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Holomorphic Lagrangian subvarieties
in holomorphic symplectic manifolds

with Lagrangian fibrations and special
Kähler geometry

Ljudmila Kamenova1, Misha Verbitsky2

Abstract. Let M be a holomorphic symplectic Kähler manifold
equipped with a Lagrangian fibration π with compact fibers. The base
of this manifold is equipped with a special Kähler structure, that
is, a Kähler structure (I, g, ω) and a symplectic flat connection ∇ such
that the metric g is locally the Hessian of a function. We prove that
any Lagrangian subvariety Z ⊂M which intersects smooth fibers of π
and smoothly projects to π(Z) is a toric fibration over its image π(Z)
in B, and this image is also special Kähler. This answers a question
of N. Hitchin related to Kapustin-Witten BBB/BAA duality.

1 Introduction

The present paper is motivated by the observations made by N. Hitchin [H2]
who worked on the Kapustin-Witten version of the geometric Langlands
correspondence, interpreted as Montonen-Olive generalization of electric-
magnetic duality. This theory originates in 1977, when P. Goddard, J. Nuyts
and D. Olive discovered that magnetic sources in gauge theory with gauge
group G are classified by irreducible representations of the Langlands dual
group LG ([GNO]). Then C. Montonen and D. Olive conjectured that the
Yang-Mills theories with the gauge groups G and LG are isomorphic on the
quantum level. The Montonen-Olive duality can be regarded as a quantum
field generalization of the usual electric-magnetic duality.

M. Atiyah had suggested that the Montonen-Olive conjecture ([MO])
might be related to the Langlands duality, but it took many years until
2006, when A. Kapustin and E. Witten explained this conjectural relation.
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In their celebrated paper [KW], Kapustin and Witten produced a rich
dictionary of the correspondence between the geometric Langlands program
and S-duality in the four-dimensional N=4 gauge theory. This approach is
based on the comparison between two Hitchin systems (the spaces of Higgs
bundles on a curve) with values in Langlands dual groups. Both of these
Hitchin systems are equipped with a Lagrangian fibration. Reminiscent of
the Strominger-Yau-Zaslow interpretation of the Mirror Symmetry, the Lang-
lands duality is interpreted as a correspondence between certain categories
on these two spaces, associated with the duality of their fibers. For a less
technical survey of the Kapustin-Witten program, see [Ka].

The Kapustin-Witten interpretation of Montonen-Olive/geometric Lang-
lands duality can be understood as SYZ Mirror symmetry on the Hitchin
space, but it is firmly based on the hyperkähler geometry of the Hitchin
space. In place of the Fukaya category on the symplectic side of Mirror
Symmetry, one has a category associated with the holomorphic Lagrangian
subvarieties (BAA, ABA and AAB branes). In place of the derived category
of coherent sheaves on the complex side of Mirror Symmetry one has a cate-
gory which has pairs (trianalytic subvariety, hyperholomorphic bundle on it)
as objects; these are called BBB branes. Since the fiberwise duality should
somehow exchange these two categories, Hitchin argued, the fibers of the
BAA brane under the Hitchin fibration map should be tori, and its image
should retain the special Kähler structure which exists on the base of the
Hitchin fibration. We define all these notions and state this result rigorously
in Section 2.

Hitchin stated his theorem in bigger generality than required by the
Kapustin-Witten theory: he expected it to be true for any hyperkähler man-
ifold equipped (such as the Hitchin system) with a C∗-action rotating the
complex structures within the twistor family. We prove the same result
without a C∗-action. Our main theorem is the following.

Theorem 1.1: (Theorem 3.2) Let (M,Ω) be a holomorphic symplectic
Kähler manifold, and let π : M −→B be a proper Lagrangian fibration.
Consider an irreducible Lagrangian subvariety Z ⊂ M such that π(Z) does
not lie in the discriminant locus D of π. Then for any smooth point x ∈
π(Z)\D which is a regular value of π : Z −→ π(Z), the fiber π−1(x)∩Z is a
union of translation equivalent subtori in the complex torus π−1(x), and the
corresponding π(Z)\D is a special Kähler submanifold in B0 := B\D.
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2 Special Kähler manifolds

2.1 Special Kähler manifolds and Hessian manifolds

Special Kähler manifolds first appeared in physics, [dW-vP], [dWLP], as
allowed targets for the scalars of the vector multiplets of field theories with
N = 2 supersymmetry on a 4-dimensional Minkowski space-time. Originally
they came in two flavours, the affine special Kähler manifolds associated with
rigid supersymmetry, and projective special Kähler manifolds associated with
the local supersymmetry. In the present paper we are interested only in the
affine version.

