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Abstract. Let M be a hyperkähler manifold of maximal holonomy (that
is, an IHS manifold), and let K be its Kähler cone, which is an open,
convex subset in the space H1,1(M,R) of real (1,1)-forms. This space
is equipped with a canonical bilinear symmetric form of signature (1, n)
obtained as a restriction of the Bogomolov-Beauville-Fujiki form. The set
of vectors of positive square in the space of signature (1, n) is a discon-
nected union of two convex cones. The “positive cone” is the component
which contains the Kähler cone. We say that the Kähler cone is “round”
if it is equal to the positive cone. The manifolds with round Kähler
cones have unique bimeromorphic model and correspond to Hausdorff
points in the corresponding Teichmüller space. We prove thay any maxi-
mal holonomy hyperkähler manifold with b2 > 5 has a deformation with
round Kähler cone and the Picard lattice is of signature (1,1), admitting
two non-collinear integer isotropic classes. This is used to show that all
known examples of hyperkähler manifolds admit a deformation with two
transversal Lagrangian fibrations, and their Kobayashi metric vanishes.

1 Introduction

This paper gives a simple solution for a construction problem of hyperkähler
geometry. We construct a hyperkähler manifold with rank 2 hyperbolic Picard
lattice and maximal possible Kähler cone.

For our purposes, “a hyperkähler manifold” is a compact, holomorphic sym-
plectic compact manifold M of Kähler type, which satisfies “the maximal holon-
omy condition”, that is, π1(M) = 0, dimH2,0(M) = 1. This condition is also
known as IHS (“irreducible holomorphic symplectic”).

The shape of the Kähler cone of a hyperkähler manifold is more or less
understood by now (see [AV3]). However, finding examples of manifolds with
prescribed shape of their Kähler cone is a complicated task. Such constructions
are either very explicit or based on convoluted arguments from number theory.
The automorphism group of a hyperkähler manifold and its set of Lagrangian
fibrations can be described explicitly in terms of its periods and the shape of
the Kähler cone ([AV4]). Therefore, finding manifolds with prescribed Kähler
cones has many practical applications.

Recall that the second cohomology of a maximal holonomy hyperkähler man-
ifold is equipped with a bilinear symmetric form of signature (3, b2−3), which is
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essentially of topological origin ([Bea, Bo, F]). This form, denoted by q further
on, is called the Bogomolov-Beauville-Fujiki form; it is positive on the
Kähler cone, and has signature (1, b2 − 3) on H1,1(M,R).

This implies that the set of “positive vectors” (the vectors with positive
square) in H1,1(M,R) has two connected components, both of them convex
cones. However, only one of these two components may contain Kähler forms.
We call this component “the positive cone” of a hyperkähler manifold.

Every hyperkähler manifold is equipped with a collection S of primitive in-
teger cohomology classes in H2(M,Z) with negative squares, called the MBM
classes ([AV1]). This set is invariant on deformations of M and under the
action of the monodromy group Γ generated by the monodromy of the Gauss-
Manin connection for all deformations of M . The group Γ (originally defined
by E. Markman, [Mar1], who called it the monodromy group) is mapped to
the orthogonal lattive O(H2(M,Z)) with finite kernel, and its image is a finite
index sublattice in O(H2(M,Z)) ([V1]).

In [AV2], it was shown that the monodromy group Γ acts on the set of
MBM classes with a finite number of orbits, which were computed for some
deformational classes of hyperkähler manifolds in [BM], [HT3], [HT4], [AV5].

As shown in [AV3] (the result is essentially due to E. Markman, [Mar2]),
the positive cone Pos(M, I) of a hyperkähler manifold is cut into pieces by
hyperplanes orthogonal to the MBM classes which lie in H1,1(M, I), and each
of the connected components of this complement can be realized as a Kähler
cone of a certain hyperkähler birational model of (M, I). In other words, the
Kähler cone is a connected component of the set

Pos◦(M, I) := Pos(M, I)

∖ ⋃
α∈S∩H1,1(M,I)

α⊥ , (1.1)

where S is the set of all MBM classes in H2(M,Z), and all connected compo-
nents are realized as Kähler cones for birational models of (M, I)

The authomorphism group of a hyperkähler manifold (M, I) is expressed in
terms of its Kähler cone and the monodromy group as follows. Let ΓI ⊂ Γ be
the subgroup of the monodromy group preserving the Hodge decomposition on
H2(M). Then Aut(M, I) is a subgroup of all elements in ΓI which preserve the
Kähler cone.

