to find

0 ≥
ˆ uδ

uδ

ˆ
Σt

(
|∇Σ|∇uδ||2 + (∇ννuδ +

3
2fδ|∇uδ|)

2

|∇uδ|2
+ (R− Ric(ν, ν)− 4)

)
dAdt

− Cδ

ˆ
B
|∇uδ|dV,

(8.52)
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where uδ = minM3
δ
uδ and uδ = maxM3

δ
uδ. Since it has been arranged that |uδ| and |∇uδ| are

uniformly bounded on the compact set M3
ρ , Schauder estimates allow us find a subsequential C2,β-

limit of uδ onM
3
ρ as δ → 0, which will be denoted by u. The function u solves the spacetime harmonic

equation with f(x) = 4
3 tan(2ϱ(x)+

w−−w+

2 ), and must be nonconstant since supM3
ρ
|∇u| = 1. We will

reuse the notations Σt and ν when referring to the level sets of u and their unit normals, respectively.
By Fatou’s Lemma and boundedness of ∥uδ∥C2,β , taking the limit of (8.52) produces

0 =

ˆ u

u

ˆ
Σt∩M3

ρ

(
|∇Σ|∇u||2 + (∇ννu+ 3

2f |∇u|)
2

|∇u|2
+ (R− Ric(ν, ν)− 4)

)
dAdt,(8.53)

where u = minM3
ρ
u and u = maxM3

ρ
u. It follows that the conditions (8.21) hold on M3

ρ wherever

∇u ̸= 0, and all regular level sets of u are tori. In fact since ∇Σ|∇u| ≡ 0, components of level sets
of u are either entirely regular or critical.

The argument at this stage in the proof of Main Theorem A now shows that u has no critical
point within the interior of M3

ρ . Consequently, ∇u is parallel to ∇ϱ and hence ϱ can be considered

as a function of u onM3
ρ . The conditions (8.21) then hold acrossM3

ρ , and all level sets are tori. This
allows us to directly apply the argument in the proof of Main Theorem B, and conclude that g has a
very particular form onM3

ρ . To describe this, first introduce the shifted coordinate s = ϱ− w+−w−
2 ∈

(−π/4, π/4). The arguments of the previous section imply that the universal cover of (M3
ρ , g) splits

as g = ds2 + ϕ2α(s)(dx
α)2, where x1, x2 are global coordinates on the lifts of the level sets of u and

where ϕ1, ϕ2 are the functions given in (8.43). Since this splitting is independent of the parameter
ρ, we find that the universal cover of the region N3 := {x ∈M3 : ϱ(x) ∈ (−w−, w+)} splits as

(8.54)
((

−π
4
,
π

4

)
× R2, ds2 + ϕ2α(s)(dx

α)2
)
.

Since (N3, g) cannot be extended to a Riemannian manifold with at least two ends, we conclude that
N3 =M3, completing the proof.

8.3. Corollaries 2.4 and 2.5. Equipped with the open width estimate of Main Theorem C, we are
now ready to discuss its applications.

Proof of Corollary 2.4. Suppose Σ2 ⊂M3 is an embedded surface of genus at least 1. Since M3 and
Σ2 are orientable, the normal bundle of Σ2 is two-sided. In particular, the open manifold

(8.55) N3 = {x ∈M3 : d(x,Σ2) < Injn(Σ
2)}

has two ends. Evidently N3 is topologically Σ2 × R, and thus cannot support spherical homology
classes. The normal injectivity radius upper bound follows from Main Theorem C when applied to
the separating surface Σ2 in N3.

Now assume that Ric ≥ 2g and Injn(Σ
2) ≥ π/4. The rigidity statement in Main Theorem C

implies that the universal cover of (N3, g) is isometric to ((−π
4 ,

π
4 )×R2, gΥ) for some Υ ∈ [0, 1], and

that Σ2 is a torus. Since N3 lies within the smooth closed manifold (M3, g) and the curvature of
gΥ is unbounded for Υ > 0, we must have Υ = 0. We conclude that (N3, g) is round and, since
g0 collapses along its ends, the closure of N3 is the entire original manifold M3. Consequently, the
universal cover of (M3, g) is the round sphere.

