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Abstract
We define the Kobayashi quotient of a complex variety by identifying
points with vanishing Kobayashi pseudodistance between them and show
that if a compact complex manifold has an automorphism whose order
is infinite, then the fibers of this quotient map are nontrivial. We prove
that the Kobayashi quotients associated to ergodic complex structures on
a compact manifold are isomorphic. We also give a proof of Kobayashi’s
conjecture on the vanishing of the pseudodistance for hyperkähler mani-
folds having Lagrangian fibrations without multiple fibers in codimension
one. For a hyperbolic automorphism of a hyperkähler manifold, we prove
that its cohomology eigenvalues are determined by its Hodge numbers,
compute its dynamical degree and show that its cohomological trace grows
exponentially, giving estimates on the number of its periodic points.
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1 Introduction

Kobayashi conjectured that a compact Kähler manifold with semipositive Ricci
curvature has vanishing Kobayashi pseudometric. In a previous paper ([KLV])
Kamenova-Lu-Verbitsky have proved the conjecture for all K3 surfaces and for
certain hyperkähler manifolds that are deformation equivalent to Lagrangian
fibrations. Here we give an alternative proof of this conjecture for hyperkähler
Lagrangian fibrations without multiple fibers in codimension one, see Section 3.

1Partially supported by an NSERC discovery grant
2Partially supported by RScF grant, project 14-21-00053, 11.08.14.
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Theorem 1.1: Let f : M −→B = CPn be a hyperkähler Lagrangian fibration
without multiple fibers in codimension one over B. Then the Kobayashi pseu-
dometric dM vanishes identically on M and the Royden-Kobayashi pseudonorm
| |M vanishes identically on a Zariski open subset of M .

In Section 4, we explore compact complex manifolds M having an auto-
morphism of infinite order. For such manifolds the Kobayashi pseudometric is
everywhere degenerate. For each point x ∈M we define the subset Mx ⊂M of
points in M whose pseudo-distance to x is zero. Define the relation x ∼ y on
M given by dM (x, y) = 0. There is a well defined set-theoretic quotient map
Ψ : M −→ S = M/∼, called the Kobayashi quotient map. We say that | |M
is Voisin-degenerate at a point x ∈ M if there is a sequence of holomorphic
maps ϕn : Drn →M such that ϕn(0)→ x, |ϕ′n(0)|h = 1 and rn →∞.

Theorem 1.2: Let M be a compact complex manifold with an automorphism
f of infinite order. Then the Kobayashi pseudo-metric dM is everywhere de-
generate in the sense that Mx 6= {x} for all x ∈ M . The Royden-Kobayashi
pseudo-norm | |M is everywhere Voisin-degenerate. Moreover, every fiber of the
map Ψ : M −→ S constructed above contains a Brody curve and is connected.

In Section 5, we show that the Kobayashi quotients for ergodic complex
structures are isometric, equipped with the natural quotient pseudometric. This
generalizes the key technical result of [KLV] for the identical vanishing of dM
for ergodic complex structures on hyperkähler manifolds.

Theorem 1.3: Let (M, I) be a compact complex manifold, and (M,J) its
deformation. Assume that the complex structures I and J are both ergodic.
Then the corresponding Kobayashi quotients are isometric.

Finally in Section 6, we prove that the cohomology eigenvalues of a hyper-
bolic automorphism of a hyperkähler manifold are determined by its Hodge
numbers. We compute its dynamical degree in the even cases and give an upper
bound in the odd cases.

Theorem 1.4: Let (M, I) be a hyperkähler manifold, and T a hyperbolic au-
tomorphism acting on cohomology as γ. Denote by α the eigenvalue of γ on
H2(M,R) with |α| > 1. Replacing γ by γ2 if necessary, we may assume that
α > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.
Moreover, the maximal of these eigenvalues on even cohomology H2d(M) is
equal to αd, and finally, on odd cohomology H2d+1(M) the maximal eigenvalue

of γ is strictly less than α
2d+1

2 .