The first comprehensive mathematical exposition of this theory is due to
Dan Freed, [F]. After this geometric structure was presented to the gen-
eral mathematical readership, special Kähler manifolds became prominent
in differential geometry. In [BC], Baues and Cortés have shown that special
Kähler manifolds can be interpreted as “affine hyperspheres”. This classical
concept, going back to the work of Blaschke in affine geometry, is described
by solutions of real Monge-Ampère equation. This interpretation leads to a
classification of special Kähler manifolds. For more details on the differential
geometry of special Kähler manifolds, the reader is directed to the survey
[C].

Definition 2.1: A special complex manifold is a complex manifold (M, I)
equipped with a flat, torsion-free connection ∇ such that the tensor ∇(I) ∈
Λ1(M) ⊗ Λ1(M) ⊗ TM is symmetric in the first two variables. A special
complex manifold is special Kähler if it is equipped with a Kähler form ω
which satisfies ∇(ω) = 0.

Let (M, I,∇, g, ω) be a special Kähler manifold. Since ∇(ω) = 0, and
∇(I) is symmetric in the first two variables, the tensor

∇(g) = ∇(I ◦ ω) ∈ Λ1(M)⊗ Λ1(M)⊗ Λ1(M) (2.1)

is symmetric in the first two variables. This tensor is symmetric in the last
two variables, because g is symmetric. Therefore, ∇g is a symmetric 3-tensor.

Definition 2.2: Let (M,∇) be a manifold equipped with a flat torsion-free
connection, and g a Riemannian metric. It is called Hessian if ∇(g) is
symmetric in all 3 variables.
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Remark 2.3: It is not hard to see that the Riemannian metric g on (M,∇) is
Hessian if and only if g is locally the Hessian of a function, which is called the
potential of the Hessian metric. A priori the potential exists only locally,
but when M is simply connected, it can be defined globally on M .

This construction is due to N. Hitchin, [H1], who exhibited the special
Kähler structure on the moduli space of holomorphic Lagrangian subvari-
eties in a hyperkähler manifold, and exhibited many interesting differential-
geometric properties of special Kähler manifolds.

Remark 2.4: Let (M, I,∇, g, ω) be a special Kähler manifold, VolM the
Riemannian volume form, and f the potential of its Hessian metric. Since
VolM = ωn, and ∇(ω) = 0, the function f is a solution of the real Monge-

Ampère equation det d2f
dxidxj

= const. In the paper [ChY], Cheng and Yau

studied Hessian manifolds with a prescribed Riemannian volume form, and
proved an analogue of Calabi-Yau’s theorem for such manifolds.

Claim 2.5: Let (M, I,∇, g, ω) be a Kähler manifold equipped with a flat
connection∇ which satisfies∇(ω) = 0. Then (M, I,∇, g, ω) is special Kähler
if and only if the metric g is Hessian.

Proof: Follows immediately from (2.1).

2.2 Special Kähler structure on the base of a complex
Lagrangian fibration

Special Kähler manifolds naturally occur in many situations associated with
the geometry of Calabi-Yau and hyperkähler subvarieties. For the present
paper, the following construction is most significant.

Definition 2.6: Let (M,Ω) be a holomorphic symplectic manifold. A La-
grangian subvariety of M is a subvariety such that its smooth part is a
Lagrangian submanifold in M . A (holomorphic) Lagrangian fibration on
M is a proper holomorphic map π : M −→B with general fibers being
Lagrangian submanifolds in (M,Ω).
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The following claim is well-known in classical mechanics.

Claim 2.7: A smooth fiber of a holomorphic Lagrangian fibration is always
a torus.