We claim that the torus Σ2 ⊂ M3 is a Heegaard surface. To see this, observe that Σ2 lifts to a
two-sided embedded flat and minimal surface in S3, which must therefore be the Clifford torus, see
[12]. In particular, M3 \ Σ2 has two components, each covered by a solid torus. It follows that Σ2

separates M3 into two solid tori. Now, because lens spaces are the only nontrivial quotients of S3
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admitting a genus 1 Heegaard surface (see for instance [65, page 5]), (M3, g) itself must be isometric
to a round sphere or a round sens space. □

Proof of Corollary 2.5. First we show there are no spherical classes in H2(M
3 \ (K1 ∪K2);Z). We

argue by contradiction and assume that such a class exists. This means that there is an embedded
and homologically nontrivial sphere S2 ⊂M3 \ (K1 ∪K2). Since M

3 is a rational homology sphere,
and codimension 1 integer homology of oriented manifolds is torsion free, the surface S2 bounds
a region U ⊂ M3. The 2-sidedness of S2 and nontriviality of its class in H2(M

3 \ (K1 ∪ K2);Z)
imply that exactly one of the two knots must lie entirely in U . Meanwhile, an argument using the
Mayer–Vietoris sequence and the triviality of H1(S2;Q), shows that both U and M3 \U are rational
homology 3-balls. It follows that, up to integer multiples, each knot bounds an integer 2-chain
contained entirely in its respective rational homology 3-ball, and therefore does not intersect the
other knot. This contradicts the linking condition, and we conclude that M3 \ (K1 ∪ K2) satisfies
the homological hypothesis of Main Theorem C.

Let Σ2 be the boundary of a small distance neighborhood of K1, and notice that d(K1,K2) =
d(K1,Σ

2)+d(K2,Σ
2). The upper bound on the distance between K1 and K2 now follows by applying

Main Theorem C to M3 \ (K1 ∪K2) with the separating surface Σ2. Finally, arguing as in the proof
of Corollary 2.4 yields the rigidity statement in Corollary 2.5. □

8.4. A counterexample. We conclude this section with explicit examples demonstrating the ne-
cessity of the Ric ≥ 2g hypothesis in the rigidity statements of Main Theorems B and C, as well as
Corollaries 2.4 and 2.5. In particular, these examples show why a closed 3-manifold with 2-Ricci cur-
vature at least 4, which achieves equality in (2.10), need not be covered by the class ((−π

4 ,
π
4 )×R2, gΥ)

without further imposing that Ric ≥ 2g. Here is the 1-parameter family of examples. For t ∈ (−π
4 ,

π
4 ),

x, y ∈ [0, 2π), and a parameter δ ∈ [0, 1], consider the doubly warped product metric

(8.56) g = dt2 + ϕ2dx2 + ψ2dy2,

where

(8.57) ϕ(t) = e
δ
2
(sin 2t−1) cos

(
t+

π

4

)
, ψ(t) = e−

δ
2
(sin 2t+1) sin

(
t+

π

4

)
.

Notice that ϕ(t) = ψ(−t). Formally, g is a metric on (−π
4 ,

π
4 )× [0, 2π)× [0, 2π), but a straightforward

calculation of the derivatives of ϕ and ψ along t = ±π
4 shows that g actually extends to a smooth

metric on S3, viewed as the union of two solid tori. A calculation shows that Ric is diagonalized in
the (t, x, y)-coordinates, and that

Ric(∂t, ∂t) =− ϕ′′

ϕ
− ψ′′

ψ
= 2 + 4δ − 2δ2 cos2(2t),(8.58)

Ric(ϕ−1∂x, ϕ
−1∂x) =− ϕ′′

ϕ
− ϕ′ψ′

ϕψ
= 2 + 4δ sin 2t,(8.59)

Ric(ψ−1∂y, ψ
−1∂y) =− ψ′′

ψ
− ϕ′ψ′

ϕψ
= 2− 4δ sin 2t.(8.60)