As a corollary we obtain that the trace Tr(γN ) grows asymptotically as αnN .
We also show that the number of k-periodic points grows as αnk.
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2 Preliminaries

Definition 2.1: A hyperkähler (or irreducible holomorphic symplectic) manifold
M is a compact complex Kähler manifold with π1(M) = 0 and H2,0(M) = Cσ
where σ is everywhere non-degenerate.

Recall that a fibration is a connected surjective holomorphic map. On a
hyperkähler manifold the structure of a fibration, if one exists, is limited by
Matsushita’s theorem.

Theorem 2.2: (Matsushita, [Mat1]) Let M be a hyperkähler manifold and
f : M −→B a fibration with 0 < dimB < dimM . Then dimB = 1

2 dimM and
the general fiber of f is a Lagrangian abelian variety. The base B has at worst
Q-factorial log-terminal singularities, has Picard number ρ(B) = 1 and −KB is
ample.

Remark 2.3: B is smooth in all of the known examples. It is conjectured that
B is always smooth.

Theorem 2.4: (Hwang [Hw]) In the settings above, if B is smooth then B is
isomorphic to CPn, where dimC M = 2n.

Definition 2.5: Given a hyperkähler manifold M , there is a non-degenerate
integral quadratic form q on H2(M,Z), called the Beauville-Bogomolov-Fujiki
form (BBK form for short), of signature (3, b2 − 3) and satisfying the Fujiki
relation ∫

M

α2n = c · q(α)n for α ∈ H2(M,Z),

with c > 0 a constant depending on the topological type of M . This form
generalizes the intersection pairing on K3 surfaces. For a detailed description
of the form we refer the reader to [F], [Bea] and [Bo].

Remark 2.6: Given f : M −→ CPn, h the hyperplane class on CPn, and α =
f∗h, then α is nef and q(α) = 0.

Conjecture 2.7: [SYZ] If L is a nontrivial nef line bundle on M with q(L) = 0,
then L induces a Lagrangian fibration, given as above.
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Remark 2.8: This conjecture is known for deformations of Hilbert schemes of
points on K3 surfaces (Bayer–Macr̀ı [BM]; Markman [Mar]), and for deforma-
tions of the generalized Kummer varieties Kn(A) (Yoshioka [Y]).

Definition 2.9: The Kobayashi pseudometric on M is the maximal pseudo-
metric dM such that all holomorphic maps f : (D, ρ)−→ (M,dM ) are distance
decreasing, where (D, ρ) is the unit disk with the Poincaré metric.

Definition 2.10: A manifold M is Kobayashi hyperbolic if dM is a metric,
otherwise it is called Kobayashi non-hyperbolic.

Remark 2.11: In [Ko1], it is asked whether a compact Kähler manifold M
of semipositive Ricci curvature has identically vanishing pseudometric, which
we denote by dM ≡ 0. The question applies to hyperkähler manifolds but
was unknown even for the case of surfaces outside the projective case. But
Kamenova-Lu-Verbitsky (in [KLV]) have recently resolved completely the case
of surfaces with the following affirmative results.

Theorem 2.12: [KLV] Let S be a K3 surface. Then dS ≡ 0.

Theorem 2.13: [KLV] Let M be a hyperkähler manifold of non-maximal Picard
rank and deformation equivalent to a Lagrangian fibration. Then dM ≡ 0.

Theorem 2.14: [KLV] Let M be a hyperkähler manifold with b2(M) ≥ 7
(expected to always hold) and with maximal Picard rank ρ = b2 − 2. Assume
the SYZ conjecture for deformations of M . Then dM ≡ 0.

Remark 2.15: Except for the proof of Theorem 2.14, we indicate briefly a
proof of these theorems below. Theorem 2.14 is proved in [KLV] using the
existence of double Lagrangian fibrations on certain deformations of M . Here
we give a different proof of vanishing of the Kobayashi pseudometric for certain
hyperkähler Lagrangian fibrations without using double fibrations.