We say that a manifold M has round Kähler cone if Kah(M) = Pos(M),
or, equivalently, when the set of MBM classes in H1,1(M, I) is empty.

To construct a manifold with round Kähler cone and rank 2 Picard lattice,
we use Kneser’s orbit theorem, claiming that for any non-degenerate quadratic
lattice Λ, the orthogonal group O(Λ) acts on the set of non-degenerate sub-
lattices with given discriminant and rank with finitely many orbits (Theorem
3.1).

A rank 2 integer quadratic lattice is called hyperbolic if it is generated by
2 isotropic vectors,1 in other words, if its intersection lattice in an appropriate

1A vector x ∈ Λ in a lattice (Λ, q) is isotropic if q(x, x) = 0.
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basis has the form

(
0 N
N 0

)
. Such a hyperbolic lattice is denoted by U(N).

An MBM bound for a hyperkähler manifold is the number

C := max{−q(x, x) | x ∈ S},

where S denotes the set of MBM classes. Since Γ ⊂ O(H2(M,Z)) acts on S
with finitely many orbits (by [AV2]), this number is finite.

Clearly, for all vectors x in U(N), the square (x, x) is divisible by N . There-
fore, any primitive sublattice U(N) ⊂ H2(M,Z) with N > C contains no MBM
classes and has round Kähler cone. However, if H2(M,Z) does not contain prim-
itive lattices isomorphic to U(N) for all N > C, then the set of O(H2(M,Z))-
classes of primitive hyperbolic sublattices in H2(M,Z) is finite, by Kneser’s
theorem. This easily leads to a contradiction (Theorem 3.2).

2 Kobayashi metric on hyperkähler manifolds

We apply the results of the current paper to the vanishing of the Kobayashi
pseudometric on hyperkähler manifolds. In this section we summarize some of
our results in [KLV] joint with S. Lu. The aim of the current paper is to imrove
some of the bounds imposed on the Betti numbers, and also to show vanishing of
the Kobayashi pseudometric for all of the known compact hyperkähler examples.

Definition 2.1: An ergodic complex structure is a complex structure I on
M such that for any complex structure I ′ in the same deformation class there
exists a sequence of diffeomorphisms νi ∈ Diff(M) such that limi νi(I) = I ′,
where the limit of νi(I) ∈ End(TM) is taken with respect to the C∞-topology
on the space of tensors. We denote the space of all integrable complex structures
with this topology by Comp.

Theorem 2.2: Any complex structure of hyperkähler type on a hyperkähler
manifold with b2 > 5 with (H2,0(M)⊕H0,2(M)) ∩H2(M,Q) = 0 is ergodic.
Proof: [V2, V2bis]).

We will need another diffeomorphism orbit, which is smaller than the max-
imal one, but has many of the same properties.

Theorem 2.3: Let (M, I) be a hyperkähler manifold such that (H2,0(M) ⊕
H0,2(M)) ∩ H2(M,Q) is a rank 1 space generated by a class α ∈ H2(M,Q),
and Teichα the Teichmüller space of all complex structure with α ∈ (H2,0(M)⊕
H0,2(M))∩H2(M,Q) and deformationally equivalent to I. Then Diff(M) · I is
dense in Teichα.
Proof: [V2bis, Theorem 2.5, Theorem 3.1].

Theorem 2.4: [KLV] Let (M, I) be a complex manifold with vanishing Kobayashi
pseudometric. Then the Kobayashi pseudometric vanishes for all ergodic com-
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plex structures in the same deformation class. Moreover, for each complex
structure I1 such that the closure of Diff(M)I1 in Comp contains I, the pseu-
dometric on (M, I1) also vanishes.

Proof: The proof follows easily from semicontinuity of the diameter of the
Kobayashi pseudometric, considered as a function on Comp ([KLV]).

Theorem 2.5: [KLV] Let M be a hyperkähler manifold admitting two La-
grangian fibrations associated with two non-proportional parabolic classes. Then
the Kobayashi pseudometric on M vanishes.

To prove that a given hyperkähler manifold admits a deformation with two
distinct Lagrangian fibrations, in [KLV] we used an argument based on [AV4].

Theorem 2.6: [KLV] Let M be a maximal holonomy hyperkähler manifold with
b2(M) > 13. Then M admits a projective deformation with Picard lattice of
signature (1, 2), with round Kähler cone (that is, with the Kähler cone equal to
the positive cone), and its automorphism group has finite index in the arithmetic
group SO(Pic(M)) of orthogonal automorphisms of its Picard lattice.