Evidently, the Ricci curvature is not bounded below by 2 when 0 < δ ≤ 1. However, the 2-Ricci
curvature is always bounded below by 4, and the width of these open manifolds attains the maximum
value π/2. This shows saturation in the band-width inequalities of Main Theorem C, and Corollaries
2.4 and 2.5. Moreover, it may be easily checked that by removing thickened neighborhoods of the
‘Hopf link’ {t = ±π/4}, saturation also occurs in Main Theorem B.
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Appendix A. A Barrier Construction

Lemma A.1. Let (Mn, g) be a closed n-dimensional Riemannian manifold. Fix distinct points
p, q ∈Mn, a constant C ≥ n−1

n , and suppose that f ∈ Liploc(M
n \ {p, q}) satisfies

f(x) =

{
C

d(x,p) +O(d(x, p)) as x→ p,

− C
d(x,q) +O(d(x, q)) as x→ q.

(A.1)

For each small ε > 0, let uε ∈ C2,α(Mn\(Bε(p) ∪Bε(q))), α ∈ (0, 1) be the solution of the spacetime
harmonic Dirichlet problem

∆uε + nf |∇uε| = 0 inMn\(Bε(p) ∪Bε(q)),

uε = 1 on ∂Bε(p),

uε = −1 on ∂Bε(q).

(A.2)

Then there exists a constant C1 independent of ε such that

(A.3) |∇uε| ≤ C1 on ∂Bε(p) ∪ ∂Bε(q).

Furthermore, {uε}ε>0 subconverges to a spacetime harmonic function u ∈ C2,β(Mn \ {p, q}) ∩
C0,1(Mn), with β ∈ (0, α), which satisfies u(p) = 1 and u(q) = −1.

Proof. We will construct subsolutions uε with a C1 bound that is uniform for all small ε > 0. More
precisely let r(x) = d(x, p) and define

uε = aε − br + br2,(A.4)

where aε and b are positive constants to be determined. To ensure that uε agrees with uε on ∂Bε(p),
we choose aε = 1+ bε− bε2. Next, recall that the mean curvature of geodesic spheres ∂Br(p) has an
expansion Hr =

n−1
r +O(r) for small radii. Then, using also the assumption (A.1) it follows that

(A.5)

∣∣∣∣f − C

r

∣∣∣∣ ≤ 1

2n
and

∣∣∣∣Hr −
n− 1

r

∣∣∣∣ ≤ 1

2
in Br0(p),

for some fixed r0 ∈ (0, 14) less than the injectivity radius at p and independent of ε. From now on
it will be assumed that ε < r0

4 . In order to achieve uε(r0) ≤ −1, which according to the maximum

principle is additionally a lower bound for uε, we choose b = 4
r0

since then

(A.6) uε(r0) = aε − br0 + br20 = 1− b(r0 − ε− r20 + ε2) ≤ 1− b

(
3

4
r0 − ε

)
≤ 1− 1

2
r0b = −1.

To see that uε is a subsolution of equation (A.2) on Br0(p) \ Bε(p), note that ∂ruε = −b+ 2br < 0,
|∇uε| = −∂ruε, and by assumption C ≥ n−1

n which imply

∆uε + nf |∇uε| =∂2ruε +Hr∂ruε − nf∂ruε

≥(−b+ 2br)

(
n− 1

r
− nC

r
+ 1

)
+ 2b

≥− b+ 2br + 2b > 0,

(A.7)

where in the second to last inequality (A.5) was used. The comparison principle may now be applied
to find that uε ≥ uε ≥ 1 − br on the annulus Br0(p) \ Bε(p). Since uε and uε agree at the smaller
radius, the desired boundary gradient estimate at ∂Bε(p) now follows