Definition 2.16: Let M be a compact complex manifold and Diff0(M) the con-
nected component to identity of its diffeomorphism group. Denote by Comp the
space of complex structures on M , equipped with a structure of Fréchet man-
ifold. The Teichmüller space of M is the quotient Teich := Comp /Diff0(M).
The Teichmüller space is finite-dimensional for M Calabi-Yau ([Cat]). Let
Diff+(M) be the group of orientable diffeomorphisms of a complex manifold
M . The mapping class group Γ := Diff+(M)/Diff0(M) acts on Teich. An
element I ∈ Teich is called ergodic if the orbit Γ · I is dense in Teich, where

Γ · I = {I ′ ∈ Teich : (M, I) ∼ (M, I ′)}.
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Theorem 2.17: (Verbitsky, [V4]) If M is hyperkähler and I ∈ Teich, then I is
ergodic if and only if ρ(M, I) < b2 − 2.

Remark 2.18: For a K3 surface (M, I) not satisfying the above condition on
the Picard rank ρ, it is easily seen to admit Lagrangian (elliptic) fibrations over
CP1 without multiple fibers, and it is projective. Then d(M,J) ≡ 0 by Theorem
3.2 below, for example.

Proposition 2.19: Let (M,J) be a compact complex manifold with d(M,J) ≡ 0.
Let I ∈ Teich be an ergodic complex structure deformation equivalent to J .
Then d(M,I) ≡ 0.

Proof: Here we shall reproduce the proof from [KLV]. Consider the diam-
eter function diam : Teich −→ R>0, the maximal distance between two points.
It is upper semi-continuous (Corollary 1.23 in [KLV]). Since the complex struc-
ture J is in the limit set of the orbit of the ergodic structure I, by upper
semi-continuity 0 6 diam(I) 6 diam(J) = 0.

3 (Royden-)Kobayashi pseudometric on Abelian
fibrations

The following lemma is a generalization of Lemma 3.8 in [BL] to the case of
abelian fibrations. The generalization is given for example in the Appendix
of [KLV]. Recall that an abelian fibration is a connected locally projective
surjective Kähler morphism with abelian varieties as fibers.

Lemma 3.1: Let π : T −→ C be an abelian fibration over a non-compact com-
plex curve C which locally has sections and such that not all components of the
fibers are multiple. Then T has an analytic section over C. This is the case if
π has no multiple fibers.

Proof: There is a Neron model N for T and a short exact sequence

F −→O(L)−→O(N)

where L is a vector bundle, F is a sheaf of groups Z2n with degenerations and
O(N) is the sheaf of local sections of N (whose general fibers are abelian vari-
eties). Thus T corresponds to an element θ in H1(C,O(N)). There is an induced
exact sequence of cohomologies: H1(C,O(L))−→H1(C,O(N))−→H2(C,F ).
Note that H1(C,O(L)) = 0 since C is Stein, and H2(C,F ) = 0 since it is topo-
logically one-dimensional. Thus θ = 0 and hence there is an analytic section.
The last part of the lemma is given by Proposition 4.1 of [KLV].

Theorem 3.2: Let f : M −→B = CPn be a hyperkähler Lagrangian fibration
without multiple fibers in codimension one over B. Then dM ≡ 0 and | |M
vanishes on a nonempty Zariski open subset of M .
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Proof: The fibers of f are projective, and furthermore, there is a canonical
polarization on them (see [Og1] and [Og2], respectively). This also follows from
[V5], Theorem 1.10, which implies that the given fibration is diffeomorphic to
another fibration f : M ′ −→B with holomorphically the same fibers and the
same base, but with projective total space M ′. Standard argument (via the
integral lattice in the “local” Neron-Severi group) now shows that f is locally
projective.