Proof: From [AV4, Theorem 3.11] it follows that there exists a projective
deformation with Picard rank 3, isotropic classes in H1,1(M) ∩ H2(M,Q) and
without MBM classes of type (1,1). From [AV4, Theorem 2.10] it follows that for
such a manifold the Kähler cone is equal to the positive cone, and from [AV4,
Theorem 2.6, Theorem 2.7, Corollary 2.12] it follows that its automorphism
group has finite index in the arithmetic group SO(Pic(M)).

Theorem 2.7: [KLV] Let M be a projective, maximal holonomy hyperkähler
manifold with two non-collinear isotropic rational classes in H1,1(M) and with
round Kähler cone. Assume that M satisfies the SYZ conjecture, that is, any
nef bundle on M is semiample. Then M admits infinitely many transversal
holomorphic Lagrangian fibrations. In particular, the Kobayashi pseudometric
on M vanishes.

Proof: Since the Kähler cone of M is round, there exist rational vectors
on the boundary of the Kähler cone of M . These points correspond to rational
points in the real quadric {l ∈ PH2(M,Q) | q(l, l) = 0}.

Each of such points corresponds to a Lagrangian fibration, because we as-
sume that the SYZ conjecture holds.

Theorem 2.8: [KLV] Let (M, I) be a maximal holonomy, compact hyperkähler
manifold with non-maximal Picard rank. Suppose that it has a deformation
which has two transversal Lagrangian fibrations. Then the Kobayashi pseudo-
metric on (M, I) vanishes.
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Proof: The vanishing of the Kobayashi pseudometric then immediately
follows from Theorem 2.7 and Theorem 2.4. Indeed, there exists a complex
structure I ′ with vanishing Kobayashi pseudometric, and a sequence of diffeo-
morphisms such that limi νi(I) = I ′. Then the Kobayashi pseudometric of
(M, I) vanishes by semicontinuity properties of the diameter of the Kobayashi
pseudometric.

Theorem 2.9: Let M be a compact, maximal holonomy hyperkähler manifold
with b2(M) > 6. Suppose that all its deformations satisfy the SYZ conjecture.
Then the Kobayashi pseudometric on M vanishes.

Proof: See Theorem 2.7, Theorem 2.4 and Theorem 2.5.

Remark 2.10: All known examples of hyperkähler manifolds have b2(M) > 7
and satisfy the SYZ conjecture. By the results above, the Kobayashi pseudo-
metric of all known manifolds vanishes, unless their Picard rank is maximal.

Remark 2.11: The SYZ conjecture is true for all known hyperkähler examples,
i.e., for deformations of Hilbert schemes of points on K3 surfaces (Bayer-Macr̀ı
[BM]; Markman [Mar3]), for deformations of the generalized Kummer varieties
(Yoshioka [Y]), for O’Grady’s sixfolds (Mongardi-Rapagnetta [MR]), and for
O’Grady’s tenfolds (Mongardi-Onorati, [MO]).

3 Main results

Here is a general result about lattices found in [KS, Satz 30.2], known as Kneser’s
orbit theorem.

Theorem 3.1: Let Λ be a non-degenerate integer lattice, and O(Λ) its isometry
group. Then for any D > 0, the group O(Λ) acts with finitely many orbits on
the set of non-degenerate sublattices Λ′ ⊂ Λ with discriminant disc(Λ′) 6 D.

The main technical theorem of this note is the following.

Theorem 3.2: Fix a natural number A. Let (Λ, q) be a non-degenerate in-
definite lattice containing an isotropic vector. Then Λ contains a primitive

sublattice Λ1 isomorphic to U(N) =

(
0 N
N 0

)
for some integer N > A.

Proof. Step 1: Let Λ be a lattice which does not contain primitive hyper-
bolic lattices with U(N) ⊂ Λ with N > A. By Theorem 3.1 it follows that O(Λ)
acts with finitely many orbits on the set of all hyperbolic lattices in Λ. We will
prove that this is impossible.
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Step 2: Let S1 be the set of primitive hyperbolic lattices in a hyperbolic
lattice Λ, and S2 the set of pairs (x, y) of non-orthogonal primitive isotropic vec-
tors up to a permutation and a sign change. The group O(U(N)) of isometries
of U(N) is (Z/2Z)2. Indeed, a primitive isotropic vector can be mapped only
to another primitive isotropic vector, and there are only 4 of them. From this
observation it follows that the natural map S1 −→ S2 mapping a lattice to its
primitive isotropic vectors is bijective. Therefore, the set of equivalence classes
S1

O(Λ) is finite if and only if S2

O(Λ) is finite.