(A.8) |∇uε| = −∂ruε ≤ −∂ruε = b− 2bε ≤ b.
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Similarly, we obtain a uniform boundary gradient estimate for uε at ∂Bε(q), which establishes (A.3).
Consider now the issue of convergence. Since |uε| ≤ 1, interior elliptic estimates combined with a

diagonal argument show that uε subconverges to a spacetime harmonic function function u uniformly
on compact subsets in C2,β(M \ {p, q}), for any β ∈ (0, α). Moreover, the barrier estimates give
1 ≥ uε ≥ 1− br on Br0(p) \Bε(p), and hence the limit function u satisfies the same uniform estimate
on Br0(p). It follows that u(x) → 1 as x → p, and similarly u(x) → −1 for x → q. Lastly, this
estimate also implies that the solution is Lipschitz at p and q. □

Appendix B. Gradient Estimate for Spacetime Harmonic Functions

This section is devoted to the proof of Theorem B.2, which is a modified version of the Cheng-Yau
gradient estimate [59]. We begin with a preliminary local estimate.

Lemma B.1. Let (M3, g) be a 3-dimensional Riemannian manifold with Ric ≥ −Λg, Λ > 0. Let
f ∈ C1,α(M3), and let u ∈ C2,α(M3), α ∈ (0, 1) be a positive solution of ∆u+3f |∇u| = 0. If p ∈M3

is a point such that ∇u(p) ̸= 0, then ϕ = |∇u|
u is C2,α near p and at this point the following inequality

holds

∆ϕ ≥−
(
Λ + 3|∇f | − 9

2
f2
)
ϕ− ⟨∇ϕ,∇u⟩

u
+

1

2
ϕ3 + 3fϕ2.(B.1)

Proof. Let p ∈ M3 be a point with ∇u ̸= 0, and let {xi}3i=1 be a normal coordinate system around

p with ∂1 = ∇u
|∇u| at p. Note that since f ∈ C1,α(M3), and ∇u ̸= 0, u ∈ C3,α(M3) by Schauder

estimates. Using the notations uij := ∇iju, fi := ∂if , we compute at p

1

2
∆(|∇u|2) =|∇2u|2 + ⟨∇u,∇∆u⟩+Ric(∇u,∇u)

≥|∇2u|2 − ⟨∇u,∇(3f |∇u|)⟩ − Λ|∇u|2

=|∇2u|2 − 3|∇u|2f1 − 3f |∇u|u11 − Λ|∇u|2

≥|∇2u|2 + 3f |∇u|

3f |∇u|+
∑
i ̸=1

uii

− (Λ + 3|∇f |)|∇u|2.

(B.2)

Combining the above inequality with the identity 1
2∆(|∇u|2) = |∇u|∆|∇u|+ |∇|∇u||2, we obtain

|∇u|∆|∇u| ≥
∑
j ̸=1

u21j +
∑
i,j ̸=1

u2ij + 3f |∇u|
∑
i ̸=1

uii − (Λ + 3|∇f | − 9f2)|∇u|2

≥
∑
j ̸=1

u21j +
1

2

∑
i ̸=1

uii + 3f |∇u|

2

−
(
Λ + 3|∇f | − 9

2
f2
)
|∇u|2

≥1

2
|∇|∇u||2 −

(
Λ + 3|∇f | − 9

2
f2
)
|∇u|2,

(B.3)
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where we have made use of the equation ∆u + 3f |∇u| = 0 in the last inequality. Combining (B.3)
with Cauchy-Schwarz implies that

∆ϕ =
∆|∇u|
u

− ⟨2∇|∇u|,∇u⟩
u2

+
2|∇u|3

u3
− |∇u|∆u

u2

=
∆|∇u|
u

− ⟨2∇|∇u|,∇u⟩
u2

+ 2ϕ3 +
3f |∇u|2

u2

≥1

2

|∇|∇u||2

u|∇u|
−
(
Λ + 3|∇f | − 9

2
f2
)
ϕ− ⟨∇ϕ,∇u⟩

u
− ⟨∇|∇u|,∇u⟩

u2
+ ϕ3 + 3fϕ2

≥−
(
Λ + 3|∇f | − 9

2
f2
)
ϕ− ⟨∇ϕ,∇u⟩

u
+

1

2
ϕ3 + 3fϕ2,

(B.4)

which finishes the proof. □

Before stating the gradient estimate, we need some notation. Given a Lipschitz function f on a
Riemannian manifold (Mn, g) and a point p ∈Mn, we denote

(B.5) Lf (p) = lim sup
x→p

|f(x)− f(p)|
d(x, p)

.