By assumption, there are no multiple fibers outside a codimension 2 subset
S ⊂ B whose complement U contains at most the smooth codimension-one part
D0 of the discriminant locus of f where multiplicity of fibers are defined locally
generically. Since the pseudometric is unchanged after removing codimension 2
subsets ([Ko2]), it is enough to restrict the fibration to that over U .

Let C = P1 be a line in B = Pn contained in U (and intersecting D0

transversely). Then f restricts to an abelian fibration X = f−1(C) over C
without multiple fibers and so Lemma 3.1 applies to give a section.

As S is codimension two or higher, we can connect any two points in U by
a chain of such C’s in U . One can thus connect two general points x and y
on M by a chain consisting of fibers and sections over the above C’s. Since
the Kobayashi pseudometric vanishes on each fiber and each such section, the
triangle inequality implies dM (x, y) = 0. Therefore dM vanishes on a dense open
subset of M and hence dM ≡ 0 by the continuity of dM .

The same argument gives the vanishing statement of | |M via Theorem A.2
of [KLV].

Remark 3.3: In the theorem above, it is sufficient to assume that B is nonsin-
gular and that dB ≡ 0, true if B is rationally connected. In fact, if one assumes
further the vanishing of | |B on a nonempty Zariski open, then the same is true
for | |M , generalizing the corresponding theorems in [KLV]. The reader should
have no difficulty to see these by the obvious modifications of the above proof.

4 Automorphisms of infinite order

We first sketch the proof of Kobayashi’s theorem that Kobayashi hyperbolic
manifolds have only finite order automorphisms (Theorem 9.5 in [Ko1]).

Theorem 4.1: Let M be a compact complex manifold with an automorprhism
f of an infinite order. Then M is Kobayashi non-hyperbolic.

Proof: Assume M is Kobayashi hyperbolic. Observe that the automor-
phisms of a hyperbolic manifold are isometries of the Kobayashi metric. Also
the group of isometries of a compact metric space is compact with respect to
the compact open topology by a theorem of Dantzig and Van der Waerden, see
for example [Ko2, Theorem 5.4.1]. On the other hand, compact Kobayashi hy-
perbolic manifolds have no holomorphic vector fields, because each such vector
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field gives an orbit which is an entire curve. This means that the automorphism
group of M is discrete. Since the automorphism group Aut(M) is discrete and
compact, this means it is finite, therefore f is of finite order.

Consider the pseudo-distance function dM : M ×M −→ R, defined by the
Kobayashi pseudo-distance dM (x, y) on pairs (x, y). It is a symmetric continuous
function which is bounded for compactM . Since it is symmetric, we can consider
dM as a function on the symmetric product Sym2M with dM = 0 on the
diagonal.

Lemma 4.2: There is a compact space S with a continuous map Ψ : M −→ S
and there is a distance function dS on S making S into a compact metric space
such that dM = dS ◦ ψ, where ψ : Sym2M −→ Sym2 S is the map induced by
Ψ.

Proof: The subset Mx ⊂M of points y ∈M with dM (x, y) = 0 is compact
and connected. The relation x ∼ y onM given by dM (x, y) = 0 is symmetric and
transitive so that Mx = My if and only if x ∼ y. So there is a well defined set-
theoretic quotient map Ψ : M −→ S = M/∼. Note that the set S is equipped
with a natural metric induced from dM . Indeed, dM (x′, y′) is the same for any
points x′ ∈Mx, y

′ ∈My, and hence dM induces a metric dS on S. This metric
provides a topology on S, and since the set Ux,ε = {y ∈ M | dM (x, y) < ε}
is open, the map Ψ : M −→ S is continuous. Thus the metric space S is also
compact. This completes the proof of the lemma.

Remark 4.3: The natural quotient considered above was already proposed in
[Ko1] albeit little seems to be known about its possible structure. In particular,
it is known that even when M is compact, S may not have the structure of a
complex variety. But the same problem for a projective or a compact Kähler
variety is still wide open and is the subject of strong conjectures.