Proof: For any fibration π : M −→B, any smooth fiber F has trivial normal
bundle NF . However, NF is dual to the tangent bundle TF whenever π is
a Lagrangian fibration. Therefore, the bundle TF is also trivial. For any
function on B, its Hamiltonian gives a section of TF . Choose a collection
of holomorphic functions such that their Hamiltonians give a basis in TF .
Since these Hamiltonians commute, the corresponding vector fields in TF
also commute. This gives a locally free action of an abelian Lie group on F ,
and therefore F is a quotient of an abelian group by a lattice.

Definition 2.8: Let π : M −→B be a proper fibration. Consider the first
derived direct image R1π∗(RM), where RM is the trivial sheaf on M . This is
a constructible sheaf; at any point x ∈ B, the fiber of R1π∗(RM) is equal to
the first cohomology of the fiber π−1(x). Outside of singularities of π, this
sheaf is locally constant. The flat connection on the corresponding vector
bunlde is called the Gauss-Manin connection. This connection is defined
in the complement to the set Disc(π) of all critical values of π; this set is
called the discriminant locus of π.

Definition 2.9: Let π : M −→B be a Lagrangian fibration, and let F be
the fiber over x ∈ B. Then π∗TB = NF = T ∗F . Identifying H0(NF ) =
TxB with H0(T ∗F ) = H1(F,R), we obtain an identification of TB and the
bundle R1π∗(RM) of the first cohomology constructed above. Therefore, TB
is equipped with a natural flat connection, also called the Gauss-Manin
connection.

Remark 2.10: Let π : M −→B be a holomorphic Lagrangian fibration. A
Kähler form ω on M restricted to a smooth fiber F of π defines a cohomology
class [ω] ∈ H2(F ). Since F is a torus, we can consider [ω] as a 2-form
on R1π∗(RM) = TB. This form is clearly parallel under the Gauss-Manin
connection. Abusing the notation, we denote this 2-form by the same letter
ω.

Theorem 2.11: ([F, Theorem 3.4], [H1, Theorem 3]) Let π : M −→B
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be a holomorphic Lagrangian fibration on a Kähler holomorphic symplectic
manifold and let B0 ⊂ B be the complement to the discriminant locus of
B. Consider the 2-form ω on B constructed in Remark 2.10, and the Gauss-
Manin connection ∇ on TB defined in Definition 2.9. Then (B,∇, ω) is a
special Kähler manifold.

3 Special Kähler geometry and holomorphic

Lagrangian subvarieties

3.1 Holomorphic Lagrangian subvarieties: main theo-
rem

In his talk [H2] at the SCGP in October 2018, Nigel Hitchin stated the
following theorem.

Theorem 3.1: (Hitchin, [H2]) Let π : M −→B be an algebraically inte-
grable system with a C∗-action defining a projective special Kähler structure.
Then any C∗-invariant holomorphic Lagrangian submanifold has an open set
with the structure of a fibration over a projective special Kähler submanifold
of B, and each fiber is a disjoint union of translates of an abelian subvariety.

Hitchin asked whether there is an analogue of his result in the affine
special Käher setting. Here we prove it, and give examples of holomorphic
Lagrangian submanifolds projecting to special Kähler submanifolds.

Theorem 3.2: Let (M,Ω) be a holomorphic symplectic Kähler manifold, and
let π : M −→B be a proper Lagrangian fibration. Consider an irreducible
Lagrangian subvariety Z ⊂M such that π(Z) does not lie in the discriminant
locus D of π. Then for any smooth point x ∈ π(Z)\D which is a regular value
of π : Z −→ π(Z), the fiber π−1(x) ∩ Z is a union of translation equivalent
subtori in the complex torus π−1(x), and the smooth part of π(Z)\D is a
special Kähler submanifold in B0 := B\D.

Before we prove Theorem 3.2, we state the following linear-algebraic
lemma, which seems to be clear.
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Lemma 3.3: Suppose V ⊂ W ⊕ W ∗ is a Lagrangian vector subspace in
W ⊕W ∗ with standard symplectic structure, and π : W ⊕W ∗ −→W the
projection. Then π(V )⊥ = V ∩W ∗, where R⊥ ⊂ W ∗ denotes the annihilator
of a subspace R ⊂ W , and W ∗ is considered as a subspace in W ⊕W ∗.