Theorem B.2. Let (M3, g) be an 3-dimensional Riemannian manifold. Suppose p ∈M3 and ρ > 0
satisfy Bρ(p) ∩ ∂M3 = ∅. Let C0 > 0 be a constant and let u ∈ C2,α(M3), α ∈ (0, 1) be a solution
of ∆u + 3f |∇u| = 0, where f ∈ Lip(M3) does not change sign and satisfies 9

2f
2 − 3Lf ≥ −C0 on

Bρ(p). Then

(B.6) supB ρ
2
(p) |∇u| ≤ C(1 + supBρ(p) |u|),

where the constant C depends only on ρ, C0, and the lower bound for Ricci curvature in Bρ(p).

Proof. Let us first consider the case f ∈ C1,α(Bρ(p)). Following the proof of [59, Theorem 3.1],

we introduce the notation F = (ρ2 − r2)ϕ where ϕ = |∇u|
u and r(x) = d(x, p). Replacing u by

u+1+supBρ(p) |u|, we may assume that u > 0 which makes ϕ and therefore F well-defined. Observe

that F = 0 on ∂Bρ(p), and that F ≥ 0 in Bρ(p). Let x1 ∈ Bρ(p) a point where F attains its
maximum value in Bρ(p). We may assume that x1 lies in the interior of Bρ(p) and that F is strictly
positive at this point, since otherwise u must be constant.

Suppose first that the maximal point x1 does not belong to the cut locus Cut(p). Since x1 lies
in the interior of Bρ(p), we have ∇F = 0 and ∆F ≤ 0 at this point. The former relation implies
(ρ2 − r2)∇ϕ = ϕ∇r2, while the latter relation together with Lemma B.1 yields

0 ≥ ∆F

(ρ2 − r2)ϕ

=
∆ϕ

ϕ
− 2⟨∇r2,∇ϕ⟩

(ρ2 − r2)ϕ
− ∆r2

ρ2 − r2

≥− Λ− 3|∇f |+ 9

2
f2 − ⟨∇ϕ,∇u⟩

uϕ
+

1

2
ϕ2 + 3fϕ− 2⟨∇r2,∇ϕ⟩

(ρ2 − r2)ϕ
− C1

ρ2 − r2

=− Λ− 3|∇f |+ 9

2
f2 − 2r⟨∇r,∇u⟩

u(ρ2 − r2)
+

1

2
ϕ2 + 3fϕ− 8r2

(ρ2 − r2)2
− C1

ρ2 − r2

≥− Λ− 3|∇f |+ 9

2
f2 − 2rϕ

ρ2 − r2
+

1

2
ϕ2 + 3fϕ− 8r2

(ρ2 − r2)2
− C1

ρ2 − r2
,

(B.7)
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where Λ is the lower bound of Ric in Bρ(p) and by [59, Corollary 1.2] we have

∆r2 ≤ 6 + 4r

√
Λ

2
≤ 6 + 4ρ

√
Λ

2
=: C1.(B.8)

Recall that f does not change sign by assumption. If f ≤ 0, we may apply the arguments below
with obvious modifications to the function u0 = 2 supBρ(p) |u|+2−u which satisfies ∆u0 = nf |∇u0|.
Therefore, we will assume that f ≥ 0 in what follows. Since 9

2f
2 − 3|∇f | ≥ −C0 and ϕ(x1) > 0, at

x1 we have

0 ≥1

2
ϕ2 − 2r

ρ2 − r2
ϕ− 8r2

(ρ2 − r2)2
− C1

ρ2 − r2
− Λ− C0

=
1

(ρ2 − r2)2

[
1

2
F 2 − 2rF − 8r2 − C1(ρ

2 − r2)− (Λ + C0)(ρ
2 − r2)2

]
.