Step 3: Let V := Λ ⊗Z R and let Q ⊂ PV be the quadric defined by the
equation q = 0. The primitive isotropic vectors in Λ are determined uniquely
up to a sign by the rational points in Q. To prove that O(Λ) does not act
with finitely many orbits on the set of pairs (x, y) of non-orthogonal primitive
isotropic vectors, it would suffice to show that O(Λ) does not act with finitely
many orbits on the set of pairs (u, v) ∈ Q×Q of rational, non-orthogonal points.

Step 4: In this step we prove that O(Λ) does not act with finitely many
orbits on the set of pairs (u, v) ∈ Q × Q, where u ∈ Q is fixed. In this case,
the set of such v is in bijective correspondence with the rational lines passing
through u, and not orthogonal to u (indeed, any rational line transversally
intersecting quadric intersects it twice). Therefore, it would suffice to show that
the stabilizer Stu(O(Λ)) does not act with finitely many orbits on the set of
rational projective lines l ⊂ P(Λ⊗ZQ) passing through u and not orthogonal to
u.

Step 5: Let Λ1 := u⊥

u be the quotient of the lattice u⊥ ⊂ Λ by 〈u〉. Then
Stu(O(Λ)) acts on Λ1, and each line l ⊂ P(Λ⊗Z Q) produces a rank 1 rational
subspace in Λ1⊗ZQ. The natural action of Stu(O(Λ)) factorizes through O(W ).

To prove that Stu(O(Λ)) acts with infinitely many orbits on the set of pro-
jective lines passing through u, it would suffice to prove that O(W ) acts with
infinitely many orbits on P(W ⊗Z Q). This is clear, because each 1-dimensional
subspace in W has an integer invariant - the square of the smallest primitive
vector - and this square can be arbitrary large.

Here is the main application of Theorem 3.2.

Theorem 3.3: Let M be a compact maximal holonomy hyperkähler manifold
with b2(M) > 4, satisfying the SYZ conjecture. Assume that H2(M,Q) has
non-zero isotropic vectors. Then M admits a deformation with two distinct
Lagrangian fibrations. If, in addition, M satisfies one of the two assumptions

(a) (H2,0(M)⊕H0,2(M)) ∩H2(M,Q) = 0,

(b) b2(M) > 6, and M has Picard lattice of non-maximal rank,

then the Kobayashi pseudometric on M vanishes.
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Proof: Consider a primitive lattice Λ ⊂ H2(M,Z) of signature (p, q), p 6
1, q 6 b2 − 3. Using the global Torelli theorem [V1], we can find a deformation
(M, I1) of M with Picard lattice Λ.

Since the rank of the indefinite lattice H2(M,Z) is at least 5, by Meyer’s
theorem [Me] there exists an isotropic vector x ∈ H2(M,Z). Applying Theorem
3.2, we can find a primitive hyperbolic sublattice U(N) ⊂ H2(M,Z) with N >
|q(v, v)| for all integer (1, 1)-classes. Choose the complex structure I such that
U(N) is the Picard lattice H1,1

I (M,Z) of (M, I). Then (M, I) has round Kähler
cone, hence both integer isotropic generators of U(N) are nef.

These classes correspond to Lagrangian fibrations since (M, I) satisfies SYZ,
hence Kobayashi metric of (M, I) vanishes. This takes care of the first statement
of Theorem 3.3.

Applying Theorem 2.4, we obtain that the Kobayashi metric vanishes for
all ergodic complex structures, that is, for all complex structures I1 such that
(H2,0(M) ⊕ H0,2(M)) ∩ H2(M,Q) = 0. This proves the case (a) of Theorem
3.3.

It remains to prove Theorem 3.3 (b). Suppose that (H2,0(M, I)⊕H0,2(M, I))∩
H2(M,Q) has rank one and is generated by α, Since α⊥ has rank > 5, it contains
isotropic vectors. Applying Theorem 3.2 again, we find a deformation (M, I ′)
of M which satisfies H1,1

I′ (M,Z) = U(N) and (H2,0(M, I ′) ⊕ H0,2(M, I ′)) ∩
H2(M,Q) = 〈α〉. For an appropriate choice of diffeomorphisms πi ∈ Diff(M),
the sequence νi(I

′) converges to I (by Theorem 2.3), hence the Kobayashi metric
on (M, I) also vanishes.

Corollary 3.4: All known compact hyperkähler examples have vanishing Kobayashi
pseudometric.

Proof: See Remark 2.11 and Theorem 3.3.
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