Remark 4.4: If there is a holomorphic family of varieties Xt over a parameter
space T of any dimension, then the relative construction also works by consider-
ing the problem via that of the total space over small disks in T . In particular,
there is a monodromy action on the resulting family of compact metric spaces
St by isometries over T .

Let M be a complex manifold and h a hermitian metric on M with its asso-
ciated norm | |h.

Recall that a theorem of Royden says that the Kobayashi pseudo-metric dM
can be obtained by taking the infimum of path-integrals of the infinitesimal
pseudonorm | |M , where

|v|M = inf

{
1

R
| f : DR →M holomorphic, R > 0, f ′(0) = v

}
.
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Here DR is the disk of radius R centred at the origin. Recall also that | |M is
upper-semicontinuous [Siu].

Definition 4.5: We say that | |M is Voisin-degenerate at a point x ∈M if there
is a sequence of holomorphic maps ϕn : Drn →M such that

ϕn(0)→ x, |ϕ′n(0)|h = 1 and rn →∞.

Observe that the locus ZM of M consisting of points where | |M is Voisin-
degenerate is a closed set. The following theorem and the arguments given are
an elaboration of the original source of Voisin [Vo].

Theorem 4.6: Consider the equivalence relationship x ∼ y on M given by
dM (x, y) = 0 where dM is the Kobayashi pseudo-metric on M . Then any
non-trivial orbit (that is, equivalence class) of this relation consists of Voisin-
degenerate points, and such orbits form a closed set. If, further, M is compact,
then each orbit of ∼ contains the image of a nontrivial holomorphic map C→M
(with bounded derivative), called a Brody curve.

Proof: Let Mx be the orbit passing through x. Suppose that | |M is Voisin-
degenerate at x. We have sequence of maps ϕn : Drn → M as given above.
For sufficiently small ε, Schwarz’ lemma tells us that ϕn(D2ε) intersects the
boundary of a polydisk ∆ of radius ε (w.r.t. h) centred at x for n sufficiently
large since ϕ′n(0) = 1 and ϕn(0) → 0. Hence dM (x, ∂∆) = 0 and there is a
point x0 ∈ ∂∆ with dM (x, x0) = 0 by the compactness of the boundary and the
continuity of dM . So Mx is not a point. Conversely, suppose that Mx is not
a point. Then the upper semicontinuity of | |M and Royden’s definition of dM
implies the existence of a sequence xn ∈ M converging to x and unit tangent
vectors vn (w.r.t. h) at xn for which |vn|M → 0. It follows that | |M is Voisin-
degenerate at x and thus at every point of Mx. Therefore, the nonsingleton
orbits form precisely the set ZM , which is closed in M .

For the last statement, we apply Brody’s lemma to the sequence of maps
ϕn that gives the Voisin-degeneration for x. This gives a sequence of suitably
reparametrized holomorphic maps ψn : Drn →M such that

|ψ′n(0)|h = 1 = supz∈Drn
|ψ′n(z)|h/

(
rn
∣∣ ∂
∂z

∣∣
Drn

(z)
)
,

where for each n, ψn = ϕn ◦mtn ◦ gn, mtn(z) = tnz, tn ∈ (0, 1] and gn is an
automorphism of Drn . Note that for each compact in C the denominator in the
supremum above converges to 1 and thus (ψn) form an equicontinuous family
there. Applying the compactness of M then give us a Brody curve C in M
by extracting a convergent subsequence of (ψn). Taking a further subsequence
if necessary, we may assume that (tn) converges, necessarily to a point t0 in
[0, 1]. If t0 = 0, then Mx contains the Brody curve C as yn = gn(0) ∈ Drn and
dM (x,C) is dominated by the limit of

dM (ϕn(0), ψn(0)) = dM (ϕn(0), ϕn(tnyn))) 6 dDrn
(0, tnyn) = dD1

(0, tn
yn
rn

).
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If t0 6= 0, then the family (ϕn ◦mtn) is equicontinuous and so is convergent to
a holomorphic ϕ : C→ M upon replacing by a subsequence. Then its image is
a Brody curve in Mx since |ϕ′(0)|h is the limit of |(ϕn ◦mtn)′(0)|h = tn and it
contains x = ϕ(0) by construction.