(B.9)

Therefore, F (x1) ≤ C2 where C2 depends on Λ, C0, C1, and ρ. Furthermore, since x1 is a point

where F = (ρ2 − r2) |∇u|
u attains its maximum, we have

|∇u|(x) ≤ 4

3
ρ−2F (x1)u(x) ≤ C(1 + supBρ(p) |u|)(B.10)

for x ∈ B ρ
2
(p), where C is a constant depending only on Λ, C0, and ρ, but not on f .

Next, suppose that x1 ∈ Cut(p). Following the proof in [59], we let γ be a minimizing geodesic
connecting x1 and p. For ϵ > 0 sufficiently small, let p̄ be the point on γ with d(p, p̄) = ϵ, and define

(B.11) F̄ (x) =
[
ρ2 − (r̄(x) + ϵ)2

]
ϕ, r̄(x) := d(x, p̄).

Since r̄(x) + ϵ ≥ r(x) it holds that F̄ (x) ≤ F (x). Moreover F̄ (x1) = F (x1), because γ is minimizing.
Thus, x1 is also a maximal point of F̄ (x). Noting that r̄(x) is smooth at x1, the above computations
hold with F̄ instead of F .

Finally, if f is merely Lipschitz we may approximate f by fε ∈ C1,α such that

(B.12) |f(x)− fε(x)| ≤ ε, lim supε→0|∇fε(x)| ≤ Lf +
1

10
,

for all x ∈ Bρ(p). Such an approximation fε can be constructed via standard mollification, see for
instance [3, Theorem 1]. Since this mollification process preserves nonnegativity, and f does not
change sign, the functions fε retain this property. Furthermore, 9

2f
2
ε − 3Lfε ≥ −C0 − 1 for ε > 0

sufficiently small. Let uε be the solution to the Dirichlet problem{
∆uε + 3fε|∇uε| = 0 in Bρ(p),

uε = u on ∂Bρ(p).
(B.13)

Observe that the above gradient estimate applied to uε produces

(B.14) supB ρ
2
(p) |∇uε| ≤ C(1 + supBρ(p) |uε|) = C(1 + sup∂Bρ(p) |u|),

where the last equality follows from the maximum principle. Moreover, as in [34, Section 4] the
solutions uε are uniformly controlled in C2,β(Bρ(p)) for β ∈ (α, 1). By uniqueness, it follows that uε
subconverges to u in C2,α(Bρ(p)). The desired result now follows from (B.14). □
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Appendix C. Open Riemannian Manifolds

In this section, we will present some remarks on the nonstandard topic of open Riemannian
manifolds, which are the central objects in Main Theorems A and C. To begin, consider an open
manifoldM , and suppose that we are given a sequence of exhausting compact sets {Ki}∞i=1 satisfying
Ki ⊂ Ki+1 and

⋃∞
i=1 int(Ki) = M . An end of M is a collection of connected components {Ui}∞i=1

Ui ⊂ (M \Ki) satisfying Ui+1 ⊂ Ui up to the equivalence relation: {Ui}∞i=1 ∼ {U ′
i}∞i=1 if {Ui}∞i=i0

=
{U ′

i}∞i=i′0
for some integers i0 and i′0, see for instance [28, Section 13.4] for further details. A path

γ ⊂M is said to intersect an end E if γ ∩ Ui ̸= 0 for all i and any representative {Ui}∞i=1 of E.
An open manifold M is said to be hemicompact if it supports an exhaustion by compact sets

{Ki}∞i=1 with the property that any given compact set lies within the interior of some Ki. If M is
hemicompact, there is a canonical compactification, known as the Freudenthal compactification and
denoted by F(M), see for instance [27, 53]. As a set, F(M) = M ∪ E(M) where E(M) denotes the
space of M ’s ends. The topology of F(M) is given by the open sets of M along with sets U ∪ {e}
where e ∈ E(M) is an end and U is an open set of M contained in some representative of e. Every
locally compact Lindelöf space is hemicompact [47, page 84], where we recall that a Lindelöf space
is a topological space in which every open cover has a countable subcover. Since a second-countable
space is Lindelöf, all manifolds considered in this paper are hemicompact, see [54, Theorem 1.3.1].