Proof of Theorem 3.2. Step 1: Let Zx := π−1(x) ∩ Z, where
x ∈ π(Z)\D is a regular value of π : Z −→ π(Z). Denote by T πM
the fiberwise tangent bundle, and let T πz M be its fiber over z ∈ Zx. The
holomorphic symplectic form induces non-degenerate pairing between T πz M
and TxB. Lemma 3.3 applied to V = TZ and W ⊕ W ∗ = TzM im-
plies TzZx = π(TzZ)⊥ ∩ T πz M . Indeed, in this case TzZx = V ∩ W ∗ and
π(TzZ) = π(V ). However, dim π(Z) = dimZ − dimZx = dimπ(TzZ), hence
in all points x ∈ B\D and all z ∈ π−1(x), one has Txπ(Z) = π(TzZ). This
gives

TzZx = Tx(π(Z))⊥. (3.1)

Step 2: From (3.1), we obtain that π(TzZ)⊥ is constant: for different
z, z′ ∈ Zx, the spaces TzZx and Tz′Zx are obtained by a translation within
the torus π−1(x). In other words, the space TzZx is constant in the standard
coordinates on the torus, and Zx ⊂ π−1(x) is a union of subtori which are
translates of each other.

Step 3: Since π(Z) ⊂ B is a complex subvariety, in order to prove that
it is special Kähler it suffices to show that it is totally geodesic (that is,
constant) with respect to the Gauss-Manin connection ∇ on TB0. However,
the connection ∇ is identified with the Gauss-Manin connection under the
identification TB0 = R1π∗(RM), and it preserves any sublattice in TxB0 =
H1(F,Z), where F = π−1(x).

Since Zx ⊂ π−1(x) is a subtorus, it corresponds to a sublattice H1(Zx) ⊂
H1(π

−1(x)) in homology, and in a neighbourhood U 3 x, all fibers Zx′ ⊂
π−1(x′) correspond to the same sublattice. Therefore, its orthogonal comple-
ment in R1π∗(RM) is constant. However, by (3.1), this orthogonal comple-
ment generates Tx(π(Z)). This implies that TB0 is constant with respect to
the Gauss-Manin connection ∇ on B0.
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4 Examples

Many (or most) holomorphic Lagrangian subvarieties of hyperkähler man-
ifolds occur as fibers of Lagrangian fibrations. Indeed, in [HwW] it was
shown that any Lagrangian subtorus in a hyperkähler manifold is a fiber of a
holomorphic Lagrangian fibration. However, for any two distinct Lagrangian
fibrations over a maximal holonomy hyperkähler manifold, the intersection
index of their fibers is positive ([KLV], second paragraph of the proof of
Theorem 2.11). Therefore, any fiber of the first fibration is projected to
the base of the second one surjectively and finitely in the general point. In
this case, Theorem 3.2 is tautologically true, because the fibers of π

∣∣
Z

are
0-dimensional, and its base coincides with B.

It is much harder to find examples where the special Kähler geometry of
π(Z) is non-trivial. This is easy to explain. Indeed, π(Z) gives a flat sub-
manifold in the special Kähler manifold B0 = B\D. Therefore, the tangent
space Txπ(Z) to any smooth point is fixed by the monodromy of the Gauss-
Manin connection on B0. However, the monodromy representation is quite
often irreducible, or has very few subrepresentaions.

The Hitchin system (moduli of Higgs bundles over a curve) is equipped
with a Lagrangian fibration (“Hitchin fibration”), which has abelian varieties
(Jacobians of the “spectral curve”) as its fibers. For some examples of the
Hitchin system, the corresponding monodromy representation was computed
in [BS]. From this computations it follows that the monodromy representa-
tion is reducible ([BS, Corollary 4.23]). This suggests that some interesting
Lagrangian subvarieties, not transversal to fibers of the Hitchin system, might
exist in this case. Two of the first papers to study the monodromy for the
Hitchin fibration are [Cop] and [Sch].