Theorem 4.7: Assume M is compact. Then each orbit of the the equivalence
relation given above is connected.

Proof: Let Mx be the orbit passing through x as before and

Mx(n) =

{
y ∈ X

∣∣ dX(x, y) 6
1

n

}
.

Then each Mx(n) is compact and connected and Mx = ∩nMx(n). If Mx is not
connected, then there are disjoint open sets U, V in M separating Mx leading
to the contradiction

∅ = (U ∪ V )c ∩Mx = ∩n[(U ∪ V )c ∩Mx(n)] 6= ∅,

each (U ∪ V )c ∩Mx(n) being nonempty compact as Mx(n) is connected.

Remark 4.8: Without M being compact, our arguments only shows that each
orbit Mx is locally connected.

5 Metric geometry of Kobayashi quotients

Definition 5.1: Let M be a complex manifold, and dM its Kobayashi pseu-
dometric. Define the Kobayashi quotient MK of M as the space of all
equivalence classes {x ∼ y | dM (x, y) = 0} equipped with the metric induced
from dM .

The main result of this section is the following theorem.

Theorem 5.2: Let (M, I) be a compact complex manifold, and (M,J) its
deformation. Assume that the complex structures I and J are both ergodic.
Then the corresponding Kobayashi quotients are isometric.

Proof: Consider the limit lim νi(I) = J , where νi is a sequence of diffeomor-
phisms of M . For each point x ∈ (M, I), choose a limiting point ν(x) ∈ (M,J)
of the sequence νi(x). By the upper-semicontinuity of the Kobayashi pseudo-
metric, we have

d(M,J)(ν(x), ν(y)) > d(M,I)(x, y). (5.1)

Let C be the union of all ν(x) for all x ∈ (M, I). Define a map ψ : C −→ (M, I)
mapping z = ν(x) to x (if there are several choices of such x, choose one in
arbitrary way). By (5.1), the map ψ is 1-Lipschitz with respect to the Kobayashi
pseudometric. For any x ∈ (M,J), the Kobayashi distance between x and
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ψ(ν(x)) is equal zero, also by (5.1). Therefore, ψ defines a surjective map on
Kobayashi quotients: Ψ : CK −→ (M, I)K . Exchanging I and J , we obtain a 1-
Lipshitz surjective map Φ : C ′K −→ (M,J)K , where C ′K is a subset of (M, I)K .
Taking a composition of Ψ and Φ, we obtain a 1-Lipschitz, surjective map from
a subset of (M, I)K to (M, I)K . The following proposition shows that such a
map is always an isometry, finishing the proof of Theorem 5.2.

Proposition 5.3: Let M be a compact metric space, C ⊂ M a subset, and
f : C −→M a surjective 1-Lipschitz map. Then C = M and f is an isometry.

Proposition 5.3 is implied by the following three lemmas, some which are
exercises found in [BBI].

Lemma 5.4: Let M be a compact metric space, C ⊂ M a subset, and f :
C −→M a surjective 1-Lipschitz map. Then M is the closure of C.

Proof: Suppose that M is not the closure C of C. Take q ∈ M\C, and let
ε = d(q, C). Define pi inductively, p0 = q, f(pi+1) = pi. Let p ∈ C be any limit
point of the sequence {pi}, with limi pni = p. Since fm(pn) ∈ C for any m < n,
one has fm(p) ∈ C.

Clearly, fni(pni
) = q. Take ni such that d(p, pni

) < ε. Then d(fni(p), q) < ε.
This is a contradiction, because fn(p) ∈ C and ε = d(q, C).