Below, Lemma C.2 can be considered as a variant of the Hopf-Rinow Theorem and has great
technical importance to the proofs of Main Theorems A and C. First, a technical lemma.

Lemma C.1. Let (M, g) be an open Riemannian manifold with ends E(M). If q ∈ M and s <

d(q, E(M)), then the exponential map expq is defined on the closed ball Bs(0) ⊂ TqM .

Proof. We will first show that the closed geodesic ball Bs(q) is complete. Let {pi}∞i=1 be a Cauchy

sequence in Bs(q). Since F(M) is compact, there is a limit point p0 ∈ F(M) of {pi}∞i=1. If this limit
is an end, p0 ∈ E(M), then we may represent p0 by a sequence {Ui}∞i=1 of connected open sets in
M satisfying Ui ⊃ Ui+1 for all i ∈ N. Since each Ui contains infinitely many points of {pj}∞j=1, by

passing to a subsequence we may assume that pi ∈ Ui and d(pi, pj) ≤ 2−i for i ≤ j. We proceed by

constructing a short curve from Bs(q) to the end p0. For i ∈ N, let γi be a curve connecting pi to pi+1

with length |γi| ≤ 2d(pi, pi+1) ≤ 21−i. Denote by Γi the concatenation ∪k≥iγk. Then pj ∈ Γi ∩ Uj

for any j ≥ i, and |Γi| ≤ 22−i. Therefore d(Bs(q), E(M)) ≤ 22−i for any i ∈ N, contradicting the

property that s < d(q, E(M)). Thus p0 must lie in M , and in fact p0 ∈ Bs(q) due to closedness. It

follows that Bs(q) is complete.

To show that expq is defined on all of Bs(0) ⊂ TqM , we proceed by contradiction and assume that
there is a smallest radius s0 ∈ (0, s) where this fails. Then there exists an inextendable geodesic γ
emanating from q which is defined only for times t ∈ [0, s0). Take a sequence of times ti within this

interval converging to s0, and note that γ(ti) forms a Cauchy sequence in Bs(q). By completeness,

γ(ti) converges to a point in Bs(q). Then by standard local existence arguments, this geodesic may
be extended for a short time beyond s0, which is a contradiction. □

Lemma C.2. Let (M, g) be an open hemicompact Riemannian manifold with ends E(M). Suppose
K ⊂M is a compact set. If s < d(K, E(M)), then the distance neighborhood Vs := {x ∈M | d(x,K) ≤
s} is compact.

Proof. We first argue that it suffices to show the Lemma holds in the case where K is a single
point. Let δ > 0 such that s + 2δ < d(K, E(M)). Take a δ-net {q1, · · · , qm} of K, and note
Vs ⊂ ∪m

i=1Bs+2δ(qi), where Bs+2δ(qi) denotes the open geodesic ball around qi of radius s+2δ. Next,
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observe that Vs is closed inM since it is the preimage of a closed set under the function x 7→ d(x,K),

which is continuous by the triangle inequality. Therefore, if the closed set ∪m
i=1Bs+2δ(qi) is compact,

then Vs is a closed subset of a compact set which implies that Vs is compact. Hence, we need only
show that the closure Bs(q) is compact for any point q ∈M and number s satisfying s < d(q, E(M)).

Given such a q and s, the exponential map expq is defined on Bt(0) ⊂ TqM by Lemma C.1 and
we may consider the set

(C.1) A = {t ∈ [0, s]| expq : Bt(0) ⊂ TqM → Bt(q) ⊂M is surjective}.