Holomorphic Lagrangian fibrations on a deformation of the second Hilbert
scheme of a K3 were studied by D. Markushevich and by L. Kamenova ([Ma],
[K]). They split into two distinct cases. In the first case, studied by D.
Markushevich, the Abelian fibers are Jacobians of smooth genus two curves
and the fibers of π : M −→B have no elliptic curve, because these Jacobians
are always simple ([M]). Therefore, all Lagrangian subvarieties of M either
project to B surjectively or lie in the fibers of π. In the second case, studied
by L. Kamenova, the fibers of π are products of two elliptic curves, i.e.,
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the fibers are Jacobians of singular genus two curves. This situation occurs,
for example, when one takes the punctual Hilbert scheme of 2 points on an
elliptic K3 surface S −→ P1. Then the Hilbert scheme S[2] is fibered over
the base (P1)[2] = P2 with general fibers that are products of the fibers
of the ellitic fibration S −→ P1. As shown in [K], under some “genericity”
hypotheses, all deformations of the second Hilbert scheme of a K3, fibered
with the fiber that is a product of two elliptic curves, are obtained in this
way.

The main (and, so far, the only) non-trivial example of the geometric con-
struction obtained in this paper is given by the Hilbert scheme of an elliptic
K3 surface as follows. Let π : M −→ S = CP 1 be an elliptic fibration on a
K3 surface. Consider the corresponding fibration π[n] : M [n] −→ S[n] = CP n

on its Hilbert scheme. A multisection of π is a curve which is transver-
sal to the fibers of π; a multisection exists if and only if M is projective.
Fix points s1, ..., sk ∈ S, and let Ck+1, ..., Cn ⊂ M be multisections. De-
note by L̂k(s1, ..., sk, Ck+1, ..., Cn) ⊂ SymnM the set of n-tuples of points
(e1, ..., ek, ck+1, ..., cn) ∈ SymnM , such that ei ∈ π−1(si) and cj ∈ Cj. Since
the holomorphic symplectic form on SymnM is locally a product of the
holomorphic symplectic form on M , and the curves π−1(si) and Cj ⊂M are
Lagrangian, the subvariety

L̂k(s1, ..., sk, Ck+1, ..., Cn) ⊂ SymnM

is Lagrangian. Then its proper preimage Lk(s1, ..., sk, C) ⊂ M [n] is also La-
grangian. Under the natural map π[n] : M [n] −→ S[n] = CP n, this subvariety
is projected to a subset of Symn S = CP n consisting of all n-tuples which
contain (s1, ..., sk).

Another example is due to Richard Thomas (private communication).
In the early versions of this paper, we did not specify the behaviour of the
restriction π

∣∣
Z

outside of its regular values, and this example shows that it
can be pretty wild.

Let S be a compact complex torus, dimC S = n, and M = T ∗S the total
space of its cotangent bundle. Since T ∗S admits a natural trivialization,
the manifold M is equipped with a Lagrangian fibration M −→ Cn, with the
fibers obtained as translates of S.

Let X ⊂ S be a complex submanifold, and Z := NS⊥ ⊂ M the total
space of its conormal bundle. It is always Lagrangian, and in many situations
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the projection of Z to the base Cn is n-dimensional. To illustrate it, let us
identify the base B = Cn of π with T ∗s S, for some (or all) s ∈ S. A vector
v ∈ B belongs to π(Z) if and only if v ∈ TxX

⊥ for some x ∈ X, where
TxX

⊥ = {ζ ∈ T ∗xS | 〈ζ, TxX〉 = 0}. Then π(Z) is a union of hyperplanes
TxX

⊥ parametrized by a 1-dimensional family of x ∈ X.
Unless the tangent space TxX stays constant as we vary x ∈ X, the im-

age π(Z) is n-dimensional, and the corresponding fiber is 0-dimensional.
However, the central fiber π−1(0) is X, not a torus and of different di-
mensional from the general fiber. The proof of Theorem 3.2 fails for the
central fiber, because π(Z) is not smooth in zero, and the identification
TzZx = π(TzZ)⊥ ∩ T πz M does not hold.
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