Lemma 5.5: Let M be a compact metric space, and f : M −→M an isometric
embedding. Then f is bijective.

Proof: Follows from Lemma 5.4 directly.

Lemma 5.6: LetM be a compact metric space, and f : M −→M a 1-Lipschitz,
surjective map. Then f is an isometry.

Proof: Let d be the diameter of M , and let K be the space of all 1-Lipschitz
functions µ : M −→ [0, d] with the sup-metric. By the Arzela-Ascoli theorem,
K is compact. Now, f∗ defines an isometry from K to itself, µ−→ µ ◦ f . For
any z ∈ M , the function dz(x) = d(x, z) belongs to K. However, df(z) does
not belong to the image of f∗ unless d(z, x) = d(f(z), f(x)) for all x, because if
d(z, x) < d(f(z), f(x)), one has (f∗)−1(df(z))(f(x)) = d(z, x) > d(f(z), f(x)),
hence (f∗)−1(df(z)) cannot be Lipschitz. This is impossible by Lemma 5.5,
because an isometry from K to itself must be bijective. Therefore, the map
f : M −→M is an isometry.

The proof of Proposition 5.3 easily follows from Lemma 5.6 and Lemma 5.4.
Indeed, by Lemma 5.4, f is a surjective, 1-Lipschitz map from M to itself, and
by Lemma 5.6 it is an isometry.
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6 Eigenvalues and periodic points of hyperbolic
automorphisms

The following proposition follows from a simple linear-algebraic observation.

Proposition 6.1: Let T be a holomorphic automorphism of a hyperkähler
manifold (M, I), and γ : H2(M)−→H2(M) the corresponding isometry of
H2(M). Then γ has at most 1 eigenvalue α with |α| > 1, and such α is real.

Proof: Since T is holomorphic, γ preserves the Hodge decomposition

H2(M,R) = H(2,0)+(0,2)(M,R)⊕H1,1(M,R).

Since the BBF form is positive definite on H(2,0)+(0,2)(M,R), the eigenvalues
of γ are |αi| = 1 on this space. On H1,1(M,R), the BBF form has signature
(+,−,−, ...,−), hence γ can be considered as an element of O(1, n). However,
it is well known that any element of SO(1, n) has at most 1 eigenvalue α with
|α| > 1, and such α is real.

Definition 6.2: An automorphism of a hyperkähler manifold (M, I) or an
automorphism of its cohomology algebra preserving the Hodge type is called
hyperbolic if it acts with an eigenvalue α, |α| > 1 on H2(M,R).

In holomorphic dynamics, there are many uses for the d-th dynamical
degree of an automorphism, which is defined as follows. Given an automor-
phism T of a manifold M , we consider the corresponding action on Hd(M,R),
and d-th dynamical degree is logarithm of the maximal absolute value of its
eigenvalues. In [Og3], K. Oguiso has shown that the dynamical degree of a
hyperbolic automorphism is positive for all even d, and computed it explicitly
for automorphisms of Hilbert schemes of K3 which come from automorphisms
of K3.

We compute the dynamical degree for all even d and give an upper bound for
odd ones. We also compute asymptotical growth of the trace of the action of TN

in cohomology, which could allow one to prove that the number of quasi-periodic
points grows polynomially as the period grows. One needs to be careful here,
because there could be periodic and fixed subvarieties, and their contribution
to the Lefschetz fixed point formula should be calculated separately.

Theorem 6.3: Let (M, I) be a hyperkähler manifold, and T a hyperbolic au-
tomorphism acting on cohomology as γ. Denote by α the eigenvalue of γ on
H2(M,R) with |α| > 1. Replacing γ by γ2 if necessary, we may assume that
α > 1. Then all eigenvalues of γ have absolute value which is a power of α1/2.
Moreover, the maximal of these eigenvalues on even cohomology H2d(M) is
equal to αd, and finally, on odd cohomology H2d+1(M) the maximal eigenvalue

of γ is strictly less than α
2d+1

2 .
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Remark 6.4: From Theorem 6.3, it follows immediately that Tr(γN ) grows
asymptotically as αnN .