We claim that if t0 ∈ A, then the ball Bt0(q) is compact. Indeed, notice that the exponential map

expq : Bt0(0) ⊂ TqM → M is continuous, a fact which follows from the well-posedness of the initial

value problem for geodesics in addition to the positive distance imposed between Bt0 and E(M). It

follows that Bt0(q) is the continuous image of a compact set and is therefore compact.
The proof will be complete upon establishing that A is the entire interval [0, s]. Clearly, 0 ∈ A,

and we proceed by showing the component of A containing 0 is both open and closed, starting with
the latter. Suppose [0, t) ⊂ A and let p ∈ M such that d(p, q) = t. Then for any i ∈ N, there
exists a curve γi connecting p and q with |γi| ≤ t + 1

i . Let ε > 0 small enough so that Bε(p) is a

normal neighborhood of p. Let pi ∈ γi ∩ ∂Bε(p), then d(pi, q) ≤ t+ 1
i − ε. Since ∂Bε(p) is compact,

there is a limit point p0 ∈ ∂Bε(p) of {pi}∞i=1. Since d(p0, q) ≤ t − ε ∈ A, there exists a minimizing
geodesic α connecting p0 and q. Let β be the minimizing geodesic connecting p0 and p. Denote
by γ the concatenation of α and β which is a piecewise smooth geodesic between p and q. Because
|γ| = |α|+ |β| ≤ t− ε+ ε = t and d(p, q) = t, γ is in fact smooth. Since p was arbitrary, t ∈ A.

We next show that the component of A containing 0 is open. Suppose that [0, t] ⊂ A. Since

Bt(q) is compact, the injectivity radius ε := inf
x∈Bt(q)

injx is positive. Our goal is to show that

[0, t + ε) ∈ A. Let p′ ∈ M be such that t < d(q, p′) < t + ε. For i ∈ N, let γi be a unit speed curve

from q to p′ with length |γi| < d(q, p′) + 1
i . Consider the points p′i = γi(t) for i ∈ N. Since Bt(q) is

compact by the assumption t ∈ A, we may pass to a subsequence to obtain a limit p′i → p′0 ∈ Bt(q).
Note that d(p′i, p

′) ≤ d(q, p′)− t+ 1/i and so d(p′0, p
′) ≤ d(q, p′)− t < ε. Since t ∈ A, we can find a

geodesic α connecting q and p′0 with length |α| ≤ t. By the definition of ε, we may find a geodesic
β connecting p′0 to p′ with length |β| = d(p′0, p

′) ≤ d(q, p′) − t. Concatenating α and β we obtain a
piecewise smooth geodesic γ connecting p′ and q, with |γ| ≤ d(q, p′). It follows that γ must in fact
be smooth everywhere. Hence, the connected component of A containing 0 is open. This component
must then agree with [0, s], yielding the desired result. □
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[14] S. Cecchini, D. Räde, and R. Zeidler, Nonnegative scalar curvature on manifolds with at least two ends, preprint

2022. arXiv:2205.12174

[15] S. Cecchini, and R. Zeidler, Scalar and mean curvature comparison via the Dirac operator, Geom. Topol., to

appear. arXiv:2103.06833

[16] X. Chai, A perturbation of spacetime Laplacian equation, preprint, 2021. arXiv:2107.12784

[17] X. Chai, and X. Wan, Band width estimates of CMC initial data sets, preprint, 2022. arXiv:2206.02624

[18] J. Cheeger, and T. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of

Math., 144 (1996), no. 1, 189–237.

[19] J. Cheeger, and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library,

Vol. 9 (1975).

[20] J. Cheeger, and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential

Geometry, 6 (1971/72), 119–128.

[21] S.-Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z., 143 (1975), no. 3, 289–297.

[22] O. Chodosh, and C. Li, Generalized soap bubbles and the topology of manifolds with positive scalar curvature,

preprint, 2020. arXiv:2008.11888

[23] C. Croke, and B. Kleiner, A warped product splitting theorem, Duke Math. J., 67 (1992), no. 3, 571–574.

[24] K. Ecker, and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. math., 105

(1991), 547–569.

[25] M. Eichmair, G. Galloway, and A. Mendes, Initial data rigidity results, Comm. Math. Phys., 386 (2021), no. 1,

253–268.

[26] T. Frankel, On the fundamental group of a compact minimal submanifold, Ann. of Math., 83 (1966), 68–73.
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