We prove Theorem 6.3 at the end of this section.

Recall that the Hodge decomposition defines multiplicative action of U(1)
on cohomology H∗(M), with t ∈ U(1) ⊂ C acting on Hp,q(M) as tp−q. In
[V1], the group generated by U(1) for all complex structures on a hyperkähler
manifold was computed explicitly, and it was found that it is isomorphic G =
Spin+(H2(M,R), q) (with center acting trivially on even-dimensional forms and
as -1 on odd-dimensional forms; see [V2]). Here Spin+ denotes the connected
component.

In [V3], it was shown that the connected component of the group of au-
tomorphisms of H∗(M) is mapped to G surjectively and with compact kernel
([V3, Theorem 3.5]). Therefore, to study the eigenvalues of automorphisms of
H∗(M), we may always assume that they belong to G.

Now, the eigenvalues of g ∈ G on its irreducible representations can al-
ways be computed using the Weyl character formula. The computation is time-
consuming, and instead of using Weyl character formula, we use the following
simple observation.

Claim 6.5: Let G be a group, and V its representation. Then the eigenvalues
of g and xgx−1 are equal for all x, g ∈ G.

To prove Theorem 6.3, we replace one-parametric group containing the hy-
perbolic automorphism by another one-parametric group adjoint to it in G, and
describe this second one-parametric group in terms of the Hodge decomposition.

Proposition 6.6: Let (M, I) be a hyperkähler manifold, and f an automor-
phism of M . Assume that f acts on H2(M) with an eigenvalue α > 0. Then
all eigenvalues of γ have absolute value which is a power of α1/2. Moreover, the
maximal of these eigenvalues on even cohomology H2d(M) is equal to αd (with
eigenspace of dimension 1), and on odd cohomology H2d+1(M) it is strictly less

than α
2d+1

2 .

Proof: Write the polar decomposition γ = γ1 ◦ β, where γ1 ∈ G has eigen-
values α, α−1, 1, 1, ..., 1, β belongs to the maximal compact subgroup, and they
commute. Clearly, the eigenvalues of β on V are of absolute value 1, and ab-
solute values of eigenvalues of γ and γ1 are equal. Therefore, we can without
restricting generality assume that γ = γ1 has eigenvalues α, α−1, 1, 1, ..., 1.

Consider now the following one-parametric subgroup of the complexification
GC ⊂ Aut(H∗(M,C)): ρ(t) acts on Hp,q as tp−q, t ∈ R. The corresponding
element of the Lie algebra has only two non-zero real eigenvalues in adjoint
action. Clearly, all one-parametric subgroups of GC = Spin(H2(M,C)) with
this property are conjugate. This implies that γ is conjugate to an element
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ρ(α).
By Claim 6.5, γ and ρ(α) have the same eigenvalues, and ρ(α) clearly has

eigenvalues α
d−i
2 , α

d−i−1
2 , ...α

i−d
2 on V .

Corollary 6.7:

lim
n−→∞

log Tr(fn)
∣∣∣
H∗(M)

n
= logα.

In particular, the number of k-periodic points grows as αnk.

The same argument as in Proposition 6.6 also proves the following theorem.

Theorem 6.8: Let M be a hyperkähler manifold, and γ ∈ Aut(H∗(M)) an
automorphism preserving the Hodge decomposition and acting on H1,1(M) hy-
perbolically. Denote by α the eigenvalue of γ on H2(M,R) with |α| > 1. Re-
placing γ by γ2 if necessary, we may assume that α > 1. Then all eigenvalues
of γ have absolute value which is a power of α1/2. Moreover, the eigenspace of

eigenvalue αk/2 on Hd(M) is isomorphic to H
(d+k)

2 ,
(d−k)

2 (M).
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